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Support prices for weakly maximal programs

of a growth model with uncertainty

Nikolaos S. Papageorgiou*

Abstract. We consider an infinite dimensional, nonstationary growth model with uncer-
tainty. Using techniques from functional analysis and the subdifferentiation theory of
concave functions, we establish the existence of a supporting price system for a weakly
maximal program.
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1. Introduction

One of the main problems in growth theory is that of characterization of op-
timal programs by a system of competitive prices. In this paper, we address this
problem for a general growth model with uncertainty. There is uncertainty in
both the production technologies and the utility functions. Suppose that a cer-
tain program (growth path) is optimal according to a given utility criterion. We
ask the question: “does there exist a price system such that for the optimal pro-
gram producers maximize their profits, while consumers maximize their utility?”
The first to consider this problem for growth models with uncertainty were Rad-
ner [9] and Jeanjean [6]. Jeanjean’s model is a stationary Markov model with
a given transition probability and the “Lagrange multipliers” that he produces do
not have an immediate economic interpretation. Radner’s model is stationary (i.e.
the probabilistic structure is unaffected by economic decisions). His model was
extended further by the fundamental works of Dana [3] and Zilha [15]. All these
works generate “Lagrange multipliers” which have interpretation as prices, but
the uncertainty in all these models is stationary and the commodity space is R

n.
Here we consider a nonstationary model with an infinite dimensional commodity
space. For such a general model, using techniques for the subdifferentiation the-
ory of concave functions, we show that the optimal program can be sustained by a
system of prices such that: (i) we have maximization of the expected intertempo-
ral profit; (ii) also we have minimization of the expected cost among all programs
producing no less utility; (iii) the expected value of the difference between a pro-
gram with finite future gains and the optimal program has a nonnegative limit
superior (weak transversality condition).

*This research was supported by a grant from the Greek Ministry of Industry and Technology.
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Our approach is based on an induction argument and the extension to the
Lebesgue-Bochner space L∞(X) of the Yosida-Hewitt theorem, due to Levin [7].

2. The model

Let (Ω,Σ, µ) be a complete probability space. Each ω ∈ Ω represents a possible
state of the environment, Σ is the collection of all possible events and µ(·) is the
probability distribution of the states. Let N0 = {0, 1, 2, . . .} be our time horizon.
So our model is a discrete-time, infinite horizon model. The uncertainty about the
states is described by an increasing sequence {Σn}n≥1 of complete sub-σ-fields
of Σ. As usual Σn represents the information about the states available up until
time n.
The commodity space is modelled by a separable reflexive Banach space X

which is ordered by a nonempty, closed and convex cone X+. In the recent
years several mathematical economists, in particular those working on equilibrium
theory, have considered models with an infinite dimensional commodity space (see
the book of Aliprantis-Brown-Burkinshaw [1] and the references therein).
The production technology available at time n is described by a multifunction

Pn : Ω → 2X×X \ {∅}, which is Σn-graph measurable; i.e. GrPn = {(ω, x, y) ∈
Ω × X × X : (x, y) ∈ Pn(ω)} ∈ Σn × B(X)× B(X), with B(X) being the Borel
σ-field of X . So Pn(ω) describes all possible transformations of capital at time n,
when the state of the environment is ω ∈ Ω. Thus (x, y) ∈ Pn(ω) means that with
the technology available at time n, we can transform a capital input x at time n−1
into a capital output y at time n. Note that the uncertainty in the production
technology is manifested in the hypothesis that GrPn ∈ Σn × B(X)× B(X).
Also at every time instant n ≥ 1, we are given a function un : Ω×X×X → R =

R∪ {−∞}, describing the utility (social satisfaction) achieved by the economy at
time n when the state of the environment is ω ∈ Ω and the input-output pair is
(x, y). Again the uncertainty in the utility function is embedded in the hypothesis
that un(·, ·, ·) is Σn × B(X)× B(X)-measurable.
A “program” is a discrete-time stochastic process kn : Ω → X such that for

all n ≥ 0, kn ∈ L∞(Σn, X). We say that a program k = (kn)n≥0 is “feasible”, if
(kn−1(ω), kn(ω)) ∈ Pn(ω) µ-a.e. and k0(ω) = x0(ω), where x0(·) ∈ L∞(Σ0, X) is
the initial capital stock.
Since we are not discounting future utilities, their sum over time may diverge

and so we realize that the standard strong optimality criterion is not appropriate
here. Instead, we use the weak maximality criterion, first introduced by Brock [2]
in the context of a deterministic growth model. According to this criterion pro-
gram {kn}n≥0 is “weakly maximal”, if it is feasible and for any other feasible
program y = {yn}n≥0 we have

lim
N→∞

∫

Ω

N
∑

n=1

(un(ω, yn−1(ω), yn(ω))− un(ω, kn−1(ω), kn(ω))) dµ(ω) ≤ 0,
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i.e. (kn)n≥0 is weakly maximal, if no other feasible trajectory weakly overtakes
it.
By a “price system”, we understand a discrete-time stochastic process pn :

