Commentationes Mathematicae Universitatis Carolinae

Andrzej Kasperski
Notes on approximation in the Musielak-Orlicz sequence spaces of multifunction

Commentationes Mathematicae Universitatis Carolinae, Vol. 36 (1995), No. 1, 19--24

Persistent URL: http://dml.cz/dmlcz/118728

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Notes on approximation in the Musielak-Orlicz sequence spaces of multifunctions

Andrzej Kasperski

Abstract

We introduced the notion of (X, dist, $\mathcal{V})$-boundedness of a filtered family of operators in the Musielak-Orlicz sequence space X_{φ} of multifunctions. This notion is used to get the convergence theorems for the families of \mathbf{X}-linear operators, \mathbf{X}-distsublinear operators and \mathbf{X}-dist-convex operators. Also, we prove that X_{φ} is complete.

Keywords: Musielak-Orlicz space, multifunction, modular space of multifunctions, approximation, singular kernel
Classification: 54C60, 28B20

1. Introduction

Let \mathbf{N} be the set of all nonnegative integers. Let l^{φ} be the Musielak-Orlicz sequence space generated by a modular

$$
\varrho(x)=\sum_{i=o}^{\infty} \varphi_{i}\left(t_{i}\right), x=\left(t_{i}\right)
$$

where $\varphi=\left(\varphi_{i}\right)$ is a sequence of φ-functions with parameter, i.e. for every $i \in \mathbf{N}$ we have: $\varphi_{i}: R \rightarrow R_{+}=[0, \infty), \varphi_{i}(u)$ is an even continuous function, equal to zero iff $u=0$ and nondecreasing for $u \geq 0, \lim _{u \rightarrow \infty} \varphi_{i}(u)=\infty$. Let

$$
X=\left\{F: \mathbf{N} \rightarrow 2^{R}: F(i) \text { is nonempty and compact for every } i \in \mathbf{N}\right\}
$$

Every function from \mathbf{N} to 2^{R} we will be called multifunction. For every $F \in X$ we define the functions $\underline{f}(F)$ and $\bar{f}(F)$ by the formulas:

$$
\underline{f}(F)(i)=\min _{x \in F(i)} x, \bar{f}(F)(i)=\max _{x \in F(i)} x \text { for every } i \in \mathbf{N}
$$

Let now $[a, b]$ denote a compact segment for all $a, b \in R, a \leq b$. Define

$$
\begin{gathered}
X_{\varphi}=\left\{F \in X: \underline{f}(F), \bar{f}(F) \in l^{\varphi}\right\}, \\
\tilde{X}_{\varphi}^{\prime}=\left\{F \in X_{\varphi}: F(i)=\bigcup_{k=1}^{n_{i}}\left[a_{k}(i), b_{k}(i)\right] \text { for every } i \in \mathbf{N}, \text { where } n_{i} \in \mathbf{N} \backslash\{0\},\right. \\
\left.a_{k}(i), b_{k}(i) \in R \text { for } i \in \mathbf{N}, k=1, \ldots, n_{i}\right\} .
\end{gathered}
$$

Let \mathbf{V} be an abstract set of indices. Let \mathcal{V} be a filter of subsets of \mathbf{V}. Let $\mathbf{0}: \mathbf{N} \rightarrow R$ be such that $\mathbf{0}(i)=0$ for every $i \in \mathbf{N}$.

In [6] a general approximation theorem in modular spaces was obtained for linear operators. This theorem was extended in [1] and [7] to some nonlinear operators in $L^{\varphi}(\Omega, \Sigma, \mu)$, in [2] to \tilde{X}_{φ}-linear operators in \tilde{X}_{φ}, in [3] to some operators in \tilde{X}_{φ} and in [5] to some operators in $X_{d, \varphi}$. The space X_{φ} was introduced in [4] without studying its completeness. The aim of this note is to prove that X_{φ} is complete and to obtain an extension of the results of [2], [3] to the case of approximation by some families of operators in the sequence spaces of multifunctions $\tilde{X}_{\varphi}^{\prime}$ and X_{φ}.

