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A generic theorem in the theory of

cardinal invariants of topological spaces

A.V. Arhangel’skii

Abstract. Relative versions of many important theorems on cardinal invariants of topo-
logical spaces are formulated and proved on the basis of a general technical result, which
provides an algorithm for such proofs. New relative cardinal invariants are defined, and
open problems are discussed.

Keywords: Lindelöf space, Souslin number, spread, extent, pseudocharacter, relative
cardinal invariant

Classification: Primary 54A25; Secondary 54D20

§0. Introduction

In many topological arguments and constructions we have to deal with the
following question: how a given subset A of a topological space X is located
in X? Here we touch upon a systematic approach to this problem; though it is
very general, we do not pretend that it embraces all other possible approaches
to it. Besides, in this article we are mostly concerned with the case of cardinal
invariants.
The key idea can be briefly described as follows. With each topological prop-

erty P one can associate a relative version of it, formulated in terms of location
of Y in X in such a natural way, that when Y coincides with X , then this relative
property coincides with P . Our basic conjecture is that the great majority of the
results, involving “absolute” topological properties, can be transformed into “lo-
cation” results, that is, into theorems on relative topological properties, though
by no means we claim that it should be always easy to make such a transforma-
tion. Technically, there are no reasons to expect that. Nevertheless, the above
conjecture, the author believes, can serve as a guideline in the work on relative
properties.
Situations involving relative topological properties have been encountered in

topology many times. For example, some very delicate results on relative count-
able compactness were obtained by A. Grothendieck: he has proved, in particular,
that if X is a countably compact Tychonoff space, and Y is a subspace of the
space Cp(X) of all real-valued continuous functions onX in the topology of point-
wise convergence such that Y is countably compact in X then the closure of Y
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in Cp(X) is compact [16]. In [13] we find applications of the concepts of regu-
lar and normal location of a subspace in a space; such examples are numerous,
and should be considered in a special survey. The first systematic exposition of
relative topological properties along the lines adopted in this article was given
in [5].
Below we prove relative versions of many important theorems on cardinal in-

variants of topological spaces (see [1], [18], [10], [2], [3], [20], [8], [22], [4]). To
make the argument more compact and more transparent, we formulate a general
technical theorem, after which the proofs of many original results on cardinal
inequalities acquire almost algorithmic character—they turn into a rather easy
(though still not quite routine) verification of certain natural (mostly, technical)
conditions. It took some experimenting and time for the author to find the gen-
eral formulation even for the classical case, though the general idea behind the
technique of the proof is the same as in the original article [1] and in the later
versions of the proof given in [23], [25] and [19]. This idea may be informally
described in a few words: “push away” from closed sets, move into new closed
sets, disjoint from those which were defined at previous steps, do that for a long
enough time; then the structure you get will approximate the space well and the
desired result will be easily available. Maybe, for the first time this ”push away”
technique was introduced by M.E. Rudin (see a proof of Mischenko’s theorem on
metrizability of compact Hausdorff spaces with a point-countable base in [11]).
Following the inner logic of the approach, we introduce some new “absolute”

notions, and prove some new theorems which, possibly, are interesting also in the
absolute case; in particular, see Section 4, Theorems 5, 6 and 7. Many new open
problems are formulated.

§1. Some definitions and preliminary results

In what follows, Y is always a subspace ofX . All spaces considered are assumed
to be T1-spaces. Recall that Y is compact in X (Lindelöf in X), if from each open
covering of X one can choose a finite (a countable) subfamily covering Y (see [24],
[5]). For a cardinal number τ , we shall say that Y is initially τ-Lindelöf (initially
τ-compact) in X , if for each open covering γ of X of cardinality ≤ τ there is
a finite (a countable) subfamily of γ covering Y . Further, we denote by l(Y,X)
the smallest infinite cardinal number τ such that from each open covering of X
one can choose a subfamily η of cardinality ≤ τ covering Y . This cardinal number
obviously should be called the Lindelöf degree of Y in X .
We consider cardinal invariants of topological spaces (see [2], [20]); in partic-

ular, d(X) is the density of X , s(X) is the spread of X , l(X) is the Lindelöf
number of X , ψ(X) is the pseudocharacter of X , χ(X) is the character of X ,
|X | is the cardinality of X , c(X) is the Souslin number of X , and nw(X) is the
networkweight of X . We write hl(X) ≤ τ if l(Y ) ≤ τ for each subspace Y of X .
We define the Souslin number of Y in X (notation: c(Y,X)), as the smallest

cardinal number τ such that the cardinality of every disjoint family of non-empty
open subsets of X , each of which intersects Y , does not exceed τ .
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The following assertion is a reformulation of a result of Shapirovskij, which is
easy to prove (see [25]):

Lemma 1. If the spread ofX is countable, then for every family γ of open subsets
of X and for each subset P of ∪γ, one can find a countable discrete subset A of
P and a countable subfamily η of γ such that P ⊂ Ā ∪ (∪η).

Our next three results are relative versions of elementary results, which are
well known in the absolute case (see [13], [20], [19]).

Lemma 2. If c(Y,X) ≤ ω, then for every family γ of open subsets of X there is
a countable subfamily η of γ such that (∪γ) ∩ Y ⊂ ∪η.

Proof: Let E be the family of all open subsets V of X such that V ∩ Y is not
empty and there is U ∈ γ such that V ⊂ U . Take any maximal disjoint family
ξ of members of E . Then ξ is countable, since c(Y,X) ≤ ω. For each V ∈ ξ, fix
UV ∈ γ such that V ⊂ UV . Then η = {UV : V ∈ ξ} is what we want. Indeed, if
there are y ∈ Y \ ∪η and W ∈ γ such that y ∈ W , then we can find V ∈ E such
that y ∈ V ⊂ W and (∪η) ∩ V = ∅. Thus, ξ ∪ {V } is a disjoint subfamily of E
strictly larger than ξ, in contradiction with maximality of ξ. �

Let us define the extent e(Y,X) of Y in X as the smallest cardinal number τ
such that the cardinality of every closed in X discrete subspace of Y is not greater
than τ . We recall that, for a point p ∈ X (for a subset A of X) and a family γ
of subsets of X , st(p, γ) = ∪{U ∈ γ : p ∈ U} (respectively, st(A, γ) = ∪{U ∈ γ :
U ∩A 6= ∅}).

Lemma 3. If P ⊂ Y , and γ is a family of open subsets of X such that P̄ ⊂ ∪γ,
then there is a closed in X discrete subspace A of P such that P ⊂ st(A, γ).

Proof: Take the family of all subsets B of P such that no two distinct points of
B belong to the same element of γ. Let A be a maximal element of this family.
Clearly, P ⊂ st(A, γ). Assume that A is not closed in X , and fix x ∈ Ā\A. Then
x ∈ U , for some U ∈ γ. Since x is a limit point for A, there are at least two
distinct points of A in U—a contradiction. �

The next assertion is an obvious corollary of Lemma 3.

Lemma 4. If e(Y,X) ≤ ω, P ⊂ Y , and γ is a family of open subsets of X
covering P̄ , then there is a countable subset A of P such that P ⊂ st(A, γ).

If X is a set, x ∈ X , and < is a linear ordering on X , we put Xx = {y ∈ X :
y < x}. The sets Xx are called proper initial intervals of X,<. For a topological
space X , a linear ordering < on X is said to be left, if each proper initial interval
with respect to < is closed in X . A space X is called a left space, if there is a left
well ordering on X (see [2]). The following fact is well known [2]; for the sake of
completeness, we present a proof of it—short and elegant.
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Proposition 1. Every topological space X contains a dense left subspace.

Proof: Take any well ordering < on X . For each non-empty open set V let mV

be the first element of V with respect to <. Then the restriction of < to the
subspace Z consisting of all such points mV is a left well ordering on the space Z.
Therefore Z is a left space. It is clear that Z is dense in X . �

The next assertion and its proof are taken from [2].

Proposition 2. Every left space X of the countable spread is hereditarily Lin-
delöf.