Ω → X∗ such that pn ∈ L1(Σ, X∗), pn ≥ 0 (i.e. pn(ω) ∈ X∗
+ µ-a.e. with X∗

+ =
{x∗ ∈ X∗ : (x∗, x) ≥ 0 for all x ∈ X+}, the positive dual cone of X+). Our goal
is to characterize weakly maximal programs using a system of support prices. We
will do this using a normalized value (Bellman) function and techniques for the
subdifferential theory of concave functions. Recall that if g : x → R = R∪ {−∞}
is concave, then its subdifferential at x ∈ X is defined to be the set ∂g(x) = {x∗ ∈
X∗ : g(y)− g(x) ≤ (x∗, y − x) for all x ∈ X}.
Now let us state the precise mathematical hypotheses on the data of our model.

H1: Pn : Ω→ 2X×X \ {∅} is a multifunction with closed and convex values,
such that GrPn = {(ω, x, y) ∈ Ω×X×x : (x, y) ∈ Pn(ω)} ∈ Σn×B(X)×
B(X) and if (x, y) ∈ Pn(ω) and x ≤ x′ (i.e. x′ − x ∈ X+), then (x

′, y) ∈
Pn(ω).

Hypothesis H1 is very common in models of economic growth. Note that
the multivaluedness of the map Pn(·) implies that the input does not uniquely
determine the technologically possible output, a feature consistent with the nature
of most economic process. Also the convexity requirement follows from the well-
known “law of diminishing returns”. The last requirement in hypothesis H1 is
a free disposability assumption.

H2: un : Ω× X × X → R = R ∪ {−∞}, n ≥ 1, is an integrand such that

(α) un(·, ·, ·) is Σn × B(X)× B(X)-measurable,
(β) un(ω, ·, ·) is u.s.c. and concave,
(γ) for every (x, y) ∈ L∞(Σn−1, X)× L∞(Σn, X),

Jn(x, y) =
∫

Ω un(ω, x(ω), y(ω)) dµ(ω) is finite,

(δ) if (x, y) ∈ Pn(ω) and x ≤ x′ (i.e. x′ − x ∈ X+), then un(ω, x, y) ≤
un(ω, x′, y).

Since we have undiscounted utilities, we have to normalize them to get an
appropriate value function, when the expected value of the sum of utilities does
not converge. In what follows by Sn(v) we denote the set of all feasible programs
that originate at time n from the capital stock v ∈ L∞(Σn, X). Let {bn}n≥1 be
a sequence of real numbers and x ∈ Sn(v). We define

ξb
n(x) = lim

N→∞

N
∑

k=n+1

(Jk(xk−1, xk)− bk)

where recall that Jk(xk−1, xk) =
∫

Ω uk(ω, xk−1(ω), xk(ω)) dµ(ω). Using ξb
n(·), we

can define the following value function:

Bb
n(v) = sup

[

ξb
n(x) : x ∈ Sn(v)

]

.
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We consider only sequences {bn}n≥1 for which Bb
0(x0) is finite. Brock [2] calls

such sequences “good”, while Takayama [11] uses the term “eligible”. If {kn}n≥0
is a weakly maximal program, then the natural choice of a good sequence is
{bn = Jn(kn−1, kn)}n≥1. In that case, we denote the value function by Bn(·). It is
this function that we will be using in the proof of our main theorem (see Section 4).
However to define a value function we do not need an a priori knowledge of
a weakly maximal program.
From the above definitions we see that if {bn}n≥1 is good and (v, w) ∈ L∞(Σn, X)

× L∞(Σn+1, X) are such that (v(ω), w(ω)) ∈ Pn+1(ω) µ-a.e., then

Jn+1(v, w) − bn+1 +Bb
n+1(w) ≤ Bb

n(v)

and in fact, we have

Bb
n(v) = sup

[

Jn+1(v, w)− bn+1 +Bb
n+1(w) : w ∈ Hn+1(v)

]

with Hn+1(v) = {w ∈ L∞(Σn+1, X) : (v(ω), w(ω)) ∈ Pn+1(ω) µ-a.e.}. This is
the well-known “Bellman dynamic programming equation”.

3. Some auxiliary results

In this section, we have collected some auxiliary results that we will need in
the proof of our main theorem in Section 4.
The first result actually tells us that every weakly maximal program solves the

dynamic programming equation.

Proposition 3.1. If {zn}n≥0 is a feasible program and {bn}n≥1 is a good se-

quence and ξb
0(z) = Bb

0(x0), then Bb
n(zn) = Jn+1(zn, zn+1)− bn+1+Bb

n+1(zn+1)
for all n ≥ 0.