2. General theorems

Definition 1. Let $A, B \subset R$ be nonempty and compact. We introduce the Hausdorff metric by the formula:

$$
\operatorname{dist}(A, B)=\max \left(\max _{x \in A} \min _{y \in B}|x-y|, \max _{y \in B} \min _{x \in A}|x-y|\right)
$$

Theorem 1. Let $F_{n} \in X_{\varphi}$ for every $n \in \mathbf{N}$. If for every $\varepsilon>0$ and every $a>0$ there is $K>0$ such that $\varrho\left(a \operatorname{dist}\left(F_{n}(\cdot), F_{m}(\cdot)\right)\right)<\varepsilon$ for all $m, n>K$, then there exists $F \in X_{\varphi}$, such that $\varrho\left(a \operatorname{dist}\left(F_{n}(\cdot), F(\cdot)\right)\right) \rightarrow 0$ as $n \rightarrow \infty$ for every $a>0$.
Proof: Let the sequence $\left\{F_{n}\right\}$ fulfil the assumptions of the Theorem 1. So $\left\{F_{n}(i)\right\}$ is a Cauchy sequence for every $i \in \mathbf{N}$ in the complete space of all compact nonempty subsets of R with Hausdorff metric. Hence there are compact nonempty $F_{i} \subset R$ such that $\operatorname{dist}\left(F_{n}(i), F_{i}\right) \rightarrow 0$ as $n \rightarrow \infty$ for every $i \in \mathbf{N}$. Let $F(i)=F_{i}$ for every $i \in \mathbf{N}$. Applying the Fatou lemma we easily obtain that $\varrho\left(a \operatorname{dist}\left(F_{n}(\cdot), F(\cdot)\right)\right) \leq \varepsilon$ for every $n>K$. Also we have for every $a>0$ and g equal $\underline{f}(F)$ or $\bar{f}(F)$

$$
\begin{gathered}
\varrho(a g) \leq \varrho(a \operatorname{dist}(F(\cdot), 0)) \\
\leq \varrho\left(2 a \operatorname{dist}\left(F_{n}(\cdot), F(\cdot)\right)\right)+\varrho\left(2 a \operatorname{dist}\left(F_{n}(\cdot), 0\right)\right) \\
\leq \varrho\left(2 a \operatorname{dist}\left(F_{n}(\cdot), F(\cdot)\right)\right)+\varrho\left(4 a \underline{f}\left(F_{n}\right)\right)+\varrho\left(4 a \bar{f}\left(F_{n}\right)\right) .
\end{gathered}
$$

So $\underline{f}(F), \bar{f}(F) \in l^{\varphi}$.
The space X_{φ} will be called Musielak-Orlicz sequence space of multifunctions. Definition 2. A function $g: \mathbf{V} \rightarrow R$ tends to zero with respect to \mathcal{V}, written $g(v) \xrightarrow{\mathcal{V}} 0$, if for every $\varepsilon>0$ there is $V \in \mathcal{V}$ such that $|g(v)|<\varepsilon$ for every $v \in V$.

Let now \mathbf{X} be equal to $\tilde{X}_{\varphi}^{\prime}$ or to X_{φ}.
Definition 3. An operator $A: \mathbf{X} \rightarrow \mathbf{X}$ will be called an \mathbf{X}-dist-sublinear operator, if for all $F, G \in \mathbf{X}$ and $a, b \in R$

$$
\operatorname{dist}(A(a F+b G)(i), 0) \leq|a| \operatorname{dist}(A(F)(i), 0)+|b| \operatorname{dist}(A(G)(i), 0)
$$

for every $i \in \mathbf{N}$.

Definition 4. An operator $B: \mathbf{X} \rightarrow \mathbf{X}$ will be called an \mathbf{X}-dist-convex operator, if for all $F, G \in \mathbf{X}, a, b \geq 0, a+b=1$,

$$
\operatorname{dist}(B(a F+b G)(i),(a F+b G)(i))
$$

$$
\leq a \operatorname{dist}(B(F)(i), F(i))+b \operatorname{dist}(B(G)(i), G(i)) \text { for every } i \in \mathbf{N}
$$

Definition 5. An operator $C: \mathbf{X} \rightarrow \mathbf{X}$ will be called an \mathbf{X}-linear operator if for all $F, G \in \mathbf{X}, a, b \in R$,

$$
C(a F+b G)(i)=a C(F)(i)+b C(G)(i) \text { for every } \quad i \in \mathbf{N}
$$

Remark 1. If A is \mathbf{X}-linear operator, then it is \mathbf{X}-dist-sublinear operator and X-dist-convex operator.
Definition 6. A family $T=\left(T_{v}\right)_{v \in \mathbf{V}}$ of operators $T_{v}: \mathbf{X} \rightarrow \mathbf{X}$, for every $v \in \mathbf{V}$ will be called (\mathbf{X}, dist, \mathcal{V})-bounded, if there exist constants $k_{1}, k_{2}>0$ and a function $g: \mathbf{V} \rightarrow R_{+}$such that $g(v) \xrightarrow{\mathcal{V}} 0$, and for all $F, G \in \mathbf{X}$ there is a set $V_{F, G} \in \mathcal{V}$ for which

