
Commentationes Mathematicae Universitatis Carolinae

Anatoly A. Gryzlov; Dimitrina N. Stavrova
Topological spaces with a selected subset-cardinal invariants and inequalities

Commentationes Mathematicae Universitatis Carolinae, Vol. 35 (1994), No. 3, 525--531

Persistent URL: http://dml.cz/dmlcz/118692

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1994

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118692
http://project.dml.cz


Comment.Math.Univ.Carolin. 35,3 (1994)525–531 525

Topological spaces with a selected

subset-cardinal invariants and inequalities

A.A. Gryzlov, D.N. Stavrova*

Abstract. Cardinal functions for topological spaces in which a subset is selected in a cer-
tain way are defined and studied. Most of the main cardinal inequalities are generalized
for such spaces.

Keywords: Lindelöf number, cellularity, cardinal invariants with respect to a subset

Classification: 54A05, 54A25

All spaces are assumed to be Hausdorff and standard notations following [5]
and [7] are used.
From now on let X be a topological space and X0 be a selected subset of X .
The subspace X0 is said to be compact (or Lindelöf) in X (see [3]), if from each

open cover γ of X a finite (countable) γ′ ⊆ γ could be chosen that covers X0.
From the other side in [9] Sun Shu-Hao introduced the invariant kL(X) =

ω ·min{τ : there is an A ⊆ X , |A| ≤ 2τ such that
(∗) : for each open cover γ of X there are γ′ ∈ [γ]≤τ and B ∈ [A]≤τ such that

X =
⋃
γ′ ∪B}

and observed that kL(X) ≤ min{d(X), L(X), s(X)}. He also proved that for
a Hausdorff space X we have |X | ≤ exp kL(X) · ψC (X) · t(X), where ψC(X) =
ω·min{τ : for eachX ∈ X there is a family of open neighborhoods {Uα(x) : α ∈ τ}

of x such that {x} =
⋂
{Uα(x) : α ∈ τ}}. To do this he used the following:

Lemma 1. If X is a Hausdorff topological space, L ∈ [X ]≤exp τ and ψC(X) ·
t(X) ≤ τ , then |L| ≤ 2τ .

Figuratively speaking the above two notions show that we could have some
“bad” part of a certain space, but if the cardinality of this part is not “too big”,
we still could get some results about the cardinality of the main space.
In this way we come to the following concept: we say that L(X,X0) = ω ·

min{τ : for each open cover γ of X there is γ′ ∈ [γ]≤τ such that
⋃
γ′ ⊇ X \X0}.

We have that L(X, ∅) = L(X), L(X,X0) ≤ L(X), L(X,X0) ≤ L(X \ X0) ≤
hL(X), L(X) ≤ L(X0)·L(X,X0) and ifX\X0 is Lindelöf inX then L(X,X0) ≤ ω.
In the conditions of Lemma 1 there is X0 ∈ [X ]

≤exp τ such that L(X,X0) ≤ τ . In
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that sense we could look at L(X,X0) as a generalization of the notions mentioned
in the beginning.
We shall prove the following:

Theorem 1. If X is a Hausdorff topological space then:

|X \X0| ≤ expL(X,X0) · ψC(X) · t(X).

Proof: Let L(X,X0) · ψC(X) · t(X) ≤ τ and for every x ∈ X let us fix a family
of neighborhoods of the point x−W(x) with |W(x)| ≤ τ such that {x} =

⋂
{U :

U ∈ W(x)}. By transfinite induction we shall define two families – {Hα : α ∈
τ+} ⊆ exp(X \X0) and {Bα : α ∈ τ+} such that:

(1) Hα = Hα
X\X0 .

(2) |Hα| ≤ 2τ for every α ∈ τ+.
(3) Hα ⊆ Hα′ if α ≤ α′ ∈ τ+.
(4) If α ∈ τ+ and {Hβ : β ∈ α} are already defined then Bα =

⋃
{W(x) : x ∈

⋃
{Hβ : β ∈ α}}.

(5) If W ∈ [Bα]
≤τ and X \ (∪W ∪X0) 6= ∅ then Hα \ (∪W ∪X0) 6= ∅.

Let α ∈ τ+ and {Hβ : β ∈ α} and {Bβ : β ∈ α} be already defined with
properties (1)–(5).
Let Eα = {W : W ∈ [Bα]

≤τ and X \ (∪W ∪ X0) 6= ∅}. For every W ∈
Eα we choose a point φ(W) ∈ X \ (∪W ∪ X0) 6= ∅ and let Cα = {φ(W) :
W ∈ Eα}. Since |Eα| ≤ 2τ we have that |Cα| ≤ 2τ . Finally we put Hα =

Cα ∪ ∪{Hβ : β ∈ α}
X\X0

. Since |Cα∪∪{Hβ : β ∈ α}| ≤ 2τ and ψc(X)·t(X) ≤ τ ,
using Lemma 1 we obtain that |Hα| ≤ 2τ . It can be easily seen that the conditions
(1)–(5) are satisfied.
Let H =

⋃
{Hα : α ∈ τ+}. H is closed in X \X0 and H =

⋃
{Hα : α ∈ τ+}.

