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Systems of nonlinear delay integral equations modelling

population growth in a periodic environment

A. Cañada1, A. Zertiti2

Abstract. In this paper we study the existence and uniqueness of positive and periodic
solutions of nonlinear delay integral systems of the type

x(t) =

Z
t

t−τ1

f(s, x(s), y(s)) ds

y(t) =

Z t

t−τ2

g(s, x(s), y(s)) ds

which model population growth in a periodic environment when there is an interac-
tion between two species. For the proofs, we develop an adequate method of sub-
supersolutions which provides, in some cases, an iterative scheme converging to the
solution.

Keywords: nonlinear integral equations, monotone methods, population dynamics, pos-
itive solutions

Classification: 45G15, 92D25, 45M15

1. Introduction

In [5], Cooke and Kaplan formulated a model to explain the observed periodic
outbreaks of certain infectious diseases. This model can also be interpreted as
a growth equation for population when the birth rate varies seasonally. In fact,
let x(t) be the number of individuals present in a single species population at
the time t (they assumed that the population is uniformly distributed in a given
geographical area) and suppose that f(t, x(t)) is the number of new births per
time unit. If each individual lives to the age τ (τ > 0) exactly, and then dies, it
is reasonable (under some technical additional assumptions, see [5], [9]) to state
that

(1.1) x′(t) = f(t, (x(t)) − f(t − τ, x(t − τ))

1This work was supported by DGICYT, Ministry of Education and Science (Spain), under
grant number PB92-0941.

1,2The author thanks to Department of Mathematical Analysis of the University of Granada
for its hospitality.
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The integrated form of (1.1) is

x(t) =

∫ t

t−τ
f(s, x(s)) ds + c

where c is a constant. Usually one chooses c = 0 in the previous equation (see [5],
[9]) obtaining the equation

(1.2) x(t) =

∫ t

t−τ
f(s, x(s)) ds

Because of seasonal factors, f(t, x) may, in many situations, be a periodic function
of t and, in these cases, one is interested in the existence, uniqueness, stability,
etc. of periodic and positive solutions of (1.2).
From the work by Cooke and Kaplan [5], different authors have studied the

equation (1.2) (see [2], [3], [4], [6], [8], [9], [10]). However, to the best of our
knowledge, we do not know any result concerning systems of equations whose
scalar version is (1.2). The interest of such problem is already shown in the
work by Cooke and Kaplan [5]: these authors pointed out that it corresponds to
models formulating the interaction of several species. This leads to systems like
(1.2) where x(t) is a vector function with n components.
In this paper we develop a sub-supersolutions method to study this kind of

systems. The main difference with respect to the scalar case (see [2], [3]) is that
it is not possible, in general, to define (by using a known sub-supersolution) an
iterative scheme converging to the solution. However, in some particular cases
(such as the cooperative and competition ones) you may do it and this is shown
in Section 2, where, moreover, properties about the minimality and maximality of
the found solutions are studied. In Section 3 we prove a result about uniqueness
of positive solutions for the case where the system is of cooperative type.
For the sake of simplicity we treat only the case of systems of two equations

but it is clear that you may use the ideas contained in this paper to study systems
with more number of equations. Also, you could consider more general types of
nonlinear delay integral equations such as it is done, in the scalar case, in [3]
and [10].

2. Existence of positive solutions

In this section we will study the existence of solutions of the system of nonlinear
integral equations

(2.1)

x(t) =

∫ t

t−τ1

f(s, x(s), y(s)) ds

y(t) =

∫ t

t−τ2

g(s, x(s), y(s)) ds.
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From now on, we assume the following hypothesis:

(H) f, g : R× I1× I2 → R, are continuous functions where I1 and I2 are subin-
tervals of [0,+∞) such that f and g are nonnegative and ω-periodic
(ω > 0) with respect to the first variable. Also τ1 and τ2 are two strictly positive
constants. Moreover, due to the interpretation of problem (2.1), we assume that
f(t, 0, y) = g(t, x, 0) = 0, ∀(t, x, y) ∈ R × I1 × I2, (this is completely coherent
because if the number of individuals of the species x (or y) is zero at some time
t, then the number of new births of this species must be zero). In particular this
implies that (0, 0) is always a solution of the system (2.1).
Taking into account the origin of (2.1) we will be interested in the existence