Proof: Since every subspace of a left space is a left space, it is enough to prove
that X is Lindelöf. Assume the contrary, and fix a left well ordering < on X .
We may also assume that each proper initial interval of X is Lindelöf—otherwise
we replace X with the smallest proper interval of it which is not Lindelöf. Then,
clearly, X,< is not countably cofinal. Since < is left, it follows that for each
countable subset A of X , the closure of A is contained in a proper initial interval
of X,< and, therefore, is Lindelöf. It remains to apply the following proposition,
which is an easy corollary of Lemma 1. �

Proposition 3. If X is a space of the countable spread such that the closure of
every countable subset in X is Lindelöf, then X is Lindelöf.

This implies, of course, that every monolithic space of countable spread is
hereditarily Lindelöf. From Propositions 1 and 2 we immediately get the following
result of Shapirovskij [25]:

Proposition 4. Every space of the countable spread contains a dense hereditarily

Lindelöf subspace.

§2. Special notions and the main theorem

We fix the notation which will be used throughout the article.
Let X be a topological space and let Y be a subspace of X . Here and in what

follows Ā is the closure of A in X . The closure of a subset A of Y in Y is denoted
by clY (A).
Let τ be an infinite cardinal number, and let λ be a cardinal number not

greater than the cofinality of τ . Then µ = |{A ⊂ Z : |A| < λ}|, where Z is a set
of cardinality τ . We also treat τ as the smallest ordinal of cardinality τ .
Let L be a family of subsets of Y of cardinality not greater than µ such that

every subset of Y of cardinality not greater than µ is contained in an element
of L.
A τ-long increasing sequence in L is a transfinite sequence {Fα : α < τ} of

elements of L such that Fα ⊂ Fβ if α < β < τ .
A sensor is a pair (A,F), where A is a family of subsets of Y and F is a family

of families of subsets of X .
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We assume that with each sensor s = (A,F) a subset Θ(s) of X is associated,
called the Θ-closure of s.
A sensor s = (A,F) will be called small, if the cardinalities of A and F are

less than λ, the cardinalities of every γ in F and of every A ∈ A are also less than
λ, and Y \Θ(s) 6= ∅.
Let H be a subset of Y and γ a family of subsets of X . A sensor (A,F) is said

to be generated by the pair (H, γ), if A ⊂ H for each A ∈ A, and η ⊂ γ, for each
η ∈ F .
Let Q be the set of all families γ of subsets of X such that |γ| ≤ µ. If g is

a mapping of L into Q, ξ ⊂ L, then Ug(ξ) = ∪{g(F ) : F ∈ ξ}.
Let g be a mapping of L into Q, and let ξ be a subfamily of L. A sensor s will

be called good for ξ, if it is generated by the pair (∪ξ,Ug(ξ)) and ∪ξ ⊂ Θ(s).
A fast growing (with respect to (g,Θ )) long sequence in L is a τ -long increasing

sequence ξ in L such that no small sensor s is good for ξ. For the sake of brevity,
we call a fast growing long sequence in L a propeller in L.

Theorem 1. For each mapping g of L into Q, there is a fast growing long
sequence in L, that is, there is a propeller in L.

Proof: We construct a propeller in L by transfinite recursion. Let F0 be any
member of L; fix α < τ , and assume that Fβ ∈ L are already defined for each
β < α. Put Hα = ∪{Fβ : β < α} and Uα = ∪{g(Fβ) : β < α}. Clearly, |Hα| ≤ µ
and |Uα| ≤ µ.
For each small sensor s generated by (Hα,Uα), we fix a point m(s) ∈ Y \Θ(s).

Adding all these points to Hα we get a set Bα. Clearly, |Bα| ≤ µ. Therefore,
Fα ∈ L can be chosen so that Bα ⊂ Fα.
Let us show that the τ -long sequence ξ = {Fα : α < τ} is fast growing. Put

P = ∪ξ, and assume the contrary. Then there is a small sensor s = (A,F)
generated by the pair (P,Ug(ξ)) such that P ⊂ Θ(s). Since λ is less than the
cofinality of τ , there is α < τ such that A ⊂ Hα, for each A ∈ A, and η ⊂ Uα,
for each η in F . Then m(s) ∈ Fα ⊂ P ⊂ Θ(s)—a contradiction with the choice
of m(s). �

§3. Corollaries of the main theorem: relative versions

In this section we derive some new results from Theorem 1. These results
are relative versions of well known theorems on cardinal invariants of topological
spaces, they involve relative cardinal topological invariants. Since the topic of
relative topological properties is comparatively a new one, we recall some defini-
tions.
Since this fits well all classical cases and almost all cases considered by us, we

assume that L is the family of all subsets of Y of cardinality not greater than µ,
if nothing to the contrary is explicitly stated.
Let us also agree (again, if nothing to the contrary is specified), that for each

x ∈ X , Bx is a fixed base of X at x of the smallest possible cardinality, and Px

is a fixed family of open subsets of X of the smallest possible cardinality such
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that {x} = ∩Px. We follow the notation introduced in the previous section;
in addition, if a fast growing sequence ξ in L is chosen, we put P = P (ξ) =
∪ξ. Finally, if in an argument below we define the Θ-closure only for sensors of
a particular kind, that means that only such sensors are effectively involved in the
argument, and for all other sensors the Θ-closure can be taken to be the empty
set.

Corollary 1. LetX be a first countable Hausdorff space, and let Y be a subspace
of X which is dense in X and initially 2ω-Lindelöf in X . Then the cardinality of
X is not greater than 2ω, and Y is Lindelöf in X .

Proof: Put τ = ℵ1 = λ; then µ = 2
ω. For F ∈ L we put g(F ) = ∪{Bx : x ∈ F̄}.

Then |F̄ | ≤ 2ω and |g(F )| ≤ 2ω. Further, Θ((∅, {γ})) = ∪γ (and Θ(s) = ∅ for
all other sensors s, as it was agreed before). By Theorem 1, there is a propeller
ξ = {Fα : α < ℵ1} in L. The set Φ = ∪{F̄α : α < ℵ1} is closed in X , since X is
first countable. Let us show that Y ⊂ Φ. Assume the contrary, and fix a point
y ∈ Y \ Φ. Obviously, the family γ = {V ∈ Ug(ξ) : y /∈ V } covers Φ. Therefore,
there is a countable subfamily η of γ such that P ⊂ (Φ∩Y ) ⊂ ∪η ⊂ Y \{y}. Then
s = (∅, {η}) is a small sensor good for ξ—a contradiction. Therefore, Y ⊂ Φ and
|Y | ≤ |Φ| ≤ 2ω. Since X is first countable, Hausdorff and Ȳ = X , |X | ≤ 2ω. �

In particular, if X is a first countable Hausdorff space, and Y is a dense sub-
space of X which is compact in X and dense in X , then |X | ≤ 2ω. From Corol-
lary 1 we get the next result:

Corollary 2. If X is a first countable Hausdorff space, and Y is dense in X and
initially 2ω-compact in X , then Y is compact in X .

Compare the last result with an absolute theorem in [27].
A space X is Hausdorff on its subspace Y (or Y is Hausdorff in X) if every

two distinct points of Y can be separated by disjoint neighbourhoods in X .

Corollary 3. If X is Hausdorff on Y , the Souslin number of Y in X is countable,
and X is first countable at all points of Y , then |Y | ≤ 2ω.

Proof: We put Θ((∅,F)) = ∪{γ̄ : γ ∈ F}, τ = ℵ1 = λ, µ = 2ω, and g(F ) =
∪{Bx : x ∈ F}, for F ∈ L. By Theorem 1, there is a propeller ξ in L. Let us
show that Y = P (ξ). Assume the contrary, and fix y ∈ Y \ P . For V ∈ By,
let PV = P \ V̄ and γV = {U ∈ Ug(ξ) : U ∩ V̄ = ∅}. Then γV covers PV , and
∪{PV : V ∈ By} = P . Since c(Y,X) ≤ ω, there is a countable subfamily ηV of

γV such that PV ⊂ ∪(ηV ), by Lemma 2. Since (∪ηV ) ∩ V = ∅, y is not in ∪ηV .
We also have:

P = ∪{PV : V ∈ By} ⊂ ∪{∪ηV : V ∈ By}.