Let us show that X \ X0 = H . Suppose there is a q ∈ X \ H \ X0. Then
q /∈ H , hence for every p ∈ H , we can choose Vp ∈ W(p) such that q /∈ V p. Let

µ = {Vp : p ∈ H} ∪ {X \ H}. We have that
⋃
µ ⊇ X and from L(X,X0) ≤

τ we can choose µ0 ∈ [µ]≤τ such that H ⊆ X \ X0 ⊆
⋃
µ0. We have that

µ0 = {Vp : p ∈ H ∈ [H ]≤τ} ∪ {X \ H}. Hence H ⊆
⋃
{Vp : p ∈ H ′ ∈ [H ]≤τ}.

Let µ′ = {Vp : p ∈ H ′ ∈ [H ]≤τ}. From the regularity of τ+ and the fact that
|µ′| ≤ τ there is an α0 ∈ τ+ such that µ′ ⊆ Bα0 . Then we have already chosen
a point φ(µ′) ∈ (X \ (∪µ′ ∪ X0)) ∩ Hα ⊆ H and at the same time

⋃
µ′ ⊇ H –

a contradiction. �

In fact we have proved:

Theorem 1∗. If X \X0 is Hausdorff then:

|X \X0| ≤ expL(X,X0) · ψC (X \X0) · t(X \X0).
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Theorem 1∗∗. Let X be a Hausdorff topological space, X0 ⊆ X , L(X,X0) ·

t(X) ≤ τ and if H ∈ [X \X0]
≤exp τ then |H

X\X0 | ≤ 2τ . Then |X \X0| ≤ 2
τ .

Corollary 1.1 ([1]). For every Hausdorff topological spaceX we have that |X | ≤
expL(X) · ψ(X) · t(X).

Corollary 1.2 ([8]). For every regular topological space X we have that |X | ≤
exp kL(X) · χ(X).

Corollary 1.3 ([9]). For every Hausdorff topological spaceX we have that |X | ≤
exp kL(X) · ψC(X) · t(X).

Now let us define: wL(X,X0) = ω ·min{τ : for each open cover γ of X there

is γ′ ∈ [γ]≤τ such that
⋃
γ′ ⊇ X \ X0} and qL(X,X0) = ω · min{τ : for each

F = F
X\X0 ⊆ X \X0 and for each open cover γ of F there is γ

′ ∈ [γ]≤τ such that
⋃
γ′ ⊇ F}. We have that wL(X,X0) ≤ qL(X,X0) ≤ L(X,X0), wl(X,X0) ≤

wL(X \ X0), wL(X, ∅) = wL(X), wL(X,X0) ≤ wL(X), qL(X,X0) ≤ qL(X),
qL(X,X0) ≤ qL(X \ X0) and qL(X, ∅) = qL(X). We also have the following
lemma:

Lemma 2. If X is normal then wL(X,X0) = qL(X,X0).

Proof: Let wL(X,X0) ≤ τ , let F = F
X\X0 ⊂ X \X0 and let γ be an open in

X cover of F . From the normality of X we have that there is an open U such
that F ⊂ U ⊂ U ⊂

⋃
γ. Let γ1 = γ ∪ {X \ U}. Then

⋃
γ1 = X and therefore

there is γ′1 ∈ [γ1]
≤τ such that

⋃
γ′1 ⊇ X \X0. We have that γ

′
1 = γ′ ∪ {X \ U},

where γ′ ∈ [γ]≤τ . Therefore
⋃
γ′1 =

⋃
γ′ ∪X \ U . Since X \ U ∩ F = ∅ we have

that F ⊆
⋃
γ′ i.e. qL(X,X0) ≤ τ . �

Theorem 2. If X is a regular topological space then:

|X \X0| ≤ exp qL(X,X0) · χ(X).

Proof: Let qL(X,X0) · χ(X) ≤ τ and for every x ∈ X , let us fix a local base at
the point x−W(x) with |W(x)| ≤ τ . By transfinite induction we shall define two
families – {Hα : α ∈ τ+} ⊆ exp(X \X0) and {Bα : α ∈ τ+} such that:

(1) Hα = Hα
X\X0 .

(2) |Hα| ≤ 2τ for every α ∈ τ+.
(3) Hα ⊆ Hα′ if α ≤ α′ ∈ τ+.
(4) If α ∈ τ+ and {Hβ : β ∈ α} are already defined then Bα =

⋃
{W(x) : x ∈

⋃
{Hβ : β ∈ α}}.