of nontrivial, nonnegative, continuous and ω-periodic solutions, i.e. continuous
functions (x, y) : R → I1 × I2 such that x(t+ ω) = x(t), y(t+ ω) = y(t), ∀t ∈ R.
Especially we will be interested in the existence of coexistence states for (2.1),
i.e. solutions of (2.1) with both components nonnegative and nontrivial. At some
other times, it may be of interest the existence of semitrivial solutions of (2.1),
i.e. solutions (x, y) of (2.1) with exactly one nontrivial component (x or y) and
its possible influence in the existence of coexistence states of (2.1) (see Remarks
2.2,2 and 3.2).
Next theorem shows a general method for finding nontrivial solutions of (2.1),

based on the notion of upper and lower solutions. To this end, E will be the real
Banach space of all real and continuous ω-periodic functions defined on R with
the norm

‖x‖ = max
0≤t≤ω

|x(t)|, ∀x ∈ E.

Also, if x, y ∈ E, with x(t) ≤ y(t), ∀t ∈ R, [x, y]E will denote the following set
[x, y]E = {z ∈ E : x(t) ≤ z(t) ≤ y(t), ∀t ∈ R}.

If a, b ∈ R, a ≤ b, [a, b] will denote the usual interval of R.

Theorem 2.1. Assume:

(i) There exists a pair (x0, y0) − (x0, y0) of sub-supersolutions of (2.1), i.e.
x0, x

0 : R → I1, y0, y
0 : R → I2, are continuous and ω-periodic functions such

that
x0(t) ≤ x0(t), y0(t) ≤ y0(t), ∀t ∈ R

and

x0(t) ≤
∫ t

t−τ1

f(s, x0(s), y(s)) ds

≤
∫ t

t−τ1

f(s, x0(s), y(s)) ds ≤ x0(t), ∀t ∈ R, ∀y ∈ [y0, y0]E ,

y0(t) ≤
∫ t

t−τ2

g(s, x(s), y0(s)) ds

≤
∫ t

t−τ2

g(s, x(s), y0(s)) ds ≤ y0(t), ∀t ∈ R, ∀x ∈ [x0, x0]E .
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(ii) f is nondecreasing with respect to x ∈ [min
R

x0(t),max
R

x0(t)] for fixed

(t, y) ∈ R × I2 and g is nondecreasing with respect to y ∈ [min
R

y0(t),max
R

y0(t)]

for fixed (t, x) ∈ R × I1.

Then (2.1) has at least one solution (x, y) ∈ [x0, x0]E × [y0, y0]E .
Proof: Consider the Banach space E × E and the subset D of it defined by

D = {(x, y) ∈ E × E, x0(t) ≤ x(t) ≤ x0(t), y0(t) ≤ y(t) ≤ y0(t), ∀t ∈ R}
Clearly D is convex, closed and bounded.
If F : D → E × E is defined by

F (x, y)(t) =

=
(

∫ t

t−τ1

f(s, x(s), y(s)) ds,

∫ t

t−τ2

g(s, x(s), y(s)) ds
)

, ∀(x, y) ∈ D, ∀t ∈ R,

it is easily checked that F is compact. Also, from (i) and (ii) we deduce that
F (D) ⊂ D, so that Schauder’s fixed point theorem guarantees the existence of
a solution (x, y) of (2.1) belonging to D = [x0, x

0]E × [y0, y0]E . �

Remarks 2.1.

1.- The previous theorem is an adequate version for systems of equations of the
method of upper and lower solutions for scalar equations (see [2], [3], [6]).

2.- If f and g satisfy, moreover of hypotheses of Theorem 2.1, additional monotone
properties, one may obtain an iterative scheme which provides a monotone conver-
gent sequence to solutions of (2.1); also, these solutions present a property related
to the minimality or maximality of solutions of (2.1) in [x0, x

0]E × [y0, y0]E . This
will be done in next two theorems.

3.- The previous theorem is very general but it does not show how to obtain sub-
supersolutions in concrete situations. The following result indicates a way to get
the easiest sub-supersolutions, i.e. constant functions. The basic hypotheses are
of two types : first, “a convenient boundedness behaviour of f and g with respect
to x and y respectively, for x and y large”, and second, “an appropriate behaviour

of the functions
f(t,x,y)

x and
g(t,x,y)

y when x and y are small, respectively”.

Corollary 2.1. Let us suppose:

(i) In hypothesis (H), I1 = [0, M ], I2 = [0, N ] (M and N are positive con-

stants) with

f(t, M, y) ≤ M

τ1
, g(t, x, N) ≤ N

τ2
, ∀(t, x, y) ∈ R × [0, M ]× [0, N ].

