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Notes on approximation in the Musielak-Orlicz

sequence spaces of multifunctions

Andrzej Kasperski

Abstract. We introduced the notion of (X, dist,V)-boundedness of a filtered family of
operators in the Musielak-Orlicz sequence space Xϕ of multifunctions. This notion is
used to get the convergence theorems for the families of X-linear operators, X-dist-
sublinear operators and X-dist-convex operators. Also, we prove that Xϕ is complete.

Keywords: Musielak-Orlicz space, multifunction, modular space of multifunctions, ap-

proximation, singular kernel

Classification: 54C60, 28B20

1. Introduction

Let N be the set of all nonnegative integers. Let lϕ be the Musielak-Orlicz
sequence space generated by a modular

̺(x) =

∞∑

i=o

ϕi(ti), x = (ti),

where ϕ = (ϕi) is a sequence of ϕ-functions with parameter, i.e. for every i ∈ N
we have: ϕi : R → R+ = [0,∞), ϕi(u) is an even continuous function, equal to
zero iff u = 0 and nondecreasing for u ≥ 0, limu→∞ ϕi(u) =∞. Let

X = {F : N→ 2R : F (i) is nonempty and compact for every i ∈ N}.

Every function from N to 2R we will be called multifunction. For every F ∈ X

we define the functions f(F ) and f(F ) by the formulas:

f(F )(i) = min
x∈F (i)

x, f(F )(i) = max
x∈F (i)

x for every i ∈ N.

Let now [a, b] denote a compact segment for all a, b ∈ R, a ≤ b. Define

Xϕ = {F ∈ X : f(F ), f(F ) ∈ lϕ},

X̃ ′
ϕ = {F ∈ Xϕ : F (i) =

ni⋃

k=1

[ak(i), bk(i)] for every i ∈ N, where ni ∈ N\{0},

ak(i), bk(i) ∈ R for i ∈ N, k = 1, . . . , ni}.
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Let V be an abstract set of indices. Let V be a filter of subsets of V. Let
0 : N→ R be such that 0(i) = 0 for every i ∈ N.
In [6] a general approximation theorem in modular spaces was obtained for

linear operators. This theorem was extended in [1] and [7] to some nonlinear

operators in Lϕ(Ω,Σ, µ), in [2] to X̃ϕ-linear operators in X̃ϕ, in [3] to some oper-

ators in X̃ϕ and in [5] to some operators in Xd,ϕ. The space Xϕ was introduced in
[4] without studying its completeness. The aim of this note is to prove that Xϕ is
complete and to obtain an extension of the results of [2], [3] to the case of approx-
imation by some families of operators in the sequence spaces of multifunctions
X̃ ′

ϕ and Xϕ.

2. General theorems

Definition 1. Let A, B ⊂ R be nonempty and compact. We introduce the
Hausdorff metric by the formula:

dist(A, B) = max(max
x∈A
min
y∈B

| x − y |, max
y∈B
min
x∈A

| x − y |).

Theorem 1. Let Fn ∈ Xϕ for every n ∈ N. If for every ε > 0 and every a > 0
there is K > 0 such that ̺(a dist(Fn(·), Fm(·))) < ε for all m, n > K, then there

exists F ∈ Xϕ, such that ̺(a dist(Fn(·), F (·)))→ 0 as n → ∞ for every a > 0.

Proof: Let the sequence {Fn} fulfil the assumptions of the Theorem 1. So
{Fn(i)} is a Cauchy sequence for every i ∈ N in the complete space of all com-
pact nonempty subsets of R with Hausdorff metric. Hence there are compact
nonempty Fi ⊂ R such that dist(Fn(i), Fi) → 0 as n → ∞ for every i ∈ N. Let
F (i) = Fi for every i ∈ N. Applying the Fatou lemma we easily obtain that
̺(a dist(Fn(·), F (·))) ≤ ε for every n > K. Also we have for every a > 0 and g

equal f(F ) or f(F )

̺(ag) ≤ ̺(a dist(F (·), 0))

≤ ̺(2a dist(Fn(·), F (·))) + ̺(2a dist(Fn(·), 0))

≤ ̺(2a dist(Fn(·), F (·))) + ̺(4af(Fn)) + ̺(4af(Fn)).

So f(F ), f(F ) ∈ lϕ. �

The space Xϕ will be called Musielak-Orlicz sequence space of multifunctions.

Definition 2. A function g : V → R tends to zero with respect to V , written

g(v)
V
−→ 0, if for every ε > 0 there is V ∈ V such that | g(v) | < ε for every v ∈ V .

Let now X be equal to X̃ ′
ϕ or to Xϕ.