Proof: Since by hypothesis ξb
0(z) = Bb

0(x0), we have

Bb
0(x0) = lim

N→∞

N
∑

k=1

(Jk(zk−1, zk)− bk)

=

n+1
∑

k=1

(Jk(zk−1, zk)− bk) + lim
N→∞

N
∑

k=n+2

(Jk(zk−1, zk)− bk)

=

n+1
∑

k=1

(Jk(zk−1, zk)− bk) + ξb
n+1(z)

≤
n+1
∑

k=1

(Jk(zk−1, zk)− bk) +Bb
n+1(zn+1).



Support prices 585

Also for any feasible program {vn}n≥0 such that vk = zk for k = 0, 1, 2, . . . , n, we
have

ξb
0(v) = Bb

0(x0) ≤
n+1
∑

k=1

(Jk(zk−1, zk)− bk) +Bb
n+1(zn+1)

⇒
n

∑

k=1

(Jk(vk−1, vk)− bk) + ξb
n(v) ≤

n+1
∑

k=1

(Jk(zk−1, zk)− bk) +Bb
n+1(zn+1)

⇒
n

∑

k=1

(Jk(zk−1, zk)− bk) + ξb
n(v) ≤

n+1
∑

k=1

(Jk(zk−1, zk)− bk) +Bb
n+1(zn+1)

⇒ ξb
n(v) ≤ Jn+1(zn, zn+1)− bn+1 +Bb

n+1(zn+1).

Since {vn}n≥0 was an arbitrary feasible program such that vk = zk for k =
0, 1, 2, . . . , n, we get

Bb
n(zn) ≤ Jn+1(zm, zn+1)− bn+1 +Bb

n+1(zn+1).

Now recall that the opposite inequality is always true (dynamic programming
equation). So we conclude that

Bb
n(zn) = Jn+1(zn, zn+1)− bn+1 +Bb

n+1(zn+1).

�

Remarks.

(i) Note that if {kn}n≥0 is a weakly maximal program and

{bn = Jn(kn−1, kn)}n≥1 then we automatically have ξ
b
0(k) = Bb

0(x0). Also
recall that from the definition of weak maximality, we have that {bn}n≥1
is good.

(ii) If for a feasible program {zn}n≥0 and for a good sequence {bn}n≥1 we have

θb
0(z) = Bb

0(x0), then {zn}n≥0 is weakly maximal. Indeed let v ∈ S0(x0).

We have limN→∞
∑N

k=1(Jk(vk−1, vk)−Jk(zk−1, zk)) ≤ lim
∑N

k=1(Jk(vk−1, vk)−

bk) − limN→∞
∑N

k=1(Jk(zk−1, zk) − bk) ≤

Bb
0(x0) − ξb

0(z) = Bb
0(x0) − Bb

0(x0) = 0. Since v ∈ S0(x0) was arbitrary,
we conclude that {zn}n≥0 is weakly maximal.

Using hypotheses H1 and H2, we can easily see that for any good sequence
{bn}n≥0 the value function Bb

n(·) is concave for every n ≥ 0. In particular, Bn(·)

is concave for every n ≥ 0 (recall that Bn = Bb
n with bn = Jn(zn−1, zn), n ≥ 1,

for a weakly maximal program {zn}n≥0). It should be noted here that to get the
concavity property of the value function, it is crucial that in its definition we use
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the limit inferior. By ∂Bn(·) we denote the concave subdifferential of Bn(·); i.e.
for any v ∈ L∞(Σn, X) we have

∂Bn(v) = {p ∈ L∞(Σn, X)∗ : Bn(z)− Bn(v)

≤ p(z − v) for all z ∈ L∞(Σn, X)}.

We will make the following hypothesis concerning the above subdifferential:

H3: for every n ≥ 0, the value function Bn(·) is continuous at some point w

in L∞(Σn, X) for which there exists v ∈ L∞(Σn−1, X) such that
(v(ω), w(ω)) ∈ Pn(ω) µ-a.e. (or equivalently int domBn ∩ Γn 6= ∅,
where domBn(·) = {v ∈ L∞(Σn, X) : −∞ < Bn(v)} and Γn =
{(v, w) ∈ L∞(Σn−1, X) × L∞(Σn, X) : (v(ω), w(ω)) ∈ Pn(ω) µ-a.e.}
(see Section 4)) and ∂B0(x0) 6= ∅.