(ii)

lim inf
x→0+

f(t, x, y)

x
= a(t, y) uniformly in (t, y) ∈ [0, ω]× [0, N ]
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(and therefore in R × [0, N ]),

lim inf
y→0+

g(t, x, y)

y
= b(t, x) uniformly in (t, x) ∈ [0, ω]× [0, M ]

(and therefore in R × [0, M ])
with a and b continuous functions such that

min
t∈[0,ω]

∫ t

t−τ1

a(s, y(s)) ds ≥ m1 > 1, ∀y ∈ [0, N ]E

and

min
t∈[0,ω]

∫ t

t−τ2

b(s, x(s)) ds ≥ m2 > 1, ∀x ∈ [0, M ]E

where m1 and m2 are independent from y and x respectively.

(iii) f(t, x, y) is increasing with respect to x ∈ [0, M ] for fixed (t, y) ∈ R× [0, N ]
and g(t, x, y) is increasing with respect to y ∈ [0, N ] for fixed (t, x) ∈ R × [0, M ].
Then, (2.1) has at least one solution with both components strictly positive for

all values of t.

Proof: Let ε > 0 such that mi−ετi ≥ 1, i = 1, 2. Then, there exist δ1(= δ1(ε)),
δ2(= δ2(ε)) such that 0 < δ1 < M, 0 < δ2 < N and

f(t, x, y) ≥ (a(t, y)− ε)x, ∀x ∈ [0, δ1], ∀y ∈ [0, N ], ∀t ∈ R,

g(t, x, y) ≥ (b(t, x)− ε)y, ∀y ∈ [0, δ2], ∀x ∈ [0, M ], ∀t ∈ R.

Take in Theorem 2.1, x0 = δ1, y0 = δ2, x
0 =M , y0 = N .

Then if y ∈ [y0, y0]E and t ∈ R, we have:

x0 ≤ (m1 − ετ1)x0 ≤
∫ t

t−τ1

(a(s, y(s))− ε)x0 ds ≤

≤
∫ t

t−τ1

f(s, x0, y(s)) ds ≤
∫ t

t−τ1

f(s, x0, y(s)) ds ≤ x0

Analogously, if x ∈ [x0, x0]E and t ∈ R, we have:

y0 ≤ (m2 − ετ2)y0 ≤
∫ t

t−τ2

(b(s, x(s)) − ε)y0 ds ≤

≤
∫ t

t−τ2

g(s, x(s), y0) ds ≤
∫ t

t−τ2

g(s, x(s), y0) ds ≤ y0

Therefore, all the hypotheses of Theorem 2.1 are verified and we obtain the
desired conclusion. �
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Remarks 2.2.

1.- The hypothesis (i) of the previous corollary is trivially satisfied in the case
where f, g : R × [0,+∞) × [0,+∞) → R are bounded. On the other hand, (ii)
means that the interaction between species x and y is sufficiently large to produce
the existence of (periodic) coexistence states (see [5]).

2.- Under the hypotheses of the previous corollary, the system (2.1) possesses
semitrivial solutions of the type (X, 0) and (0, Y ) with X(t) > 0, Y (t) > 0, ∀t ∈ R

(i.e. each species may survive in the absence of the other one).

In fact, to prove the existence of (X, 0), think that y(t) ≡ 0 is always a solution
of the second equation of the system (2.1). Moreover, if you define h : R × I1 →
[0,+∞) by h(s, x) ≡ f(s, x, 0), then the equation

x(t) =

∫ t

t−τ1

h(s, x(s)) ds

satisfies all the hypotheses of Theorem 1 in [3] and consequently it has a strictly
positive solution X . Now, the pair (X, 0) is a semitrivial solution of (2.1).

In the same way you may prove the existence of (0, Y ). Note that not in all
situations you have the existence of semitrivial solutions of (2.1) (see Example 2).

3.- The previous remark points out the utility of the use of the method of upper
and lower solutions to study (2.1). Think that, from Corollary 2.1, you obtain
directly the existence of a coexistence state for (2.1). If, instead of it, you think
in applying topological methods (such as the fixed point index, [1]), perhaps you
could obtain the existence of a nonnegative and nontrivial solution (x, y) of (2.1)
but you would be due to decide after this, doing a careful analysis of the particular
situation, if both components are nonnegative and nontrivial (this is, in general,
a difficult question if the system admits semitrivial solutions as it happens in our
case).