Therefore, (∅, {ηV : V ∈ By}) is a small sensor good for ξ—a contradiction. It
follows that P = Y and |Y | = |P | ≤ 2ω. �

For a regular X , we get a related result of independent interest by a slightly
simpler argument. Recall that Y is said to be regular in X , if for each closed
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subset B of X and each point y ∈ Y \ B, there is an open neighbourhood U
of y in X such that Ū ∩ B = ∅. Further, we write πχ(y,X) ≤ µ for y ∈ X if
there is a family Ey of non-empty open subsets of X such that |Ey| ≤ µ and every
neighbourhood V of y in X contains some W ∈ Ey; if this is the case, we fix
such Ey .

Corollary 4. If Y is regular in X , the Souslin number of X is countable, and
πχ(y,X) ≤ 2ω, for each y ∈ Y , then w(Y ) ≤ 2ω.

Proof: We put Θ(∅, {γ}) = ∪γ, τ = ℵ1 = λ, µ = 2
ω and g(F ) = ∪{Ex : x ∈ F}.

Take a propeller ξ in L. We claim that P = ∪ξ is dense in Y . Assume the
contrary, and fix y ∈ Y \ P̄ . Fix also an open neighbourhood V of y in X such
that V̄ ∩ P = ∅. Let γV = {U ∈ Ug(ξ) : V̄ ∩ U = ∅}. Since c(X) ≤ ω, there is
a countable subfamily ηV of γV such that ∪ηV = ∪γV . Then P ⊂ ∪ηV , and y is
not in ∪ηV ; therefore, s = (∅, {ηV }) is a small sensor good for ξ—a contradiction.
Thus, P is dense in Y .
Put E = ∪{Ey : y ∈ P}. Then |E| ≤ 2ω. Let S be the family of all disjoint

families of elements of E . Since c(X) ≤ 2ω, each η ∈ E is countable, therefore,
|S| ≤ 2ω. For each η ∈ S let Vη be the interior in the space Y of the intersection
of Y with the closure in X of the set ∪η. Take any open subset W of X , and let
η be a maximal disjoint subfamily of the family {U ∈ E : U ⊂W}. Then |η| ≤ ω,
since c(X) ≤ ω. From the definition of E it is easy to see that Y ∩W ⊂ Vη. Since
Y is regular in X , it follows that {Vη : η ∈ S} is a base of the space Y . Therefore,
w(Y ) ≤ |S| ≤ 2ω. �

Compare Corollary 4 with an absolute result in [26]; see also [20]. There is
another version of Corollary 4. To formulate it, we have to introduce a relative
version of π-character. We shall write πχ(y, Y,X) ≤ µ for y ∈ Y , if there is
a family Ey of open subsets of X such that |Ey| ≤ µ, every neighbourhood of y in
X contains some W ∈ Ey, and U ∩ Y is not empty for each U ∈ Ey; if this is the
case, we fix such Ey for each y ∈ Y , and call it a π-base of X at y with respect
to Y . The infinite cardinal number πχ(y, Y,X), defined in an obvious way, is
called the π-character of X at y with respect to Y . In these notation, we have:

Corollary 5. If Y is regular in X , the Souslin number of Y in X is countable,
and πχ(y, Y,X) ≤ 2ω, for each y ∈ Y , then w(Y ) ≤ 2ω.

Proof: We take the same Θ, τ , λ, µ, g, ξ, P , y, V and γV as in the proof of
Corollary 4. Since c(Y,X) ≤ ω, there is a countable subfamily ηV of γV such that
Y ∩∪γV ⊂ ∪ηV ⊂ ∪γV , by Lemma 2. Since P ⊂ Y , it follows that P ⊂ ∪ηV . Also
y is not in ∪ηV . Thus, s = (∅, {ηV }) is a small sensor good for ξ—a contradiction.
Therefore, P is dense in Y . The rest of the proof is the same as in the proof of
Corollary 4. �

Let us say that Y is quasi-τ-Lindelöf inX if for every subset A of Y closed in Y ,
and for every family γ of open subsets of X such that A ⊂ ∪γ and |γ| ≤ τ , there
is a countable subfamily η of γ such that A ⊂ ∪η. We say that Y is quasi-Lindelöf
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in X , if the above condition holds without any restriction on the cardinality of
γ. Now we can unify Corollaries 1 and 3 under a slightly stronger assumption on
separation properties of Y in X as follows:

Corollary 6. If Y is regular in X and X is first countable at all points of Y ,
and Y is quasi 2ω-Lindelöf in X , then |Y | ≤ 2ω.

Proof: We put Θ((∅, {γ})) = ∪γ, τ = ℵ1 = λ, µ = 2ω, and g(F ) = ∪{By : y ∈
clY (F )}. There is a propeller ξ = {Fα : α < ℵ1} in L. Let us show that Y ⊂ P̄ ,
where P = ∪ξ. Assume the contrary, and fix y ∈ Y ⊂ P̄ . Since Y is regular
in X , we can also fix a neighbourhood W of y in X such that W̄ ∩ P̄ = ∅. Put
γ = {U ∈ Ug(ξ) : U ∩W = ∅}. Since Y is first countable, the closure of P in Y
is the set ∪{clY (Fα) : α < ℵ1}. Therefore, clY (P ) ⊂ ∪γ. Since |γ| ≤ 2ω, there
is a countable subfamily η of γ such that P ⊂ ∪η. From W ∩ (∪η) = ∅ it follows
that W ∩ (∪η) = ∅. Therefore, y is not in ∪η. Hence, s = (∅, {η}) is a small
sensor good for ξ,—a contradiction. It follows that Y ⊂ P̄ . Since |P | ≤ 2ω, and
Y is first countable, we have: |Y | ≤ 2ω. �

The next result easily follows from Corollary 6.

Corollary 7. If X is a sequential Hausdorff space first countable on Y , and Y
is regular in X , dense in X , and quasi 2ω-Lindelöf in X , then |X | ≤ 2ω.

If X itself is first countable, we can slightly weaken another assumption in
Corollary 7. To do that, we introduce another relative invariant. Let us say that
Y is 2ω-slim in X , if for each subset A of Y and every family γ of open sets in X
such that Ā ⊂ ∪γ and |γ| ≤ 2ω, there is a countable subfamily η of γ such that
A ⊂ ∪η.

Corollary 8. If X is a first countable Hausdorff space, and Y is regular in X ,
dense in X , and 2ω-slim in X , then |X | ≤ 2ω.

Proof: The proof is virtually the same as the proof of Corollary 6; the only
essential difference is in the definition of the correspondence g. We put: g(F ) =
∪{Bx : x ∈ F̄}, for each F ∈ L. We also observe that if ξ is a propeller in L, then
the set ∪{F̄ : F ∈ ξ} is closed in X , since X is first countable. This suffices. �

For a normal space X , Corollary 8 comes very close to a relative version of
a result of M. Bell, D. Grant and G. Woods in [8]. We say that Y is weakly 2ω-
Lindelöf in X , if for every open covering γ of X such that |γ| ≤ 2ω, one can find

a countable subfamily η of γ such that Y ⊂ (∪η). A subset A of X is said to be
concentrated on Y , if A ⊂ A ∩ Y . We shall say that X is strongly normal on Y , if
for every closed subset F of X concentrated on Y and every open neighbourhood
U of F in X there is an open neighbourhood V of F in X such that V̄ ⊂ U .

Corollary 9. If X is a first countable Hausdorff space strongly normal on Y ,
and Y is dense in X and weakly 2ω-Lindelöf in X , then |X | ≤ 2ω.

Proof: Since X is strongly normal on Y and Y is weakly 2ω-Lindelöf in X , Y
is 2ω-slim in X and Y is regular in X . It remains to apply Corollary 8. �
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Corollary 10 [18]. If all points of X are Gδ’s in X , and the spread of X does
not exceed ω, then |X | ≤ 2ω.