$$
\varrho\left(a \operatorname{dist}\left(T_{v}(F)(\cdot), T_{v}(G)(\cdot)\right)\right) \leq k_{1} \varrho\left(a k_{2} \operatorname{dist}(F(\cdot), G(\cdot))\right)+g(v)
$$

for all $v \in V_{F, G}$ and every $a>0$.
Definition 7. Let $F_{v} \in X_{\varphi}$ for every $v \in \mathbf{V}$. Let $F \in X_{\varphi}$. We write $F_{v} \xrightarrow{d, \varphi, \mathcal{V}} F$, if for every $\varepsilon>0$ and every $a>0$ there exists $V \in \mathcal{V}$ such that $\varrho\left(a \operatorname{dist}\left(F_{v}(\cdot), F(\cdot)\right)\right)$ $<\varepsilon$ for every $v \in V$.
Remark 2. If $F, G \in X_{\varphi}$, then $\operatorname{dist}(F(\cdot), G(\cdot)) \in l^{\varphi}$.
Definition 8. Let $S \subset \mathbf{X}$.

$$
S_{\mathbf{X}, d, \varphi, \mathcal{V}}=\left\{F \in \mathbf{X}: F_{v} \xrightarrow{d, \varphi, \mathcal{V}} F, \text { for some } F_{v} \in S, v \in \mathbf{V}\right\}
$$

Theorem 2. Let the family $T=\left(T_{v}\right)_{v \in \mathbf{V}}$ of \mathbf{X}-dist-sublinear operators for every $v \in \mathbf{V}$, be (X, dist, $\mathcal{V})$-bounded. Let $S_{o} \subset \mathbf{X}$ and let $T_{v}(F) \xrightarrow{d, \varphi, \mathcal{V}} \mathbf{0}$ for every $F \in S_{o}$. Let S be the set of all finite linear combinations of elements of the set S_{o}. Then $T_{v}(F) \xrightarrow{d, \varphi, \mathcal{V}} \mathbf{0}$ for every $F \in S_{\mathbf{X}, d, \varphi, \mathcal{V}}$.

The proof analogous to that of Theorem 1 in [3] is omitted.
Theorem 3. Let the family $T=\left(T_{v}\right)_{v \in \mathbf{V}}$ of \mathbf{X}-dist-convex operators for every $v \in \mathbf{V}$ be $(\mathbf{X}$, dist, $\mathcal{V})$-bounded. Let $S_{o} \subset \mathbf{X}$ and let $T_{v}(F) \xrightarrow{d, \varphi, \mathcal{V}} F$ for every $F \in S_{o}$. Let now S be the set of all finite convex combinations of elements of the set S_{o}. Then $T_{v}(F) \xrightarrow{d, \varphi, \mathcal{V}} F$ for every $F \in S_{\mathbf{X}, d, \varphi, \mathcal{V}}$.

The proof analogous to that of Theorem 2 in [3] is omitted.
Theorem 4. Let the family $T=\left(T_{v}\right)_{v \in \mathbf{V}}$ of \mathbf{X}-linear operators for every $v \in \mathbf{V}$, be $(\mathbf{X}$, dist, $\mathcal{V})$-bounded. Let $S_{o} \subset \mathbf{X}$ and let $T_{v}(F) \xrightarrow{d, \varphi, \mathcal{V}} F$ for every $F \in S_{o}$. Let now S be the set of all finite linear combinations of elements of the set S_{o}. Then $T_{v}(F) \xrightarrow{d, \varphi, \mathcal{V}} F$ for every $F \in S_{\mathbf{X}, d, \varphi, \mathcal{V}}$.

The proof analogous to that of Theorem 1 in [2] is omitted.

3. Applications

Let now $\mathbf{V}=\mathbf{N}$ and the filter \mathcal{V} will consist of all sets $V \subset \mathbf{V}$ which are complements of finite sets.

We shall say that φ is τ_{+}-bounded, if there are constants $k_{1}, k_{2} \geq 1$ and a double sequence $\left\{\varepsilon_{n, j}\right\}$ such that

$$
\varphi_{n+j}(u) \leq k_{1} \varphi_{n}\left(k_{2} u\right)+\varepsilon_{n, j}
$$