Example 1. Let us consider (2.1) with
f(t, x, y) = a1(t)x(P − x)c(y)

g(t, x, y) = b1(t)y(Q − y)d(x)
where a1, b1 : R → (0,+∞) are continuous and ω -periodic functions and P > 0,
Q > 0.

Also, c : [0, Q
2 ]→ (0,+∞), d : [0, P

2 ]→ (0,+∞) are continuous functions.
Then if

1

Pτ1
< a1(t)c(y) ≤

2

Pτ1
, ∀(t, y) ∈ R × [0, Q

2
]

and
1

Qτ2
< b1(t)d(x) ≤

2

Qτ2
, ∀(t, x) ∈ R × [0, P

2
],

the equation (2.1) has at least a coexistence state (x, y) ∈ (0, P
2 ]× (0,

Q
2 ]. To see

this, it is sufficient to take in Corollary 2.1, M = P
2 , N =

Q
2 , a(t, y) = Pa1(t)c(y)

and b(t, x) = Qb1(t)d(x).
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Remarks 2.3.

1.- Note that in this example, a(t, y) =
∂f(t,x,y)

∂x |x=0, b(t, x) = ∂g(t,x,y)
∂y |y=0. This

may be a good indication to calculate the functions a and b in Corollary 2.1, in
general, if these derivatives exist. As we have said, the hypothesis (i) of this corol-
lary is always verified if I1 = I2 = [0,+∞) and f and g are bounded functions.
Also, in order to get x0 and y0, you could give other kinds of conditions involv-

ing the quantities lim sup
x→+∞

f(t, x, y)

x
and lim sup

y→+∞

g(t, x, y)

y
. This allow to consider

unbounded nonlinearities.

2.- The functions f and g of the above type were considered by Cooke and Kaplan
[5] in the scalar case. In the case of systems, our condition on the functions
a1(t)c(y) and b1(t)d(x) may be interpreted as a control on the interaction of

the species x and y in order to have solutions (x, y) such that 0 < x(t) ≤ P
2 ,

0 < y(t) ≤ Q
2 , ∀t ∈ R.

Next we are going to treat the case when f and g satisfy some additional
monotone properties moreover of those imposed in Theorem 2.1; in this case
we will construct iterative monotone sequences converging to nontrivial solutions
of (2.1). This is another advantage of the use of monotone methods with respect
to the topological ones in the study of (2.1).

Remember that (2.1) is a model to study the evolution on the time of a popu-
lation constituted by two species x and y where f(t, x(t), y(t)) and g(t, x(t), y(t))
are, respectively, the number of new births per a time unit of the species x and y.
Based on this biological interpretation we are going to give the following definition.
Previously to it we need something more about the notation: If h(t, x, y) is a given
function of three variables (t, x, y) ∈ R × I1 × I2, h(t, x, y) ր x (h(t, x, y) ց x)
means that the function h(t, x, y) is nondecreasing (nonincreasing) with respect
to x ∈ I1 for fixed (t, y) ∈ R × I2 (and analogous definition for the variable y).

Definition. One says that (2.1) is

(a) of a cooperative type if

f(t, x, y)ր x, f(t, x, y)ր y; g(t, x, y)ր x, g(t, x, y)ր y.

(b) of a competition type if

f(t, x, y)ր x, f(t, x, y)ց y; g(t, x, y)ց x, g(t, x, y)ր y.

(c) of a prey-predator type if

f(t, x, y)ր x, f(t, x, y)ց y; g(t, x, y)ր x, g(t, x, y)ր y.
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Theorem 2.2. Assume that, moreover of the hypotheses of Theorem 2.1, the
system (2.1) is of a cooperative type. Then, if

(2.2)

xn+1(t) ≡
∫ t

t−τ1

f(s, xn(s), yn(s)) ds,

yn+1(t) ≡
∫ t

t−τ2

g(s, xn(s), yn(s)) ds,

xn+1(t) ≡
∫ t

t−τ1

f(s, xn(s), yn(s)) ds

yn+1(t) ≡
∫ t

t−τ2

g(s, xn(s), yn(s)) ds,

∀t ∈ R, ∀n ∈ N,

one has

(2.3)
x0(t) ≤ xn(t) ≤ xn+1(t) ≤ xn+1(t) ≤ xn(t) ≤ x0(t)

y0(t) ≤ yn(t) ≤ yn+1(t) ≤ yn+1(t) ≤ yn(t) ≤ y0(t)