Proof: Put Y = X and Θ((A,F)) = (∪{∪γ : γ ∈ F}) ∪ (∪{Ā : A ∈ A}). Let
τ = ℵ1 = λ. Then µ = 2

ω. Let g(F ) = ∪{Px : x ∈ F}, for F ∈ L. By Theorem 1,
we can fix a propeller ξ in L. Let us show that X = P .
Assume the contrary, and fix a point x in X such that x ∈ X \P . For V ∈ Px

we put PV = P \V and γV = ∪{{U ∈ Py : x /∈ U} : y ∈ PV }. Clearly, PV ⊂ ∪γV .
By Lemma 1, there are a countable discrete subspace AV of PV and a countable
subfamily ηV of γV such that PV ⊂ (∪ηV )∪ ĀV . Since AV ⊂ PV , x /∈ ĀV . Thus,
x is not in the Θ-closure of the sensor s = ({AV : V ∈ Px}, {ηV : V ∈ Px}), while
P ⊂ Θ(s). We see that s is a small sensor good for ξ—a contradiction. Therefore,
X = P and |X | = |P | ≤ 2ω. �

For a subset A of X we put: [A]ω = ∪{B̄ : B ⊂ A, |B| ≤ ω}. We say that
the lower ω-density dω(X) of X is not greater than µ, if there is a subset A of X
such that |A| ≤ µ and [A]ω = X .

Corollary 11 [26]. If s(X) ≤ ω and ψ(X) ≤ 2ω, then dω(X) ≤ 2ω.

Proof: We put Y = X , τ = ℵ1 = λ, and Θ(({A}, {γ})) = (∪γ) ∪ Ā. Let
g(F ) = ∪{Px : x ∈ F} for F ∈ L. By Theorem 1, we can fix a propeller ξ in
L. For P = ∪ξ we have: |P | ≤ 2ω. Let us check that [P ]ω = X . Assume the
contrary, and fix x ∈ X \ [P ]ω . The family γ = {V ∈ Ug(ξ) : x /∈ V } covers P .
By Lemma 1, since the spread of X is countable, there are a countable subset A
of P and a countable subfamily η of γ such that (∪η) ∪ Ā contains P . That is,
P is contained in the Θ-closure Θ(s) of the sensor s = ({A}, {η}). On the other
hand, x is not in Θ(s), since x is not in ∪η and x is not in Ā. Thus, s is small
and good for ξ—a contradiction. Therefore, [P ]ω = X and dω(X) ≤ |P | ≤ 2ω.

�

Corollary 12 [26]. If X is a Hausdorff space of countable spread, then dω(X) ≤
2ω .

Proof: It follows easily from Lemma 1 that the pseudocharacter of X does not
exceed 2ω (see [26], [20]). It remains to apply Corollary 11. �

Corollary 13. Let X be a regular space of countable tightness, and let Y be
a subspace of X which is initially ω1-compact in X and satisfies the condition:
hl(Y ) ≤ ω1. Then d(Y ) ≤ ℵ1.

Proof: We put Θ((∅, {γ})) = ∪γ, τ = ℵ1 and λ = ω. Then µ = ℵ1, and L
is the family of all subsets of Y of cardinality not greater than ℵ1. For F ∈ L
we fix a family g(F ) of open subsets of X such that |g(F )| ≤ ℵ1, F̄ ⊂ ∩g(F ),
and Y ∩ F̄ = (∩g(F )) ∩ Y ; since X is regular and l(Y \ F̄ ) ≤ ℵ1, we can do
it. By Theorem 1, there is a propeller ξ in L. Let us show that P = P (ξ) is
dense in Y . Assume the contrary. The set Φ = ∪{F̄α : α < ℵ1} is closed in X ,
since t(X) ≤ ω; also Φ ⊂ P̄ . Therefore, there is a point y ∈ Y \ Φ. The family
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γ = {V ∈ Ug(ξ) : y /∈ V } covers Φ. Since Y is initially ω1-compact in X , there is
a finite subfamily η of γ such that Φ∩Y ⊂ ∪η. Clearly, Φ∩Y = P . Also y /∈ ∪η.
Thus, s = (∅, {η}) is a small sensor good for ξ—a contradiction. Therefore P is
dense in Y , and d(Y ) ≤ |P | ≤ ℵ1. �

Corollary 14. If X is an initially ω1-compact regular space of countable tight-
ness, and the spread of X is not greater than ℵ1, then the hereditary density of
X also does not exceed ℵ1.

Proof: Since the tightness of X is countable, it is enough to show that the
density of any closed subspace Z of X is not greater than ℵ1. Now it is clear that
we only have to show that d(X) ≤ ℵ1. By the ℵ1-version of Proposition 4, there is
a dense subspace Y in X such that hl(Y ) ≤ ℵ1. Now we can apply Corollary 13.

�

Corollary 15. If X is an initially ω1-compact regular space of countable spread,
then d(X) ≤ ℵ1.

Proof: The tightness of any initially ω1-compact regular space of countable
spread is countable [2]. It remains to apply Corollary 14. �

We say that a subset A of X is a Gτ -subset in X with respect to a subspace Y
of X , if there is a family γ of open subsets of X such that |γ| ≤ τ , A ⊂ ∩γ and
A ∩ Y = (∩γ) ∩ Y . A space X is said to be weakly τ-perfect on Y , if for every
infinite subset A of Y there is a subset B of Y such that |B| = |A|, A ⊂ B, and
the closure of A in X is a Gτ -set in X with respect to Y . If the above condition
holds with B = A, we say that X is τ-perfect on Y . Naturally, ‘weakly perfect’
means ‘weakly ω-perfect’, and ‘perfect’ means ‘ω-perfect’.

Corollary 16. Let X be a space of countable tightness, and let Y be a subspace
of X which is weakly ω1-perfect in X and initially ω1-compact in X . Then the
density of Y is not greater than ω1.

Proof: Again, Θ((∅, {γ})) = ∪γ, τ = ℵ1 and λ = ℵ0. Then µ = ℵ1. Let L be the
family of all subsets F of Y such that |F | ≤ ℵ1 and F̄ is aGτ -subset ofX . For each
F ∈ L fix a family g(F ) of open subsets of X such that |g(F )| ≤ ℵ1, F̄ ⊂ ∩g(F )
and Y ∩ F̄ = ∩g(F ) ∩ Y . By Theorem 1, there is a propeller ξ = {Fα : α < ℵ1}
in L. It suffices to show that P = ∪ξ is dense in Y .
Assume the contrary, and fix y ∈ Y \ P̄ . Then Φ = ∪{F̄α : α < τ} is closed

in X , since t(X) ≤ ω. Clearly, there is γ ⊂ Ug(ξ) such that Φ ⊂ ∪γ and y /∈ ∪γ.
Then |γ| ≤ ω1, and there is a countable subfamily η of γ covering P . Since y /∈ ∪η,
s = (∅, {η}) is a small sensor good for ξ—a contradiction. �

A pseudobase of a space X with respect to a subspace Y ⊂ X is an open
covering P of X such that for each x ∈ X , (∩{U ∈ P : x ∈ U}) ∩ Y ⊂ {x}.

Corollary 17. f Y is countably compact in X and dense in X , and there is a
pseudobase P of X with respect to Y which is point-countable at all points of Y ,
then P is countable.
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Proof: Put τ = ω = λ and, again, let Θ((∅, {γ})) = ∪γ. Then µ = ω, and L
is the family of all countable subsets of Y . Let g(F ) = {U ∈ P : U ∩ F 6= ∅},
for F ∈ L. Then |g(F )| ≤ ω, since P is point-countable at all points of Y . By
Theorem 1, there is a propeller ξ = {Fn : n < ω} in L.
Then P = ∪ξ is countable, and it suffices to show that P is dense in Y . Assume

the contrary, and fix y ∈ Y \ P̄ . The family Ug(ξ) = {U ∈ P : U ∩ P̄ 6= ∅} contains
a subfamily γ such that y /∈ ∪γ and P̄ ⊂ ∪γ. Since γ is countable, there is a finite
subfamily η of γ such that P ⊂ ∪η. Then s = (∅, {η}) is a small sensor good for
ξ—a contradiction. �

We say that the diagonal number ∆(Y,X) of Y in X is countable, if there is
a countable sequence ζ = {Gi : i ∈ ω} of open covers of X such that if p and q are
any two distinct points in Y , then for some n ∈ ω, q is not in st(p,Gn). In this
case we write: ∆(Y,X) ≤ ω, and say that ζ separates Y in X . The definition of
∆(Y,X) in the general case is now obvious.