Definition 3. An operator A : X→ X will be called an X-dist-sublinear opera-
tor, if for all F, G ∈ X and a, b ∈ R

dist(A(aF + bG)(i), 0) ≤ | a | dist(A(F )(i), 0)+ | b | dist(A(G)(i), 0)

for every i ∈ N.
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Definition 4. An operator B : X→ X will be called an X-dist-convex operator,
if for all F, G ∈ X, a, b ≥ 0, a+ b = 1,

dist(B(aF + bG)(i), (aF + bG)(i))

≤ a dist(B(F )(i), F (i)) + b dist(B(G)(i), G(i)) for every i ∈ N.

Definition 5. An operator C : X→ X will be called an X-linear operator if for
all F, G ∈ X, a, b ∈ R,

C(aF + bG)(i) = aC(F )(i) + bC(G)(i) for every i ∈ N.

Remark 1. If A is X-linear operator, then it is X-dist-sublinear operator and
X-dist-convex operator.

Definition 6. A family T = (Tv)v∈V of operators Tv : X → X, for every
v ∈ V will be called (X, dist,V)-bounded, if there exist constants k1, k2 > 0 and

a function g : V → R+ such that g(v)
V
−→ 0, and for all F, G ∈ X there is a set

VF,G ∈ V for which
̺(a dist(Tv(F )(·), Tv(G)(·))) ≤ k1̺(ak2 dist(F (·), G(·))) + g(v)

for all v ∈ VF,G and every a > 0.

Definition 7. Let Fv ∈ Xϕ for every v ∈ V. Let F ∈ Xϕ. We write Fv
d,ϕ,V
−−−→ F ,

if for every ε > 0 and every a > 0 there exists V ∈ V such that ̺(a dist(Fv(·), F (·)))
< ε for every v ∈ V .

Remark 2. If F, G ∈ Xϕ, then dist(F (·), G(·)) ∈ lϕ.

Definition 8. Let S ⊂ X.

SX,d,ϕ,V = {F ∈ X : Fv
d,ϕ,V
−−−→ F, for some Fv ∈ S, v ∈ V}.

Theorem 2. Let the family T = (Tv)v∈V ofX-dist-sublinear operators for every

v ∈ V, be (X, dist,V)-bounded. Let So ⊂ X and let Tv(F )
d,ϕ,V
−−−→ 0 for every

F ∈ So. Let S be the set of all finite linear combinations of elements of the set

So. Then Tv(F )
d,ϕ,V
−−−→ 0 for every F ∈ SX,d,ϕ,V .

The proof analogous to that of Theorem 1 in [3] is omitted.

Theorem 3. Let the family T = (Tv)v∈V of X-dist-convex operators for every

v ∈ V be (X, dist,V)-bounded. Let So ⊂ X and let Tv(F )
d,ϕ,V
−−−→ F for every

F ∈ So. Let now S be the set of all finite convex combinations of elements of the

set So. Then Tv(F )
d,ϕ,V
−−−→ F for every F ∈ SX,d,ϕ,V .

The proof analogous to that of Theorem 2 in [3] is omitted.

Theorem 4. Let the family T = (Tv)v∈V of X-linear operators for every v ∈ V,

be (X, dist,V)-bounded. Let So ⊂ X and let Tv(F )
d,ϕ,V
−−−→ F for every F ∈ So.

Let now S be the set of all finite linear combinations of elements of the set So.

Then Tv(F )
d,ϕ,V
−−−→ F for every F ∈ SX,d,ϕ,V .

The proof analogous to that of Theorem 1 in [2] is omitted.
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3. Applications

Let now V = N and the filter V will consist of all sets V ⊂ V which are
complements of finite sets.

We shall say that ϕ is τ+-bounded, if there are constants k1, k2 ≥ 1 and a
double sequence {εn,j} such that

ϕn+j(u) ≤ k1ϕn(k2u) + εn,j

for u ∈ R, n, j = 0, 1, . . . , where εn,j ≥ 0, εn,0 = 0, εj =
∞∑

n=0
εn,j → 0 as j → ∞,

s = supj∈N εj < ∞. Let Kv,j : V × V → R+ and let the family (Kv)v∈V be

almost-singular, i.e. σ(v) =
∑

∞
j=0Kv,j ≤ σ < ∞ for all v ∈ V and

Kv,j

σ(v)
V
−→ 0 for

j = 1, 2, . . . . Let F ∈ Xϕ. We define a family T = (Tv)v∈V of operators by the
formula:

Tv(F )(i) =

i∑

j=0

Kv,i−jF (j) for every i ∈ V.

Lemma 1. Let (Kv)v∈V be almost-singular, let ϕ = (ϕi)i∈V be τ+-bounded

and ϕi be convex for every i ∈ V, then Tv : l
ϕ → lϕ for every v ∈ V.