(5) If W ∈ [Bα]
≤τ and X \ (∪W ∪X0) 6= ∅ then Hα \ (∪W ∪X0) 6= ∅.

Let α ∈ τ+ and {Hβ : β ∈ α} and {Bβ : β ∈ α} be already defined with
properties (1)–(5).
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Let Eα = {W : W ∈ [Bα]
≤τ and X \ (∪W ∪ X0) 6= ∅}. For every W ∈

Eα we choose a point φ(W) ∈ X \ (∪W ∪ X0) 6= ∅ and let Cα = {φ(W) :
W ∈ Eα}. Since |Eα| ≤ 2τ we have that |Cα| ≤ 2τ . Finally we put Hα =

Cα ∪ ∪{Hβ : β ∈ α}
X\X0

. Since |Cα ∪ ∪{Hβ : β ∈ α}| ≤ 2τ and χ(X) ≤ τ then
|Hα| ≤ 2

τ . It can be easily seen that the conditions (1)–(5) are satisfied.
Let H =

⋃
{Hα : α ∈ τ+}. H is closed in X \X0 and H =

⋃
{Hα : α ∈ τ+}.

Let us show that X \ X0 = H . Suppose there is a q ∈ X \ H \ X0. Then
q /∈ H and from the regularity of X there is an open V such that q ∈ V ⊆ V ⊆
X \ H ⊆ X \ H i.e. V ∩ H = ∅. For every p ∈ H we can choose Vp ∈ W(p)

such that Vp ∩ V = ∅. Let µ = {Vp : p ∈ H}. We have that
⋃
µ ⊇ H and

from qL(X,X0) ≤ τ we can choose µ0 ∈ [µ]≤τ such that H ⊆
⋃
µ0. We have

that µ0 = {Vp : p ∈ H ′ ∈ [H ]≤τ}. From the regularity of τ+ there is an
α0 ∈ τ+ such that µ′ ⊆ Bα0 and q ∈ X \ (X0∪µ0). Then we have already chosen

a point φ(µ0) ∈ (X \ (∪µ0 ∪X0)) ∩Hα ⊆ H and at the same time
⋃
µ0 ⊇ H –

a contradiction. �

In fact we have proved:

Theorem 2∗. If X \X0 is regular then:

|X \X0| ≤ exp qL(X,X0) · χ(X \X0).

Corollary 2.1. For every normal topological space X we have that |X \X0| ≤
expwL(X \X0) · χ(X).

Corollary 2.2 ([2]). If X is a regular topological space then |X | ≤ exp qL(X) ·
χ(X).

Corollary 2.3 ([4]). If X is a normal topological space then |X | ≤ expwL(X) ·
χ(X).

Corollary 2.4 ([10]). For every regular topological space X we have that |X | ≤
exp qkL(X) · χ(X).

Corollary 2.5 ([10]). For every normal topological space X we have that |X | ≤
expwkL(X) · χ(X).

Now let us define: c(X,X0) ≤ τ iff for every F ⊆ X \X0 and every canonically
open set V ⊇ F and every open cover γ of the set F ∪ (F ∩ X0 ∩ V ) there is

γ′ ∈ [γ]≤τ such that
⋃
γ′ ⊇ F . We have that qL(X,X0) ≤ c(X,X0), c(X,X0) ≤

c(X \X0), c(X, ∅) = c(X) and c(X,X0) ≤ c(X).

Theorem 3. If X is a Hausdorff topological space then:

|X \X0| ≤ c(X,X0) · χ(X).
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Proof: Let c(X,X0) · χ(X) ≤ τ and for every x ∈ X , let us fix a local base in
the point x−W(x) with |W(x)| ≤ τ . By transfinite induction we shall define two
families – {Hα : α ∈ τ+} ⊆ exp(X \X0) and {Bα : α ∈ τ+} such that:

(1) |Hα| ≤ 2τ for every α ∈ τ+.
(2) Hα ⊆ Hα′ if α ≤ α′ ∈ τ+.
(3) If α ∈ τ+ and {Hβ : β ∈ α} are already defined then Bα =

⋃
{W(x) : x ∈

⋃
{Hβ : β ∈ α}}.

(4) If Wδ ∈ [Bα]
≤τ for every δ ∈ τ , W =

⋃
{
⋃
{U : U ∈ Wδ} : δ ∈ τ} and

X \ (W ∪X0) 6= ∅ then Hα \ (W ∪X0) 6= ∅.

Let α ∈ τ+ and {Hβ : β ∈ α} and {Bβ : β ∈ α} be already defined with
properties (1)–(4).