Corollary 18. If e(Y,X) ≤ ω and ∆(Y,X) ≤ ω, then |Y | ≤ 2ω.

Proof: Let us fix a sequence ζ = {Gi : i ∈ ω} of open coverings of X , separating
Y in X . Put τ = ℵ1 = λ, µ = 2ω, and let L = {F ⊂ Y : |Y | ≤ 2ω}. For
an indexed sensor s = ({Ai : i ∈ ω}, ∅) we define the Θ-closure Θ(s) as follows:
Θ(s) = ∪{st(Ai,Gi) : i ∈ ω}. The mapping g is trivial: g(F ) is empty, for each
F ∈ L. Now take a propeller ξ in L. Let us show that P = ∪ξ = Y . Assume
the contrary, and fix y ∈ Y \ P . Put Pi = P \ st(y,Gi), for i ∈ ω. Since ζ is
separating Y in X , ∪{Pi : i ∈ ω} = P . By Lemma 4, there is a countable subset
Ai of Pi such that Pi ⊂ st(Ai,Gi). Since y /∈ st(Pi,Gi), y /∈ st(Ai,Gi). Therefore,
the Θ-closure of the sensor s = ({Ai : i ∈ ω}, ∅) contains P and does not contain
y. Thus, s is a small sensor good for ξ—a contradiction. �

Corollary 19. If the diagonal of X is a Gδ in X × X , and e(Y,X) ≤ ω, then
|Y | ≤ 2ω.

Generalizing R. Hodel’s definition [19], let us denote by psw(Y,X) the smallest
cardinal number τ such that there is a pseudobase P of X with respect to Y such
that each point of Y is in at most τ elements of P .

Corollary 20. If psw(Y,X) ≤ ω, and e(Y,X) ≤ ω, then |Y | ≤ 2ω.

Proof: We put τ = ℵ1 = λ, µ = 2
ω. Let us fix a pseudobase P of X with respect

to Y , which is point-countable at each point of Y . For F ∈ L, let g(F ) = {U ∈
P : U ∩ F 6= ∅}. Then |g(F )| ≤ 2ω. We put Θ((∅, {γ})) = ∪γ. By Theorem 1,
there is a propeller ξ in L. Let us show that P = ∪ξ = Y . Assume the contrary,
and fix y ∈ Y \ P . Fix also V ∈ P such that y ∈ V , and put PV = P \ V . The
family γ = {U ∈ P : U ∩ PV 6= ∅, y /∈ U} covers the closure of PV in X . Since
e(Y,X) ≤ ω, and y is contained only in countably many elements of P , there is
a countable subset A of P such that P ⊂ st(A, γ). Since the family P is point
countable at points of Y , the family η = {U ∈ γ : U ∩ A 6= ∅} is countable.
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Clearly, η ⊂ γ ⊂ Ug(ξ), P ⊂ ∪η, and y is not in ∪η. Therefore, s = (∅, {η}) is
a small sensor good for ξ—a contradiction. �

§4. Some observations, examples, and problems

1. For Y to be Lindelöf in X , it is sufficient to have an intermediate Lindelöf
subspace Z, lying in between Y and X . A natural question arises: is that the
only reason for Y to be Lindelöf in X? In other words, is it true that if Y is
Lindelöf in X then there is a subspace Z of X such that Y ⊂ Z ⊂ X and Z
is Lindelöf (in itself)? If that were the case, then Corollary 1 would be reduced
to its well known absolute version. Unfortunately (or fortunately for the theory
of relative properties) this does not happen: A. Dow and J. Vermeer [12] have
constructed a counterexample in the class of Tychonoff spaces. It is much easier to
find such a counterexample in the class of Hausdorff spaces, which should satisfy
us since the classical result holds for Hausdorff spaces.

Example 1. Let X = A ∪ I be the Alexandroff double of the closed unit interval
I, where A is the discrete copy of I (see [13]). Now take the weakest topology on
X which contains the topology of the space X and turns I into a closed discrete
subspace; let X1 be the resulting space. Then X1 is Hausdorff, and A is compact
in X1. Let us show that no subspace Z of X1 such that A ⊂ Z ⊂ X1 is Lindelöf
in itself. Assume the contrary. Then the set B = Z ∩ I, being closed and discrete
in Z, must be countable. There is an open subset U of X (which is automatically
open in X1) such that B ⊂ U and the set I \ U is uncountable. Then the copy
in A of the set I \ U is an uncountable closed discrete subspace of the space Z—
a contradiction. In fact, we have shown that the extent of Z is uncountable for
any Z such that A ⊂ Z ⊂ X1.

Problem 1. Find a “naive” example of a regular space X , in which all points are
Gδ’s, and of its subspace Y such that Y is Lindelöf in X and the cardinality of
Y is greater than 2ω.

2. Observe that for relative compactness the situation in the class of regular
spaces is trivial, and one indeed can reduce some relative results to classical ones:
if X is regular, and Y is compact in X , then the closure of Y in X is compact
[24].

3. It follows from Corollary 10 that the cardinality of any hereditarily Lindelöf
Hausdorff space is not greater than 2ω. Is there a nice relative version of this
result? Let us say that Y is hereditarily Lindelöf in X (hereditarily compact in
X), if from every family γ of open subsets of X such that X \ Y ⊂ ∪γ one can
choose a countable (respectively, a finite) subfamily η such that (∪γ) ∩ Y ⊂ ∪η.

Proposition 5. If Y is Lindelöf in X , then the extent of Y in X is countable,
that is, every discrete subspace Z of Y closed in X is countable.

Proof: There is a family ξ of open subsets of X such that each member of ξ
contains not more than one point of Z and Z is covered by ξ. Then γ = ξ∪{X\Z}
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is an open covering of X . A countable subfamily of γ, which covers Y , witnesses
that Z is countable. �

Let us say that X is strongly Hausdorff on Y , if for every two distinct points
of X at least one of which belongs to Y there are open disjoint neighbourhoods
of these points in X .

Proposition 6. If X is strongly Hausdorff on Y , and Y is hereditarily Lindelöf
in X , then ψ(Y ) ≤ ω.

Proof: Fix y ∈ Y , and for each x ∈ X \ {y} fix an open subset Ux of X such
that x ∈ Ux and y is not in Ux. Then the family γ = {Ux : x ∈ X \ {y}}
covers X \ {y}. Therefore a countable subfamily η of γ covers Y \ {y}, and
{y} = ∩{Y \ W̄ :W ∈ η}. Thus, ψ(Y ) ≤ ω. �

Let us say that X is weakly regular on Y , if for each x ∈ X and every subset
P of Y closed in X such that x is not in P , there is a neighbourhood U of x in
X such that Ū ∩ P = ∅. Clearly, if X is weakly regular on Y , then X is strongly
Hausdorff on Y . We also say that Y is weakly perfect in X if every closed in X
subset of Y is a Gδ in X .

Proposition 7. If X is weakly regular on Y , and Y is hereditarily Lindelöf in
X , then Y is weakly perfect in X .

Proof: The proof is virtually the same as that of Proposition 6. �

Example 2. It is not true that if Y is hereditarily Lindelöf in a regular space X ,
then |Y | ≤ 2ω, or that Y is separable. Indeed, every discrete space is hereditarily
compact in every compactification of it.