for $u \in R, n, j=0,1, \ldots$, where $\varepsilon_{n, j} \geq 0, \varepsilon_{n, 0}=0, \varepsilon_{j}=\sum_{n=0}^{\infty} \varepsilon_{n, j} \rightarrow 0$ as $j \rightarrow \infty$, $\mathbf{s}=\sup _{j \in \mathbf{N}} \varepsilon_{j}<\infty$. Let $K_{v, j}: \mathbf{V} \times \mathbf{V} \rightarrow R_{+}$and let the family $\left(K_{v}\right)_{v \in \mathbf{V}}$ be almost-singular, i.e. $\sigma(v)=\sum_{j=0}^{\infty} K_{v, j} \leq \sigma<\infty$ for all $v \in \mathbf{V}$ and $\frac{K_{v, j}}{\sigma(v)} \xrightarrow{\mathcal{V}} 0$ for $j=1,2, \ldots$ Let $F \in X_{\varphi}$. We define a family $\mathcal{T}=\left(\mathcal{T}_{v}\right)_{v \in \mathbf{V}}$ of operators by the formula:

$$
\mathcal{T}_{v}(F)(i)=\sum_{j=0}^{i} K_{v, i-j} F(j) \text { for every } i \in \mathbf{V}
$$

Lemma 1. Let $\left(K_{v}\right)_{v \in \mathbf{V}}$ be almost-singular, let $\varphi=\left(\varphi_{i}\right)_{i \in \mathbf{V}}$ be τ_{+}-bounded and φ_{i} be convex for every $i \in \mathbf{V}$, then $\mathcal{T}_{v}: l^{\varphi} \rightarrow l^{\varphi}$ for every $v \in \mathbf{V}$.

The proof analogous to that of Proposition 4 in [6] is omitted.
Lemma 2. If the assumptions of Lemma 1 hold, then the family $\mathcal{T}=\left(\mathcal{T}_{v}\right)_{v \in \mathbf{V}}$ is $\left(X_{\varphi}\right.$, dist, $\left.\mathcal{V}\right)$-bounded and \mathcal{T}_{v} is X_{φ}-linear-operator for every $v \in \mathbf{V}$.

Proof: From Lemma 1 we easily obtain that $\mathcal{T}_{v}: X_{\varphi} \rightarrow X_{\varphi}$. We prove that \mathcal{T} is $\left(X_{\varphi}\right.$, dist, $\left.\mathcal{V}\right)$-bounded family of X_{φ}-linear operators. Let $a, b \in R, F, G \in X_{\varphi}$, $i \in \mathbf{V}$. We have

$$
\begin{gathered}
\mathcal{T}_{v}(a F+b g)(i)=\sum_{j=0}^{i} K_{v, i-j}(a F(j)+b G(j)) \\
=a \sum_{j=0}^{i} K_{v, i-j} F(j)+b \sum_{j=0}^{i} K_{v, i-j} G(j) \\
=a \mathcal{T}_{v}(F)(i)+b \mathcal{T}_{v}(G)(i) \\
\varrho\left(a \operatorname{dist}\left(\mathcal{T}_{v}(F)(\cdot), \mathcal{T}_{v}(G)(\cdot)\right)\right)
\end{gathered}
$$

$$
\begin{aligned}
\leq & \sum_{i=0}^{\infty} \varphi_{i}\left(a \sum_{j=0}^{i} K_{v, i-j} \operatorname{dist}(F(j), G(j))\right) \\
& \leq k_{1} \varrho\left(a k_{2} \sigma \operatorname{dist}(F(\cdot), G(\cdot))\right)+c(v)
\end{aligned}
$$

where $c(v)=\frac{1}{\sigma(v)} \sum_{i=1}^{\infty} K_{v, i} \varepsilon_{i} \xrightarrow{\mathcal{V}} 0$ (see [6], p. 109, the proof of Proposition 4).
We easily obtain (see [7], 8.13 and 8.14) the following
Lemma 3. Let $\varphi=\left(\varphi_{i}\right)_{i=0}^{\infty}$ satisfy the condition $\left(\delta_{2}\right)$. Let $F \in X_{\varphi}$ and $F=$ $(F(i))_{i=0}^{\infty}$. Let F_{v} be such that $F_{v}(i)=F(i)$ for $i=0,1, \ldots, v$ and $F_{v}(i)=0$ for $i>v$. Then $F_{v} \xrightarrow{d, \varphi, \mathcal{V}} F$.
Remark 3. If $A \subset R$ is nonempty and compact and $a \in R$, then

$$
\operatorname{dist}(a A, A) \leq|1-a| \max _{x \in A}|x|
$$

Proof: Let $A \subset R$ be nonempty and compact and let $a \in R$, we have

$$
\begin{gathered}
\operatorname{dist}(a A, A)=\max \left(\max _{x \in a A} \min _{y \in A}|x-y|, \max _{y \in A} \min _{x \in a A}|x-y|\right) \\
=\max \left(\max _{z \in A} \min _{y \in A}|a z-y|, \max _{y \in A} \min _{z \in A}|a z-y|\right) \leq|1-a| \max _{x \in A}|x| .
\end{gathered}
$$