From the definition of ∂Bn(·), we see that we have a problem. The dual space
L∞(Σn, X)∗ is strictly bigger that L1(Σn, X∗), while by definition prices belong in
L1(Σn, X∗). To remedy this, we will use a decomposition result due to Levin [7],
which in turn extends a classical theorem of Yosida-Hewitt [14].
A functional p ∈ L∞(Σn, X)∗ is said to be “absolutely continuous” with respect

to µ(·), if there exists q ∈ L1(Σn, X∗) such that

p(x) =

∫

Ω
(q(ω), x(ω)) dµ(ω)

for all x ∈ L∞(Σn, X). In the sequel, by 〈·, ·〉 we will denote the duality brackets
for the pair (L1(Σn, X∗), L∞(Σn, X)). So for every q ∈ L1(Σn, X∗) and for every
x ∈ L∞(Σn, X), we have 〈q, x〉 =

∫

Ω(q(ω), x(ω)) dµ(ω).
On the other hand, a functional p ∈ L∞(Σn, X)∗ is said to be “singular” with

respect to µ(·), if there exists a sequence {Cm}m≥1 ⊆ Σn such that

(α) Cm+1 ⊆ Cm for all m ≥ 1,
(β) µ(Cm) ↓ 0 as m → ∞,
(γ) p(x) = p(χCm

x) for all m ≥ 1 and all x ∈ L∞(Σn, X); i.e. the sets Cm,
m ≥ 1, support the singular functional p(·).

The decomposition theorem of Levin [7] is the following:

Proposition 3.2. Every functional p(·) ∈ L∞(Σn, X)∗ admits a unique de-
composition p = pa + ps, with pa(·) being absolutely continuous with respect
to µ(·) and ps(·) being singular with respect to µ(·). In addition, we have
‖p‖ = ‖pa‖+ ‖ps‖.

Remark. The result is true for any Banach space X not necessarily separable
and/or reflexive. In this case, the function q(·) corresponding to the absolutely
continuous part pa(·), belongs in L1(Σn, X∗

w∗); i.e. for every x ∈ X , ω → (q(ω), x)

is measurable (w∗-measurable) and ‖q(·)‖ ∈ L1(Σn)+. For further details we refer
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to the paper of Levin [7]. In the sequel for simplicity, we will identify the absolutely
continuous part with the L1(Σn, X∗)-function corresponding to it.
The next auxiliary result is also interesting by itself as a general functional

analytic result. Let τ denote the Mackey topology on L∞(Σn, X) induced by the
pair (L∞(Σn, X), L1(Σn, X∗)). From the Mackey-Arens theorem (see for example
Wilansky [13, p. 133]) we know that τ is the topology of uniform convergence on

the weakly compact, convex subsets of L1(Σn, X∗). Finally by
µ
−→, we will denote

the convergence in µ-measure.

Proposition 3.3. If {gm, g}m≥1 ⊆ L∞(Σn, X), ‖gm‖∞ ≤ θ and gm
µ
−→ g as

m → ∞, then gm
τ
−→ g in L∞(Σn, X) as m → ∞.

Proof: LetW be a nonempty, weakly compact and convex subset of the Lebesgue-
Bochner L1(Σn, X∗). From Theorem 4, p. 104 of Diestel-Uhl [4], we have that
W is uniformly integrable. Hence the set {v = ‖f‖ · ‖w‖ ∈ L1(Σn) : ‖f‖∞ ≤
θ, w ∈ W} is uniformly integrable in L1(Σn) and so given ε > 0, we can find
ϕ ∈ L1(Σn), ϕ > 0, such that for all ‖f‖∞ ≤ θ and all w ∈ W , we have

∫

{‖f‖·‖w‖≥ϕ}

‖f(ω)‖ · ‖w(ω)‖ dµ(ω) ≤ ε.

Without any loss of generality, we will assume that g = 0 and that for all
w ∈ W , ‖w‖1 =

∫

Ω ‖w(ω)‖ dµ(ω) ≤ 1. We need to show that

lim
m→∞

sup
w∈W

∫

{‖gm‖·‖w‖≤ϕ}

‖gm(ω)‖ · ‖w(ω)‖ dµ(ω) = 0.

Note that {ω ∈ Ω : ϕ(ω) = 0} =
⋂

n>0{ω ∈ Ω : ϕ(ω) < η}. Thus we can
find γ > 0 such that

∫

{ϕ<γ} ϕ(ω) dµ(ω) ≤ ε. Choose δ > 0 so that if A ∈ Σn

and µ(A) ≤ δ, then
∫

A ϕ(ω) dµ(ω) ≤ ε. Let 0 < β < min(ε, δ). Since by

hypothesis gm
µ
−→ g, there exists m0 ≥ 1 such that for all m ≥ m0 we have

µ{ω ∈ Ω : ϕ(ω) ≥ γ, ‖gm(ω)‖ ≥ β} ≤ β. Hence for m ≥ m0 and for all w ∈ W ,
we have

∫

{‖gm‖·‖w‖<ϕ}∩{ϕ≥γ}∩{‖gm‖≥β}

‖gm(ω)‖ · ‖w(ω)‖ dµ(ω)

≤

∫

{ϕ≥γ}∩{‖gm‖≥β}

ϕ(ω) dµ(ω) ≤ ε.