A natural way to remedy the situation encountered in the case of relative
hereditary Lindelöfness is to turn to the concept of relative cardinality of a set in
a topological space. Let us say that the cardinality of Y in X is not greater than
τ , if the cardinality of every closed in X subset of Y does not exceed τ . In this
case we write: |YX | ≤ τ . We have:

Proposition 8. If Y is hereditarily Lindelöf in a Hausdorff spaceX , then |YX | ≤
2ω.

Proof: It is easy to see that every closed in X subspace Z of Y is a hereditarily
Lindelöf space. Therefore |Z| ≤ 2ω. �

Of course, Proposition 8 should be considered as a trivial relativization of the
classical result on the cardinality of hereditarily Lindelöf Hausdorff spaces, since
it reduces to it so easily. But now we can better appreciate the results in Section
3—Corollaries 1, 2, 3, 6, 7, and others, since the conclusion in all these assertions
contains the information on the cardinality of Y , and not just on the relative
cardinality of Y . Thus, the relative results in section 3 contain more information
than the corresponding classical results, they are indeed stronger than the latter
ones.
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4. Actually, one can define relative versions of topological properties in a rather
trivial and uniform way, which guarantees that almost all classical theorems of
general topology remain true in the relative case. All we have to do is to follow
the idea in the definition of the relative cardinality. Let P be a closed hereditary
topological property. We will say that Y has P in X from inside, if every closed
in X subspace of Y has the property P (in itself). Probably, this is the weakest
among all natural definitions of the relative P . Clearly, all theorems of General
Topology, involving only closed hereditary properties, remain true in the relative
case as well, provided, of course, we use only the ‘inside’ versions of relative
properties. It is also clear that we must not use the ‘inside’ definition in the case
of connectedness or in the case of the Souslin number. A question arises: can we
get a non-trivial result, containing an information on the cardinality of Y itself
(and not just on the relative cardinality of Y ), if we accept this weakest definition
of relative Lindelöfness, that is, if we assume that Y is Lindelöf in X from inside?
Can we strengthen Corollary 1 in this way? The answer is ‘no’.

Example 3. For any uncountable regular cardinal number τ there is a countably
compact first countable Tychonoff space X such that the set Y of all isolated
points of X is dense in X and has cardinality τ . Indeed, we get such an X when
we remove from the ordinal space τ all limit ordinals which are not countably
cofinal. Now, Y is obviously compact in X from inside: a discrete subspace of
a countably compact space X is always compact in X from inside.

In any case, the ‘inside approach’ provides us with natural and interesting
relative cardinal invariants. For example, we say that Y is compact in X (Lindelöf
in X, normal in X) from inside, if every closed subspace of X contained in Y is
compact (respectively, is Lindelöf, is normal). The cardinality |Y |X of Y in X is
sup{|A| : A ⊂ Y,A = Ā}—the smallest cardinal number τ such that |A| ≤ τ , for
each closed in X subset A of Y .
Here is a natural general question concerning the ‘inside’ version of relative

properties.

Problem 2. Let P and Q be two topological properties. When a topological space
Y can be embedded into a topological space Z with the property Q in such a way
that Y has P in Z from inside?

5. Assume that Y is not closed in X . Then the family F(Y,X) of all closed in
X subsets of Y satisfies all axioms for a family of all closed sets in a topological
space, save one: if Y is not closed in X , then Y does not belong to this family.
Adding Y to F(Y,X), we arrive at an interesting topological space YX : every two
non-empty open subsets of YX have a non-empty intersection, while all proper
closed subspaces might enjoy nice separation axioms—the same, as in the original
space X .

Problem 3. Study F(Y,X) in the Vietoris topology and in the other natural
topologies.

6. It is very natural to apply relative topological properties to the theory of
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extensions of topological spaces. Here are some typical general and concrete
questions in this direction.

Problem 4. Let Q be a class of spaces (a topological property), and let P be
a relative topological property. When for every Y in Q one can find X in Q such
that Y is a subspace of X and Y has the property P in X?

For example, what happens if Q is a class of all first countable (Hausdorff,
regular, Tychonoff) spaces, and P is the (relative) normality? Or if P is para-
compactness? Or Lindelöfness?

Problem 5. Is it possible to embed every Tychonoff first countable space into a
normal first countable space?

Problem 6. When a Tychonoff perfect space Y can be embedded into a compact
Hausdorff spaceX such thatX is perfect on Y ? Is this always possible for a perfect
Tychonoff space Y such that each compact subspace of Y has the countable
character in Y ?

Here are some interpretations of the relative theorems of the previous section
in the subspace-extension spirit.

Theorem 2. Let Y be a Hausdorff first countable space such that |Y | > 2ω.
Then there is no Hausdorff first countable space X such that Y is a subspace of
X and Y is 2ω-Lindelöf in X .

Theorem 3. If X is Hausdorff and c(X) ≤ ω, then the cardinality of the set of
all points of X at which the space satisfies the first axiom of countability, has the
cardinality not greater than 2ω.

Observe that Theorem 3, which follows from Corollary 3, is a result on “abso-
lute” topological properties, which cannot be obtained from the corresponding to
Corollary 3 absolute assertion. The same holds true for the next theorem, which
improves Theorem 3 for regular spaces. It follows from Corollary 4.

Theorem 4. If X is regular and c(X) ≤ ω, then the subspace of X consisting
of all points of X at which the π-character of X is countable, has the weight not
greater than 2ω.

7. Proceeding along the lines of this article, it is natural to consider the following
notion. Let us say that X is a discretely Lindelöf space, if every discrete subspace
of X is Lindelöf in X . Now an invariant dl(X) is introduced in a natural way:
dl(X) is the smallest cardinal number τ such that if A is any discrete subspace
of X , and γ is any open covering of X , then there is a subfamily η of γ such
that A ⊂ ∪η and |η| ≤ τ . We might call dl(X) the discrete Lindelöf degree of X .
Clearly, dl(X) ≤ l(X). The next assertion is also obvious.

Proposition 9. For every space X , e(X) ≤ dl(X) ≤ s(X).

Thus, if every discrete subspace of X is countable, then X is discretely Lindelöf
in X , and if X is discretely Lindelöf in X , then every closed discrete subspace of
X is countable. On the other hand, we have the next example:
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Example 4. Let X be the space of all countable ordinals. Then X is countably
compact, and therefore e(X) = ω, while the subspace A of X consisting of all
isolated ordinals is discrete and is not Lindelöf on X .

Results exhibited in this paper suggest the next question:

Problem 7. Is there in ZFC an example of a regular space X such that dl(X) ≤ ω,
ψ(X) ≤ ω, and 2ω < |X |?

In connection with the last question we mention the next simple result.

Proposition 10. If X is perfect and discretely Lindelöf, then s(X) ≤ ω and
|X | ≤ 2ω.

Proof: Indeed, e(X) ≤ dl(X) ≤ ω, and since X is perfect, s(X) ≤ ω and
ψ(X) ≤ ω. It remains to apply Corollary 11. �

At the moment the author does not know the answer to the following questions
(which might turn out not to be too difficult, after all):

Problem 8. Is there in ZFC a regular discretely Lindelöf space which is not
Lindelöf?

Problem 9. Is there in ZFC a Tychonoff discretely Lindelöf space which is not a
Hewitt-Nachbin space?

Problem 10. Is there in ZFC a regular countably compact discretely Lindelöf
space which is not compact?

Observe, that one easily gets consistent examples to Problems 8, 9, and 10 with
the help of Fedorchuk’s consistent example of a hereditarily separable compact
Hausdorff space containing no non-trivial convergent sequences (see [14]).
Though the notion of discrete Lindelöfness is already based on the concept

of relative Lindelöfness, it can also be relativized. Clearly, one should call Y
discretely Lindelöf in X , if every discrete subspace of Y is Lindelöf in X . Now we
can blend together Problems 1 and 7 in the following way:

Problem 11. Find in ZFC an example of a regular space X with a subspace Y
such that all points of X are Gδ ’s in X , Y is discretely Lindelöf in X , and the
cardinality of Y is greater than 2ω.