∀t ∈ R, ∀n ∈ N

and {(xn, yn)}, {(xn, yn)} converge respectively, to (x∗, y∗), (x∗, y∗) which are
solutions of (2.1) (possibly equal) belonging to [x0, x

0]E × [y0, y0]E . Moreover, if
(x, y) is any solution of (2.1) in [x0, x

0]E × [y0, y0]E , then

(2.4)
x∗(t) ≤ x(t) ≤ x∗(t)

y∗(t) ≤ y(t) ≤ y∗(t), ∀t ∈ R

(i.e. (x∗, y∗) and (x
∗, y∗) are, respectively, the minimal and maximal solutions of

(2.1) in [x0, x
0]E × [y0, y0]E).

Proof: (2.3) is easily proved by induction. Hence, {(xn, yn)}, {(xn, yn)} con-
verge, respectively, to (x∗, y∗) and (x

∗, y∗) belonging to [x0, x
0]E × [y0, y0]E .

From (2.2), one deduces that (x∗, y∗) and (x
∗, y∗) are solutions of (2.1) such that

x∗ ≤ x∗, y∗ ≤ y∗. Moreover, if (x, y) is any solution of (2.1) in [x0, x
0]E×[y0, y0]E ,

then

xn(t) ≤ x(t) ≤ xn(t), yn(t) ≤ y(t) ≤ yn(t), ∀t ∈ R, ∀n ∈ N

which implies

x∗(t) ≤ x(t) ≤ x∗(t), y∗(t) ≤ y(t) ≤ y∗(t), ∀t ∈ R.

�
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Remark 2.4. If one has a pair of sub-supersolutions for (2.1), previous theorem
gives an iterative scheme which provides monotone convergent sequences to solu-
tions of (2.1). This is particularly interesting if you know that (2.1) has at most
one solution in [x0, x

0]E × [y0, y0]E because in this case such sequences converge
to the unique solution of (2.1) in [x0, x

0]E × [y0, y0]E (see Example 2 below).
A similar theorem to previous one may be proved if (2.1) is of a competition

type.

Theorem 2.3. Assume that, moreover of the hypotheses of Theorem 2.1, the
system (2.1) is of a competition type. Then, if

(2.5)

xn+1(t) ≡
∫ t

t−τ1

f(s, xn(s), y
n(s)) ds

yn+1(t) ≡
∫ t

t−τ2

g(s, xn(s), y
n(s)) ds,

xn+1(t) ≡
∫ t

t−τ1

f(s, xn(s), yn(s)) ds

yn+1(t) ≡
∫ t

t−τ2

g(s, xn(s), yn(s)) ds,

∀t ∈ R, ∀n ∈ N,

one has that

(2.6)
x0(t) ≤ xn(t) ≤ xn+1(t) ≤ xn+1(t) ≤ xn(t) ≤ x0(t)

y0(t) ≤ yn(t) ≤ yn+1(t) ≤ yn+1(t) ≤ yn(t) ≤ y0(t)

∀t ∈ R, ∀n ∈ N

and {(xn, yn)}, {(xn, yn)} converge, respectively, to (x∗, y∗), (x∗, y∗) which are
solutions of (2.1) (possibly equal) belonging to [x0, x

0]E × [y0, y0]E . Moreover, if
(x, y) is any solution of (2.1) in [x0, x

0]E × [y0, y0]E , then

x∗(t) ≤ x(t) ≤ x∗(t)

y∗(t) ≤ y(t) ≤ y∗(t), ∀t ∈ R.

Remark 2.5. It does not seem possible to prove an analogue of Theorem 2.2
and Theorem 2.3 for the prey-predator case.

3. Uniqueness of positive solutions

In this section we prove a uniqueness result for coexistence states of (2.1). To
this end, we need that (2.1) be of cooperative type and that the nonlinearities f

and g satisfy a kind of concavity condition as those appeared in [7].
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Theorem 3.1. Suppose that I1 = I2 = [0,+∞) in the hypothesis (H) and that:
(i) (2.1) is of a cooperative type.
(ii) f(s, τx, τy) > τf(s, x, y), g(s, τx, τy) > τg(s, x, y),

∀τ ∈ (0, 1), ∀x, y ∈ (0,+∞).
Then (2.1) has at most one ω -periodic solution (x, y) satisfying x(t) > 0,

y(t) > 0, ∀t ∈ R.