Let Eα = {W : W =
⋃
{
⋃
{U : U ∈ Eδ} : δ ∈ τ , Wδ ∈ [Bα]

≤τ for every
δ ∈ τ and X \ (W ∪ X0) 6= ∅}. For every W ∈ Eα we choose a point φ(W ) ∈
X \ (W ∪X0) 6= ∅ and let Cα = {φ(W ) :W ∈ Eα}. Since |Eα| ≤ 2τ we have that
|Cα| ≤ 2τ . Finally we put Hα = Cα ∪

⋃
{Hβ : β ∈ α}. It can be easily seen that

the conditions (1)–(4) are satisfied.
Let H =

⋃
{Hα : α ∈ τ+}. Then H =

⋃
{Hα : α ∈ τ+} and |H | ≤ 2τ .

Therefore |H| ≤ 2τ .
Let us show that X \X0 = H . Suppose there is a q ∈ X \H \X0. We have

that {q} =
⋂
{V : V ∈ W(q)} and let H(V, q) = H \ V , for every V ∈ W(q).

Let us note that H =
⋃
{H(V, q) : V ∈ W(q)}. For every x ∈ H(V, q) there is

U(x) ∈ W(x) such that U(x) ⊆ X \ V . Let µ′(V ) = {U(x) : x ∈ H(V, q)}. We
have that X \ V is canonically open and contains H(V, q) ⊆ H ⊆ X \ X0. We

considerW (V, q) = H(V, q)∩X0∩ (X \V ) ⊆ H . Hence |W (V, q)| ≤ 2τ . For every
z ∈ W (V, q) we choose a W (z) ∈ W(z) such that W (z) ⊆ X \ V . Let µ′′(V ) =
{W (z) : z ∈ W (V, q)} and let µ′′′(V ) = µ′(V ) ∪ µ′′(V ). Then µ′′′(V ) covers
H(V, q)∪W (V, q) and from c(X,X0) ≤ τ we can choose µ0(V ) ∈ [µ

′′′(V )]≤τ such

that H(V, q) ⊆
⋃
µ0(V ). But

⋃
µ0(V ) ⊆ X \ V ⊆ X \ V ; then

⋃
µ0(V ) ⊆ X \V .

Then we can choose an α0 ∈ τ+ such that µ0(V ) ⊆ Bα0 for every V ∈ W(q). We

have that W =
⋃
{
⋃
µ0(V ) : V ∈ W(q)} ⊇ H and q /∈ W . So we have already

chosen a point φ(W ) ∈ (X \ (W ∪X0)) ∩Hα ⊆ H and at the same time W ⊇ H
– a contradiction. �

In fact we have proved:

Theorem 3∗. If X \X0 is a Hausdorff topological space then:

|X \X0| ≤ exp c(X,X0) · χ(X \X0).

Corollary 3.1 ([6]). If X is a Hausdorff topological space then:

|X | ≤ exp c(X) · χ(X).

We could also consider another generalization of c(X) i.e. c1(X,X0) ≤ τ iff for

every open in X family γ there is a γ′ ∈ [γ]≤τ such that
⋃
γ′ ⊇ (

⋃
γ)∩ (X \X0).

In the same way as in Theorem 3 we obtain:
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Theorem 4. If X is a Hausdorff topological space then:

|X \X0| ≤ exp c1(X,X0) · χ(X).

Theorem 4∗. If X \X0 is a Hausdorff topological space then:

|X \X0| ≤ exp c1(X,X0) · χ(X \X0).

Examples

1. If X is a Lindelöf not hereditarily Lindelöf space andX\X0 is a non-Lindelöf
subspace of X then L(X,X0) < L(X \X0).

2. If X is the one-point compactification of a discrete space D(τ) where τ > ℵ0
and X \X0 = D(τ), then c(X,X0) < c(X \X0) and L(X,X0) < L(X \X0). Also
if X is a space with c(X) ≤ ℵ0 and s(X) > ℵ0 and if X \X0 is an uncountable
discrete subspace of X then c(X,X0) < c(X \X0).

3. Let X = RI ∪ (
⋃
{Rα

Q : α ∈ τ}) for any τ > ℵ0, where RI is the set

of irrationals in R and Rα
Q = RQ for every α ∈ τ . Let the points of Rα

Q have

their usual neighborhoods and if x ∈ RI then let sets of the form U(x, ε) =
(RI ∩ (x−ε, x+ε))∪ (

⋃
{Rα

Q∩ (x−ε, x+ε) : α ∈ τ}) be the local base in x. Then

X is regular, χ(X) ≤ ℵ0, wL(X,X0) ≤ ℵ0 and wL(X \X0) = τ , where X0 = RI .
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relative compactness, Lindelöfness and axioms of separation, Vestnik Moskovskogo Uni-
versiteta, ser I., vol. 6, 1989, 67–69.

[4] Bell M., Ginsburgh J., Woods G., Cardinal inequalities for topological spaces involving the
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