Note that for all m ≥ m0 and all w ∈ W , we have
∫

{‖gm‖≤β}

‖gm(ω)‖ · ‖w(ω)‖ dµ(ω) ≤ β.
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So for all m ≥ m0 and all w ∈ W , we can write

∫

{‖gm‖·‖w‖<ϕ}

‖gm(ω)‖ · ‖w(ω)‖ dµ(ω)

=

∫

{‖gm‖·‖w‖<ϕ}∩{ϕ≥γ}∩{‖gm‖≥β}

‖gm(ω)‖ · ‖w(ω)‖ dµ(ω)

+

∫

{‖gm‖·‖w‖<ϕ}∩{ϕ<γ}∪{‖gm‖<β}

‖gm(ω)‖ · ‖w(ω)‖ dµ(ω)

≤ ε+ ε+ ε = 3ε

⇒ lim
m→∞

sup
w∈W

∫

{‖gm‖·‖w‖<ϕ}

‖gm(ω)‖ · ‖w(ω)‖ dµ(ω) = 0

⇒ gm
τ
−→ g as m → ∞.

�

4. Support prices

In this section we state and prove our main theorem, which establishes the
existence of support process for a given weakly maximal program.
To this end, we define βn

1 : L
∞(Σn, X)× L∞(Σn+1, X)→ L∞(Σn, X) by

βn
1 (f, g) = f (i.e. projection on the first component)

and βn
2 : L

∞(Σn, X)× L∞(Σn+1, X)→ L∞(Σn+1, X) by

βn
2 (f, g) = g (i.e. projection on the second component).

Then we can easily check that βn∗

1 : L
∞(Σn, X)∗ → L∞(Σn, X)∗×L∞(Σn+1, X)

∗

and βn∗

2 : L
∞(Σn+1, X)

∗ → L∞(Σn, X)∗ × L∞(Σn+1, X)
∗ are defined by

βn∗

1 (v
∗) = (v∗, 0) and βn∗

2 (w
∗) = (0, w∗).

Also let Γn+1 = {(f, g) ∈ L∞(Σn, X)×L∞(Σn+1, X) : (f(ω), g(ω)) ∈ Pn+1(ω)
µ-a.e.}. So Γn+1 is the set of all possible transformations of capital stocks between
times n and n+1. It is clear from hypothesis H1 that Γn+1 is closed and convex.
By δΓn+1

we will be denoting the indicator function of Γn+1; i.e. δΓn+1
(y, z) = 0

if (y, z) ∈ Γn+1 and δΓn+1
(y, z) = −∞ otherwise. This is an u.s.c. and concave

function.
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Theorem 4.1. If hypotheses H1, H2, H3 hold, {kn}n≥0 is a weakly maximal

program and for every n ≥ 0 there exists some ên ∈ L∞(Σn, X), ên(ω) ∈ X+
µ-a.e. such that Jn+1(kn, kn+1) < Jn+1(kn+ ên, kn+1), then there exists a system
of nonzero prices pn ∈ L1(Σn, X∗) such that

(1) Bn(v) − 〈pn, v〉 ≤ Bn(kn) − 〈pn, kn〉 for all v ∈ proj1 Γn+1 = {y ∈
L∞(Σn, X) : there exists z ∈ L∞(Σn+1, X) such that (y, z) ∈ Γn+1},

(2) Jn+1(f, g)−〈pn, f〉+〈pn+1, g〉 ≤ Jn+1(kn, kn+1)−〈pn, kn〉+〈pn+1, kn+1〉
for all (f, g) ∈ Γn+1,

(3) if y ∈ S0(x0) and limN→∞
∑N

n=1(Jn(yn−1, yn) − Jn(kn−1, kn)) > −∞,

then we have limn→∞〈pn, yn − kn〉 ≥ 0.

Proof: Let γn
1 : L

∞(Σn, X) × L∞(Σn+1, X) → R = R ∪ {−∞} be defined by

γn
1 = Bn ◦ βn

1 and γn
2 : L

∞(Σn, X)×L∞(Σn+1, X)→ R = R∪ {−∞} be defined
by γn

2 = Jn+1 − bn+1 +Bn+1 ◦ βn
2 + δΓn+1

where

bn+1 =
∫

Ω un+1(ω, kn(ω), kn+1(ω)) dµ(ω) = Jn+1(kn, kn+1) ∈ R (see hypo-
thesis H2). Clearly from the above definitions, for every (f, g) ∈ L∞(Σn, X) ×
L∞(Σn+1, X), we have

γn
2 (f, g) ≤ γn

1 (f, g)

while from Proposition 3.1 (see also Remark (i) following the proof of that propo-
sition), we have

γn
2 (kn, kn+1) = γn

1 (kn, kn+1).