Proof: Let (x1, y1), (x2, y2) be two distinct solutions of (2.1) with

xi(t) > 0, yi(t) > 0, ∀t ∈ R, i = 1, 2.

Clearly, it is not restrictive to assume that there exists t1 ∈ R such that x1(t1) >

x2(t1).
Define

µ = min

{

x2(t)

x1(t)
,
y2(t)

y1(t)
, t ∈ R

}

Then 0 < µ < 1, x2(t) ≥ µx1(t), y2(t) ≥ µy1(t), ∀t ∈ R and there is t2 ∈ R such
that x2(t2) = µx1(t2) or y2(t2) = µy1(t2). Assume x2(t2) = µx1(t2). Hence,
∀t ∈ R, we have

x2(t) =

∫ t

t−τ1

f(s, x2(s), y2(s)) ds

≥
∫ t

t−τ1

f(s, µx1(s), µy1(s)) ds

> µ

∫ t

t−τ1

f(s, x1(s), y1(s)) ds

= µx1(t)

which contradicts the existence of t2.
If y2(t2) = µy1(t2) we also arrive to a contradiction taking y2(t) instead of x2(t).

�

Remarks 3.1.

1.- If (2.1) is of a cooperative type and we have a pair of sub-supersolutions
(x0, y0) − (x0, y0) for it with x0(t) > 0, y0(t) > 0 ∀t ∈ R, then it may be easily
deduced that if the hypothesis (ii) of the previous theorem is checked for all

τ ∈ (0, 1), for all x ∈ [min
t∈R

x0(t),max
t∈R

x0(t)] and for all y ∈ [min
t∈R

y0(t),max
t∈R

y0(t)],

then (2.1) has a unique solution (x, y) in the set [x0, x
0]E × [y0, y0]E . Also, it

is easy to see that for any pair of continuous and ω-periodic functions (u, v) in
[x0, x

0]E × [y0, y0]E we have:

‖un − x‖ → 0, ‖vn − y‖ → 0
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as n → +∞, where

un+1(t) =

∫ t

t−τ1

f(s, un(s), vn(s)) ds, u0(t) = u(t), ∀t ∈ R, ∀n ∈ N

vn+1(t) =

∫ t

t−τ2

g(s, un(s), vn(s)) ds, v0(t) = v(t), ∀t ∈ R, ∀n ∈ N.

2.- A hypothesis of type (ii) appears in the book by Krasnoselskii [7] in the study
of other types of nonlinear integral equations. In the scalar case, they have also
been used by Smith [9] to prove uniqueness of positive solutions of (1.2).

3.- The same conclusion of the previous theorem is obtained if (ii) is replaced by
(ii′) There exists α ∈ (0, 1), β ∈ (0, 1) such that

f(s, τx, τy) ≥ ταf(s, x, y)

g(s, τx, τy) ≥ τβg(s, x, y)

∀τ ∈ (0, 1), ∀(x, y) ∈ (0,+∞)× (0,+∞)
This type of conditions may be seen (in the scalar case) in [6].

Example 2. Consider the system (2.1), where

(3.1)

f(t, x, y) = a(t)

√
x

m+ x

√
y

n+ y

g(t, x, y) = b(t)

√
y

n+ y

√
x

m+ x

a, b : R → [0,+∞) are continuous and ω-periodic functions, m, n are positive
constants and x ≥ 0, y ≥ 0.
Then, if

(3.2)

mn <

∫ t

t−τ1

a(s) ds ≤ (m+min{n, m})(n+min{n, m})

mn <

∫ t

t−τ2

b(s) ds ≤ (m+min{n, m})(n+min{n, m})

for all t ∈ R,
system (2.1) has a unique solution (x, y) such that x(t) > 0, y(t) > 0, ∀t ∈ R.
In fact the system (2.1) with f and g defined by (3.1), has a pair of sub-

supersolutions given by x0 = y0 ∈ R
+, both sufficiently small and x0 = y0 =

min{n, m}. So that, from Theorem 2.1. and Theorem 3.1. we obtain the desired
conclusion.

Remark 3.2. Observe that in this case the system (2.1) has no semitrivial so-
lutions so that the cooperation between the species x and y is crucial to have
a coexistence state. Also, (3.2) says how must be such cooperation in order to
have a coexistence state (x, y) with

0 < x(t) ≤ min{n, m}, 0 < y(t) ≤ min{n, m}, ∀t ∈ R.
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