The proof analogous to that of Proposition 4 in [6] is omitted.

Lemma 2. If the assumptions of Lemma 1 hold, then the family T = (Tv)v∈V
is (Xϕ, dist,V)-bounded and Tv is Xϕ-linear-operator for every v ∈ V.

Proof: From Lemma 1 we easily obtain that Tv : Xϕ → Xϕ. We prove that T
is (Xϕ, dist,V)-bounded family of Xϕ-linear operators. Let a, b ∈ R, F, G ∈ Xϕ,
i ∈ V. We have

Tv(aF + bg)(i) =

i∑

j=0

Kv,i−j(aF (j) + bG(j))

= a

i∑

j=0

Kv,i−jF (j) + b

i∑

j=0

Kv,i−jG(j)

= aTv(F )(i) + bTv(G)(i),

̺(a dist(Tv(F )(·), Tv(G)(·)))
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≤

∞∑

i=0

ϕi(a

i∑

j=0

Kv,i−j dist(F (j), G(j)))

≤ k1̺(ak2σ dist(F (·), G(·))) + c(v),

where c(v) = 1
σ(v)

∞∑

i=1
Kv,iεi

V
−→ 0 (see [6], p. 109, the proof of Proposition 4). �

We easily obtain (see [7], 8.13 and 8.14 ) the following

Lemma 3. Let ϕ = (ϕi)
∞
i=0 satisfy the condition (δ2). Let F ∈ Xϕ and F =

(F (i))∞i=0. Let Fv be such that Fv(i) = F (i) for i = 0, 1, . . . , v and Fv(i) = 0 for

i > v. Then Fv
d,ϕ,V
−−−→ F .

Remark 3. If A ⊂ R is nonempty and compact and a ∈ R, then

dist(aA, A) ≤ | 1− a | max
x∈A

| x | .

Proof: Let A ⊂ R be nonempty and compact and let a ∈ R, we have

dist(aA, A) = max(max
x∈aA

min
y∈A

| x − y |, max
y∈A

min
x∈aA

| x − y |)

= max(max
z∈A
min
y∈A

| az − y |, max
y∈A
min
z∈A

| az − y |) ≤ | 1− a | max
x∈A

| x | .

Now, let us denote: xj,Kv
= {0, . . . , 0

︸ ︷︷ ︸

j−times

, Kv,1, Kv,2, . . . }. �

Theorem 5. Let the assumptions of Lemmas 1 and 3 hold. If xj,Kv

d,ϕ,V
−−−→ 0 for

every j ∈ V, Kv,o
V
−→ 1, then Tv(F )

d,ϕ,V
−−−→ F for every F ∈ Xϕ.

Proof: Let us denote:

Ek(A) = (∆i,k(A))
∞
i=0 with ∆i,k(A) = A if i = k and ∆i,k(A) = 0 if i 6= k,

where A ⊂ R is nonempty and compact. Let

So = {Ek(A) : k ∈ V, A ⊂ R is nonempty and compact}.

It is easy to see that Tv(F )
d,ϕ,V
−−−→ F for every F ∈ So. Let S be the set of

all finite linear combinations of elements of the set So. From Lemma 3 we easily
obtain that SXϕ,d,ϕ,V = Xϕ. So we easily obtain the assertion from Theorem 4.

�

Now, let us denote: xj,Kv
= {0, . . . , 0

︸ ︷︷ ︸

j−times

, Kv,0, Kv,1, . . . }.

From Remark 1 we easily obtain the following extension of Theorem 3 from [3]:
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Theorem 6. Let the assumptions of Lemmas 1 and 3 hold. If xj,Kv

d,ϕ,V
−−−→ 0

for every j ∈ V, then Tv(F )
d,ϕ,V
−−−→ 0 for every F ∈ Xϕ.

Let now

Xd,ϕ = {F ∈ Xϕ : Fn
d,ϕ,V
−−−→ F for some Fn ∈ X̃ ′

ϕ, n ∈ N}.

Remark 4. For every nonempty and compact A ∈ R and every ε > 0 there are
n ∈ N and aj ∈ R, j = 0, 1, . . . , n such that dist(A,

⋃n
j=0{aj}) < ε.

From Lemma 3 and Remark 4 we easily obtain the following:

Theorem 7. If the assumptions of Lemma 3 hold, then Xd,ϕ = Xϕ.
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Verlag, Basel 1981, pp. 99–110.

[7] , Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, Vol. 1034,
Springer-Verlag, Berlin, 1983.

Institute of Mathematics, Silesian Technical University, Kaszubska 23, 44-100 Gli-

wice, Poland

(Received December 8, 1993)


		webmaster@dml.cz
	2012-04-30T15:24:08+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