From these facts and the definition of the concave subdifferential, we deduce
that

∂γn
1 (kn, kn+1) ⊆ ∂γn

2 (kn, kn+1).

But because of hypothesis H3 and Theorem 2, p. 201 of Ioffe-Tichomirov [5],
we have that

∂γn
1 (kn, kn+1) = βn∗

1 ∂Bn(kn).

Also from hypothesis H2 and Theorem 22, p. 61 of Rockafellar [10], we have
that Jn+1(·, ·) is continuous (in fact τ -continuous) on L∞(Σn, X)×L∞(Σn+1, X).
So using Theorem 1, p. 120 of Ioffe-Tichomirov [5], we get that

∂γn
2 (kn, kn+1) = ∂Jn+1(kn, kn+1) + ∂(Bn+1 ◦ βn

2 )(kn, kn+1) + ∂δΓn+1
(kn, kn+1).

A new application of Theorem 2, p. 201 of Ioffe-Tichomirov [5], gives us

∂(Bn+1 ◦ βn
2 )(kn, kn+1) = βn∗

2 ∂Bn+1(kn+1).

So finally we have

∂γn
2 (kn, kn+1) = ∂Jn+1(kn, kn+1) + βn∗

2 ∂Bn+1(kn+1) + ∂δΓn+1
(kn, kn+1).
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Recalling that ∂γn
1 (kn, kn+1) ⊆ ∂γn

2 (kn, kn+1), if pn ∈ ∂Bn(kn), then we can
find

(zn, zn+1) ∈ ∂Jn+1(kn, kn+1)(1)

pn+1 ∈ ∂Bn+1(kn+1)(2)

and (yn, yn+1) ∈ ∂δΓn+1
(kn, kn+1)(3)

such that βn∗

1 (pn) = (zn, zn+1) + βn∗

2 (pn+1) + (yn, yn+1)

⇒ (pn, 0) = (zn, zn+1) + (0, pn+1) + (yn, yn+1)

⇒ (pn,−pn+1) = (zn + yn, zn+1 + yn+1)

⇒ pn = zn + yn and − pn=1 = zn+1 + yn+1.

First we will show that from (2) above, we have pa
n+1 ∈ ∂Bn+1(kn+1). To this

end note that from the definition of the concave subdifferential we have

Bn+1(w) − Bn+1(kn+1) ≤ pn+1(w − kn+1) for all w ∈ L∞(Σn+1, X).

Let {Cm}m≥1 ⊆ Σn+1 be the decreasing sequence of Σ-sets such that µ(Cm) ↓ 0
and they support the singular part ps

n+1 of pn+1 (see Section 3). Set

wm = χCc

m

w + χCm
kn+1 ∈ L∞(Σn+1, X).

Then for all m ≥ 1, we have using Proposition 3.2:

Bn+1(wm)− Bn+1(kn+1) ≤ pn+1(wm − kn+1)

= 〈pa
n+1, wm − kn+1〉+ ps

n+1(wm − kn+1)

= 〈pa
n+1, wm − kn+1〉+ ps

n+1(χCm
(wm − kn+1))

= 〈pa
n+1, wm − km+1〉.

Note that wm
µ
−→ w and so by Proposition 3.3 we have that wm

τ
−→ w as

m → ∞. Our claim is that Bn+1(w) ≤ limm→∞Bn+1(wm). To see this, let ε > 0
and choose y ∈ Sn+1(w) such that for all N ≥ N0(ε), we have

Bn+1(w) − ε ≤
N

∑

τ=n+2

(Jτ (yτ−1, yτ )− bτ )

where bτ = Jτ (kτ−1, kτ ). Set ym
τ = χCc

m

yτ + χCm
kτ , τ ≥ n + 1. Then clearly

ym
τ

µ
−→ yτ as m → ∞ and so by Proposition 3.3, ym

τ
τ
−→ yτ in L∞(Στ , X) as

m → ∞. Recalling that Jτ (·, ·) is τ -continuous on L∞(Στ−1, X)×L∞(Στ , X) (see
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Rockafellar [10, Theorem 2.2, p. 61]), we have that Jτ (y
m
τ−1, y

m
τ )→ Jτ (yτ−1, yτ )

as m → ∞. So there exists m0(ε) such that for all m ≥ m0(ε), we have

∣

∣

∣

∣

∣

∣

N
∑

τ=n+2

Jτ (y
m
τ−1, y

m
τ )− Jτ (yτ−1, yτ )

∣

∣

∣

∣

∣

∣

≤
ε

2
.