8. The situation is much more transparent with discrete compactness, defined
similarly to discrete Lindelöfness: a spaceX is discretely compact, if every discrete
subspace of X is compact in X . If the closure of every discrete subspace of X
is compact, we say that X is strongly discretely compact. Obviously, we can
relativize both notions. In particular, Y is discretely compact in X , if every
discrete subspace of Y is compact in X .

Theorem 5. If X is regular and discretely compact, then X is compact.

Proof: Since X is regular, the closure in X of every subspace of X which is
compact in X , is compact (see [24]). Therefore, the closure in X of every discrete
subspace of X is compact, that is, X is strongly discretely compact. It remains to
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prove the next assertion, in which separation properties of X are not important.
�

Proposition 11. If X is strongly discretely compact, then X is compact.

Proof: Assume the contrary, and let γ = {Uα : α < τ} be an open covering of
X of the smallest possible cardinality τ , from which one can not choose a finite
subcovering of X . Fix d /∈ X and x0 ∈ U0. For α < τ we put γα = {Uβ : β < α}
and Gα = ∪γα. Let us assume that for each β < α a point xβ ∈ X ∪ {d} is
already defined. To define xα, we consider the set Vα = Uα \ (Gα ∪ Fα), where

Fα = {xβ : β < α, xβ 6= d}. If Vα = ∅, we put xα = d; if Vα is not empty, then xα

is any point of Vα. Let B = {β : β < τ, xβ 6= d}. The subspace A = {xβ : β ∈ B}
is discrete; indeed, for each β ∈ B, Wβ = Uβ \ Fβ is an open set containing
only one point of A—the point xβ . Therefore, there is a finite subfamily ξ ⊂ γ

such that Ā ⊂ ∪ξ. Since τ is infinite, there is α < τ such that ξ ⊂ γα. Then
Ā ⊂ ∪γα = Gα.
Take any β > α. Then xβ /∈ Gα and, hence, xβ /∈ A. It follows that xβ = d, for

each β > α, which implies that X = Gα ∪ Fα. Since, Fα ⊂ Ā ⊂ Gα, we conclude
that X = Gα = ∪γα. Clearly, |γα| < τ . Therefore, according to the choice of τ ,
there is a finite subcovering η ⊂ γα ⊂ γ—a contradiction. �

Corollary 21. If X is a Hausdorff space of point countable type, and x is a
non-isolated point of X , then there is a discrete subspace A of X such that x is
a limit point for A.

Proof: Since X is of point countable type, there is a compact subspace F ⊂ X
such that x ∈ F and the character of the set F in X is countable [13]. If x is
isolated in the space F , then there is a countable base of X at x, and hence,
there is a sequence in X \ {x}, converging to x. It remains to consider the case,
when x is not isolated in F . Let us show that then there is a discrete subspace
A of F such that x is a limit point for A. Assume the contrary. Then the space
Y = F \ {x} is strongly discretely compact and not compact—in contradiction
with Proposition 11. �

Example 5. Take a non-empty Tychonoff space Z without isolated points such
that each discrete subspace of Z is closed in Z. For example, any non-empty
nodec space or submaximal space without isolated points would do (see [28]).
Fix a ∈ Z, and let X = βZ \ {a}, Y = Z \ {a}, where βZ is the Stone-Čech
compactification of Z. Then X is a Tychonoff non-compact space, and Y is dense
in X . Therefore, Y is not compact in X [24]. The closure in X of any discrete
subspace B of Y is compact, since the closure of B in βZ does not contain the
point a. It follows that Y is strongly discretely compact in X . We see that the
relative versions of Proposition 11 and Theorem 5 are not true.

9. To understand better discrete Lindelöfness, it could also be worthwhile to have
a look at the following weaker condition:
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(τ) For each discrete subspace A of X and each family γ of open subsets of X
such that |γ| ≤ τ and Ā ⊂ ∪γ, there is a countable subfamily η of γ such that
A ⊂ ∪η.

In addition to discretely Lindelöf spaces, all quasi-Lindelöf spaces satisfy con-
dition (τ). Therefore, it is natural to say that X is discretely quasi-τ-Lindelöf if
X satisfies condition (τ). We omit τ if the condition is satisfied for all τ .

Problem 12. Is every discretely Lindelöf regular space quasi-Lindelöf?

Problem 13. Is it true that the cardinality of every regular, first countable, dis-
cretely quasi-Lindelöf space is not greater than 2ω?

Let us show that under the continuum hypothesis (CH) the answer to the last
question is positive.

Lemma 5. Let P be a closed subset ofX , and let γ = {Uα : α < τ} be a family of
open subsets of X such that P ⊂ ∪γ, where τ is a not countably cofinal cardinal,
and let X be discretely quasi-τ -Lindelöf. Then there is a subfamily ξ of γ such
that |ξ| < τ and P ⊂ ∪ξ.

Proof: PutWα = ∪{Uβ : β < α}, and Vα = P ∩Uα\Wα, for each α < τ , and let
B = {α : Vα 6= ∅}. Fix xα ∈ Vα for each α ∈ B. Then the set A = {xα : α ∈ B}
is discrete, since the sets Vα are open in P and disjoint. There is a countable
subfamily η of γ such that A ⊂ ∪η. Since τ is not countably cofinal, there is
α < τ such that η ⊂ {Uβ : β < α}. Then A ⊂Wα. Since Vβ and Wα are disjoint
for α < β, it follows that Vβ ∩ A = ∅, for α < β, which implies that Vβ = ∅, for
α < β. Therefore, P ⊂Wα. �

From Lemma 5 we immediately get the next result:

Proposition 12. If X is a discretely quasi-ω1-Lindelöf space, then X is quasi-
ω1-Lindelöf.

From the absolute version of Corollary 6 and Proposition 12 we now have:

Theorem 6. If (CH) holds, and X is a regular first countable discretely quasi-
Lindelöf space, then |X | ≤ 2ω.

With the help of a result similar to Lemma 5, we can also prove a partial
result in the direction of Problems 12 and 8. Let us say that X is strongly
discretely Lindelöf, if the closure of every discrete subspace of X is a Lindelöf
space. Observe that it is no longer true, that every space of the countable spread
is strongly discretely Lindelöf.

Problem 14. Is every regular strongly discretely Lindelöf space Lindelöf?

To present a partial answer to this question, we need the next lemma.

Lemma 6. Let X be a strongly discretely Lindelöf space, and let γ = {Uα : α <
τ} be an open covering of X , where the cardinal τ is not countably cofinal. Then
there is a subcovering η ⊂ γ such that |η| < τ .
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Proof: Put Wα = ∪{Uβ : β < α}, for α < τ . Let us define xα for each α < τ in
the following way. First, fix an object d not in X . If U0 = ∅, we put x0 = d. If U0
is not empty, take x0 to be any point of U0. If α < τ , and the points xβ are already
defined for all β < α, let xα to be any point of the set Vα = Uα \ (Fα ∪ (∪γα)),

where Fα = {xβ : β < α, xβ 6= d} and γα = {Uβ : β < α}, if the set Vα is not
empty, otherwise put xα = d. Clearly, A = {xα : α < τ, xα 6= d} is a discrete
subspace of X . Therefore, there is a countable subfamily η of γ such that Ā ⊂ ∪η.
Since τ is not of the countable cofinality, there is β < τ such that η ⊂ γβ . Then
xα is not in A for β < α; therefore, xα = d whenever β < α. This can happen
only if X = (∪γβ) ∪ Fβ . Since Fβ ⊂ Ā ⊂ ∪η ⊂ ∪γβ , it follows, that ∪γβ = X .
We have: |γβ | < τ and γβ ⊂ γ. The proof is complete. �

This lemma permits to prove easily the next result, providing a partial answer
to Problem 14.

Theorem 7. If X is countably paracompact and strongly discretely Lindelöf,
then X is Lindelöf.