Now, let us denote: $x_{j, K_{v}}=\{\underbrace{0, \ldots, 0}_{j-\text { times }}, K_{v, 1}, K_{v, 2}, \ldots\}$.
Theorem 5. Let the assumptions of Lemmas 1 and 3 hold. If $x_{j, K_{v}} \xrightarrow{d, \varphi, \mathcal{V}} \mathbf{0}$ for every $j \in \mathbf{V}, K_{v, o} \xrightarrow{\mathcal{V}} 1$, then $\mathcal{T}_{v}(F) \xrightarrow{d, \varphi, \mathcal{V}} F$ for every $F \in X_{\varphi}$.
Proof: Let us denote:
$E_{k}(A)=\left(\Delta_{i, k}(A)\right)_{i=0}^{\infty}$ with $\Delta_{i, k}(A)=A$ if $i=k$ and $\Delta_{i, k}(A)=0$ if $i \neq k$, where $A \subset R$ is nonempty and compact. Let

$$
\mathbf{S}_{o}=\left\{E_{k}(A): k \in \mathbf{V}, A \subset R \text { is nonempty and compact }\right\} .
$$

It is easy to see that $\mathcal{T}_{v}(F) \xrightarrow{d, \varphi, \mathcal{V}} F$ for every $F \in \mathbf{S}_{o}$. Let \mathbf{S} be the set of all finite linear combinations of elements of the set \mathbf{S}_{o}. From Lemma 3 we easily obtain that $\mathbf{S}_{X_{\varphi}, d, \varphi, \mathcal{V}}=X_{\varphi}$. So we easily obtain the assertion from Theorem 4.

Now, let us denote: $\bar{x}_{j, K_{v}}=\{\underbrace{0, \ldots, 0}_{j-\text { times }}, K_{v, 0}, K_{v, 1}, \ldots\}$.
From Remark 1 we easily obtain the following extension of Theorem 3 from [3]:

Theorem 6. Let the assumptions of Lemmas 1 and 3 hold. If $\bar{x}_{j, K_{v}} \xrightarrow{d, \varphi, \mathcal{V}} \mathbf{0}$ for every $j \in \mathbf{V}$, then $\mathcal{T}_{v}(F) \xrightarrow{d, \varphi, \mathcal{V}} \mathbf{0}$ for every $F \in X_{\varphi}$.

Let now

$$
\bar{X}_{d, \varphi}=\left\{F \in X_{\varphi}: F_{n} \xrightarrow{d, \varphi, \mathcal{V}} F \text { for some } F_{n} \in \tilde{X}_{\varphi}^{\prime}, n \in \mathbf{N}\right\} .
$$

Remark 4. For every nonempty and compact $A \in R$ and every $\varepsilon>0$ there are $n \in \mathbf{N}$ and $a_{j} \in R, j=0,1, \ldots, n$ such that $\operatorname{dist}\left(A, \bigcup_{j=0}^{n}\left\{a_{j}\right\}\right)<\varepsilon$.

From Lemma 3 and Remark 4 we easily obtain the following:
Theorem 7. If the assumptions of Lemma 3 hold, then $\bar{X}_{d, \varphi}=X_{\varphi}$.

References

[1] Kasperski A., Modular approximation by a filtered family of sublinear operators, Commentationes Math. XXVII (1987), 109-114.
[2] _ , Modular approximation in \tilde{X}_{φ} by a filtered family of \tilde{X}_{φ}-linear operators, Functiones et Approximatio XX (1992), 183-187.
[3] , Modular approximation in \tilde{X}_{φ} by a filtered family of dist-sublinear operators and dist-convex operators, Mathematica Japonica 38 (1993), 119-125.
[4] , Approximation of elements of the spaces X_{φ}^{1} and X_{φ} by nonlinear singular kernels, Annales Math. Silesianae, Vol. 6, Katowice, 1992, pp. 21-29.
[5] , Notes on approximation in the Musielak-Orlicz space of multifunctions, Commentationes Math., in print.
[6] Musielak J., Modular approximation by a filtered family of linear operators, "Functional Analysis and Approximation, Proc. Conf. Oberwolfach, August 9-16, 1980", BirkhäuserVerlag, Basel 1981, pp. 99-110.
[7] —_ Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, Vol. 1034, Springer-Verlag, Berlin, 1983.

Institute of Mathematics, Silesian Technical University, Kaszubska 23, 44-100 Gliwice, Poland