Therefore for m ≥ m0(ε) and N ≥ N0(ε), we have

Bn+1(w) −
ε

2
≤

N
∑

τ=n+2

Jτ (y
m
τ−1, y

m
τ )− bτ

⇒ Bn+1(w) −
ε

2
≤ Bn+1(wm) for all m ≥ m0

⇒ Bn+1(w) ≤ limm→∞Bn+1(wm).

Hence in the limit as m → ∞, we get

Bn+1(w)− Bn+1(kn+1) ≤ 〈pa
n+1, w − kn+1〉, w ∈ L∞(Σn+1, X)

⇒ pa
n+1 ∈ ∂Bn+1(kn+1).

In a similar fashion and using the τ -continuity of Jn+1(·, ·), we get

(zn, za
n+1) ∈ ∂Jn+1(kn, kn+1) and (yn, ya

n+1) ∈ ∂δΓn+1
(kn, kn+1)

while from Proposition 3.2 and since −pn+1 = zn+1 + yn+1, we get −pa
n+1 =

za
n+1 + ya

n+1.
Therefore, so far we have:

(zn, za
n+1) ∈ ∂Jn+1(kn, kn+1)(1)′

pa
n+1 ∈ ∂Bn+1(kn+1)(2)′

(yn, ya
n+1) ∈ ∂δΓn+1

(kn, kn+1)(3)′

and pn = zn + yn, −pa
n+1 = za

n+1 + ya
n+1. From relation (1)

′ above, we have

(4)

Jn+1(v, w) − Jn+1(kn, kn+1) ≤ zn(v − kn) + 〈za
n+1, w − kn+1〉

⇒ Jn+1(v, w) − zn(v) − 〈za
n+1, w〉

≤ Jn+1(kn, kn+1)− zn(kn)− 〈za
n+1, kn+1〉.

Similarly from relation (3)′ above, we get

(5) 0 ≤ yn(v − kn) + 〈ya
n+1, w − kn+1〉 for all (v, w) ∈ Γn+1.
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Adding inequalities (4) and (5), we get

Jn+1(v, w)− (zn + yn)(v) − 〈za
n+1 + ya

n+1, w〉

≤ Jn+1(kn, kn+1)− (zn + yn)(kn)− 〈za
n+1 + ya

n+1, kn+1〉

⇒ Jn+1(v, w) − pn(v) + 〈pa
n+1, w〉

≤ Jn+1(kn, kn+1)− pn(kn) + 〈pa
n+1, kn+a〉 for all (v, w) ∈ Γn+1.

We claim that in the above inequality we can replace pn(·) by its absolutely
continuous part pa

n(·). So as before let {Am}m≥1 ⊆ Σn, be a decreasing sequence
of Σn-sets such that µ(Am) ↓ 0 and they support the singular part ps

n(·). Define

vm = χAc

m

v + χAm
kn ∈ L∞(Σn, X)

and wm = χAc

m

w + χAm
kn+1 ∈ L∞(Σn+1, X).

Note that pn(vm − kn) = 〈pa
n, vm − kn〉 + ps

n(vm − kn) = 〈pa
n, vm − kn〉 +

ps
n(χAm

(vm − kn)) = 〈pa
n, vm − kn〉 → 〈pa

n, v − kn〉 as m → ∞ since vm
τ
−→ v

(Proposition 3.3). Recalling that Jn+1(·, ·) is τ -continuous, in the limit asm → ∞,
we get

Jn+1(v, w) − 〈pa
n, kn〉+ 〈pa

n+1, w〉

≤ Jn+1(kn, kn+1)− 〈pa
n, kn〉+ 〈pa

n+1, kn+1〉 for all (v, w) ∈ Γn+1,

which proves our claim. Since pn ∈ ∂Bn(kn), as above we can have that pa
n ∈

∂Bn(kn). Therefore so far we have established the following: if pn ∈ ∂B(kn),
then pa

n ∈ ∂Bn(kn) and we can find pa
n+1 ∈ L1(Σn+1, X

∗) such that pa
n+1 ∈

∂Bn+1(kn+1) and J(v, w) − 〈pa
n, v〉 + 〈pa

n+1, w〉 ≤ Jn+1(kn, kn+1) − 〈pa
n, kn〉 +

〈pa
n+1, kn+1〉 for all (v, w) ∈ Γn+1.
From hypothesis H0, we have ∂B0(k0) = ∂B0(x0) 6= ∅ and so by induction we

can generate a sequence pn ∈ L1(Σn, X∗) satisfying the inequalities in conclusions
(1) and (2) of the theorem.
Next we will show that for all n ≥ 0, pn ≥ 0. To this end let e ∈ L∞(Σn+1, X)+

(i.e. e ∈ L∞(Σn+1, X), e(ω) ∈ X+ µ-a.e.). Let zn = kn + e. Then from the
free disposability hypothesis, we have that (zn, kn+1) ∈ Γn+1 and so from the
inequality we just proved, we have