Proof: Assume the contrary. Let τ be the smallest cardinal number such that
there are a countably paracompact, strongly discretely Lindelöf space X and an
open covering γ of X of cardinality τ such that no countable subfamily of γ covers
X . Since X is countably paracompact, the cofinality of τ is not countable (by
an obvious standard argument in which we also take into account the choice of
τ). Now, applying Lemma 6 and again referring to the choice of τ , we arrive at
a contradiction. �

We could relativize the notions and theorems proved in this subsection, but
since the absolute results are, it seems, not yet in the final form, we do not do
that.

10. Going through the proof of Corollary 17, we come very close to the following
notion. Let P be a family of subsets of X . Let us say that X is Lindelöf with
respect to P , if for every closed subset P of X , and for each subfamily γ of P
covering P , there is a countable subfamily η of γ such that P ⊂ ∪η. We call
a space X pseudobase-Lindelöf, if there is a pseudobase P of X such that X is
Lindelöf with respect to P . We say thatX is strongly pseudobase-Lindelöf, if there
is a pseudobase P in X such that for each γ ⊂ P there is a countable subfamily
η of γ such that ∪η = ∪γ. The next assertion is obvious.

Proposition 13. If there is a one-to-one continuous mapping of X onto a hered-
itarily Lindelöf space, then X is strongly pseudobase-Lindelöf.

Problem 15. Is there a “naive” example of a regular pseudobase-Lindelöf space X
of the countable pseudocharacter such that 2ω < |X |?

11. Since there are so many formulations to grasp in this paper, we have restricted
ourselves with the countable case, which is more open for the intuition. But the
proofs presented are obviously valid in the general case as well. In this way, we
arrive at the next theorems:
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A. For a Hausdorff space X and its subspace Y , |Y | ≤ 2χ(X)l(Y,X).

B. If Y is regular in X, then w(Y ) ≤ (πχ(Y,X))c(Y,X), where πχ(Y,X) is the
smallest cardinal number ν such that πχ(y,X) ≤ ν, for each y ∈ Y .

This is a relative version of a result of Shapirovskij [26] (see also [20]).

C. |Y | ≤ 2e(Y,X)∆(Y,X).

We denote by ql(Y,X) the smallest cardinal number τ such that for every
subset A of Y closed in Y , and for every family γ of open subsets of X such that
A ⊂ ∪γ, there is a subfamily η of γ such that |η| ≤ τ and A ⊂ ∪η. Now we can
present the general version of Corollary 6:

D. If Y is regular in X, χ(y,X) ≤ τ for each y ∈ Y , and ql(Y,X) ≤ τ , then
|Y | ≤ 2τ .

To provide a general version of Corollary 8, we denote by sl(Y,X) the smallest
cardinal number τ such that for every subset A of Y and every family γ of open
sets in X such that Ā ⊂ ∪γ, there is a subfamily η of γ such that A ⊂ ∪η and
|η| ≤ τ .

E. If X is a Hausdorff space, and Y is regular in X and dense in X, then

|X | ≤ 2χ(X)sl(Y,X).

Corollary 20 generalizes as follows:

F. |Y | ≤ 2e(Y,X)psw(Y,X).

12. Of course, it is not true that all important cardinal inequalities can be proved
just following the algorithm described in Theorem 1. For example, the author does

not know such a proof for R. Hodel’s inequality |X | ≤ (e(X))psw(X) (see [21]), or
for Gryzlov’s theorem (see [17]).

13. In conclusion, we would like to mention that a version of the addition the-
orem for weight in relatively compact Hausdorff spaces was proved in [7] by
V.A. Arhangel’skii; as in the classical case, it is based on a relative version of
the theorem on the equality of the networkweight to the weight for compact
Hausdorff spaces (see [2]).

14. Corollary 6 does not fully unify Corollaries 1 and 3, since we had to assume
regularity in Corollary 6. To remedy for this, we slightly modify the notion of
a quasi-Lindelöf space, strengthening (or narrowing) it in such a way that it still
embraces the class of Lindelöf spaces and the class of spaces with the countable
Souslin number, which allows us to prove a Hausdorff version of Corollary 6. For
the sake of simplicity, we treat only the absolutely countable case.
Let us call a space X strictly quasi-Lindelöf, if for every closed subset P of X

and every countable family {γi : i ∈ ω} of families of open subsets of X such that
P ⊂ ∪{∪γi : i ∈ ω} one can choose a countable subfamily ηi of γi for each i ∈ ω
so that P ⊂ ∪{∪ηi : i ∈ ω}. The next assertion is obvious:
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Proposition 14. If X is Lindelöf then X is strictly quasi-Lindelöf.

The next simple result is a Corollary of Lemma 2.

Proposition 15. If the Souslin number of X is countable, then X is strictly
quasi-Lindelöf.

Now comes the main result of this section:

Corollary 22. Let X be a first countable Hausdorff strictly quasi-Lindelöf space.
Then |X | ≤ 2ω.

Proof: We put τ = ℵ1 = λ, µ = 2ω, and g(F ) = ∪{Bx : x ∈ F̄}. There is
a propeller ξ = {Fα : α < ℵ1} in L. It is enough to show that the set P = ∪ξ is
dense in X , since |P | ≤ 2ω and X is first countable and Hausdorff.
Assume the contrary, and fix z ∈ X \ P̄ . For V ∈ Bz we put γV = {U ∈

Ug(ξ) : U ∩ V = ∅}. Since X is first countable, P̄ = ∪{Fα : α < ℵ1}. Therefore,
Ug(ξ) = ∪{Bx : x ∈ P̄}. Then P̄ ⊂ ∪{∪γV : V ∈ Bz}, since X is Hausdorff. Note
that the family Bz is countable. Therefore, we can choose a countable subfamily
ηV of γV for each V in Bz so that

P̄ ⊂ ∪{∪ηV : V ∈ Bz}.

Put
s = (∅, {ηV : V ∈ Bz}).

Let us show that s is good for ξ. It is obvious that s is generated by (∪ξ,Ug(ξ)),
and that all families entering s are countable. From (∪γV ) ∩ V = ∅ it follows
that (∪ηV ) ∩ V = ∅; since V is open, this implies that ∪ηV ∩ V = ∅ for each
V ∈ Bz. Therefore, z does not belong to Θ(s), and s is a small sensor good
for ξ,—a contradiction which completes the proof. �

15. After this paper was submitted to the journal, I have discovered that Propo-
sition 11 in it is Lemma 4.13 of the following article: V.V. Tkachuk, Spaces that
are projective with respect to classes of mappings, Trudy Moskov. Matem. Ob-va
50 (1987), 139–156.
Note that in the abstract to the paper above Tkachuk made a claim that it

contains a proof that the answer to Problem 14 of this my paper is in positive. In
fact, Tkachuk’s paper does not contain such a proof, and he does not know such
a proof at present—he acknowledged that in an e-mail letter to me.

16. A systematic study of relative topological properties began in 1989 (see
A.V. Arhangel’skii and H.M.M. Genedi, “Beginnings of the Theory of Relative
Topological Properties”, p. 3–48, in: General Topology. Spaces and Mappings.–
MGU, Moscow, 1989). At that time it was already clear that relative versions of
many well known theorems on cardinal invariants remain true with practically the
same proofs. I made several announcements about that at seminars in Moscow
University and published a short notice to that end in Vestnik MGU, 1994 (ser.
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mat. mech.). Meanwhile some relative versions of theorems on cardinal inequal-
ities, similar or close to some of those which are discussed in the present article,
were published by A.A. Gryzlov and D.N. Stavrova. See in particular A.A. Gry-
zlov, D.N. Stavrova, Topological spaces with a selected subset-cardinal invariants
and inequalities, in Comptes rendus Acad. bulgare sci, 46:7, (1993), 17–19, and,
under the same title, in Comment. Math. Univ. Carolinae, 35:3 (1994), 525–531.
When this my article was already accepted, I received two preprints of further
papers by Stavrova on relative cardinal invariants, yet to appear: “Upper bounds
for cardinality of topological spaces with selected subset”, and “Hausdorff pseu-
docharacter and cardinality of topological spaces with a selected subset”.
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