Jn+1(zn, kn+1)− 〈pa
n, zn〉+ 〈pa

n+1, kn+1〉

≤ Jn+1(kn, kn+1)− 〈pa
n, kn〉+ 〈pa

n+1, kn+1〉

⇒ Jn+1(zn, kn+1)− Jn+1(kn, kn+1) ≤ 〈pa
n, zn − kn〉 = 〈pa

n, e〉

⇒ 0 ≤ 〈pa
n, e〉 (see hypothesis H2 (δ))

⇒ pa
n ≥ 0 for all n ≥ 0.
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Also let ên ∈ L∞(Σn, X), ên ≥ 0 postulated by the hypothesis of the theorem.
Then from the free-disposability assumption, we have that (kn+ ên, kn+1) ∈ Γn+1
for all n ≥ 0, and furthermore

0 < Jn+1(kn + ên, kn+1)− Jn+1(kn, kn+1) ≤ 〈pa
n, ên〉

⇒ 0 < 〈pa
n, ên〉; i.e. pa

n 6= 0 for all n ≥ 0.

So we have established that {pn}n≥0 is a nontrivial price system.
Finally let us check the transversality condition (3). So let y ∈ S0(x0) be such

that −∞ < lim
N→∞

∑N
τ=1(Jτ (yτ−1, yτ )− J(kτ−1, kτ )). From inequality (1) of the

theorem, that we have already proved, we have

Bn(yn) ≤ 〈pn, yn − kn〉+Bn(kn).

Also from the definition of the value function, we have

ξ0(y)−
n

∑

τ=1

(Jτ (yτ−1, yτ )− Jτ (kτ−1, kτ )) ≤ Bn(yn)

⇒ ξ0(y)− limn→∞

n
∑

τ=1

(Jτ (yτ−1, yτ )− Jτ (kτ−1, kτ )) ≤ limB(yn)

⇒ ξ0(y)− ξ0(y) = 0 ≤ limB(yn) (from the choice of y ∈ S0(x0)).

Since limB0(kn) = 0, we conclude that

0 ≤ limn→∞〈pn, yn − kn〉.

�

Remarks.

(i)′ Our hypothesis on the existence of ên’s is automatically satisfied if intX+
6= ∅ and un(ω, x, y), n ≥ 1, is strictly increasing in x (i.e. if x′ − x ∈
intX+, then un(ω, x, y) < un(ω, x′, y)). This is the case in Radner [9],
Jeanjean [6], Dana [3] and Zilha [15].

(ii)′ A feasible program supported by a price system, is usually called in the
economics literature “competitive”. So we have proved that every weakly
maximal program is competitive.

(iii)′ Inequality (1) of the theorem can be rewritten as follows

Bn(v)− Bn(kn) ≤ 〈pn, v − kn〉 for all v ∈ proj1 Γn+1, n ≥ 0.

This has the interpretation that the weakly maximal program {kn}n≥0 is
cost minimizing for the price system {pn}n≥0 among all programs produc-
ing no less value. Also in inequality (2) the quantity 〈pn+1, w〉 − 〈pn, v〉
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is the expected value of the output w at time n + 1 minus the expected
cost of the input v at time n. Hence 〈pn+1, w〉− 〈pn, v〉 represents the ex-
pected net profit realized by the industrial process (v, w). So Jk+1(v, w)−
〈pn, v〉+ 〈pn+1, w〉 is the expected total utility for the pair (v, w) and the
inequality (2) tells us that for the price system {pn}n≥0, the weakly max-
imal program maximizes the expected total utility.

(iv)′ Condition (3) is sometimes known as the weak transversality condition,
and it says that it is impossible to diminish the value of the weakly max-
imal program, except perhaps by incurring on infinite loss. From the
previous works, Radner [9, Theorem 5.1], Jeanjean [6, Theorem 8], and
Dana [3, Theorem VIII.I] do not get a transversality condition. Zilha [15,
Theorem 1, p. 177] gets one, but he has discounted utilities and uses the
strong optimality criterion. Also it seems to us that there is a gap in
his proof. Namely in pp. 181–182, the set {Cn}n≥1, which supports the
singular part of vt+1 as a functional on L∞(Σt, X), does not necessarily
support its singular part as a functional on L∞(Σt+1, X) (the notation is
that of Zilha [15]).

(v)′ If we adopt the strong optimality criterion, the transversality condition be-
comes limn→∞〈pn, kn〉 = 0, known as the strong transversality condition
(see Zilha [15]).

(vi)′ The problem of existence of weakly maximal programs, for models with
uncertainty was studied by Dana [3] and more recently by Pantelides-
Papageorgiou [8].

(vii)′ It will be interesting to have a continuous time analog of this work. For
the deterministic model this was done by Takekuma [12].
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