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On extended frames

Jorge Picado*

Abstract. Some aspects of extended frames are studied, namely, the behaviour of ideals,
covers, admissible systems of covers and uniformities.
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1. Introduction

Recall that A is a frame if it is a complete lattice satisfying the frame dis-
tributive law a ∧

∨

S =
∨

{a ∧ t | t ∈ S}, for every a ∈ A and S ⊆ A, and that
a function f : L −→ M between frames is a frame homomorphism provided that
it preserves finitary meets (including the unit 1) and arbitrary joins (including
the zero 0).
For general facts about frames we refer to Johnstone [1] and Vickers [8].
In [7] A. Pultr introduced an algebraic structure extending that of a frame

(called extended frame or, shortly, E-frame) in which the operation X ·a =
∨

{x ∈
X | x ∧ a 6= 0}, defined, in a frame A, for every cover X of A and every a ∈ A,
which has been very useful in the study of uniformities and metrics in frames (cf.
e.g. [2], [4], [5] and [6]), becomes an intrinsic operation:

Definition 1.1 [7, Definition 1.1]. A pair (A, ·) is an E-frame if A is a frame and
· is a binary operation on A satisfying the following axioms:

(0) 0 · 1 = 0;
(1) x ∧ y ≤ x · y;
(2) (x ∧ y) · 1 = (x · 1) ∧ (y · 1);
(3) (x ∧ y) · 1 = 0 ⇒ x · y = 0;
(4) (x · y) · 1 = x · (y · 1);
(5) x · (

∨

Y ) =
∨

y∈Y (x · y);

(6) (
∨

X) · (y · 1) = (
∨

x∈X(x · y)) · 1.

Remarks 1.2. (i) We added axiom (0) to Definition 1.1 of [7] because this con-
dition is necessary to conclude, in the proof of Theorem 3.3 of [7], that λ(0) = 0
and it is not a consequence of the other axioms. For example, take (A, ·) (A with,
at least, two elements) where x · 0 = 0 and x · y = 1 otherwise.

*Partial financial support by Centro de Matemática da Universidade de Coimbra and TEMPUS
JEP 2692 is gratefully acknowledged.



538 J. Picado

(ii) Note that, by (1), 1 · 1 = 1 and x ≤ x · 1 for every x, and that by (5)
x · 0 = 0 for all x. Also by (5), x ≤ y implies a · x ≤ a · y, for every a. In
particular, 0 · x ≤ 0 · 1 = 0.

By (2), x ≤ y implies x · 1 ≤ y · 1 and, consequently,
∨

x∈X(x · 1) ≤ (
∨

X) · 1.

Example 1.3. Let A be a frame such that x∧y = 0 only if x = 0 or y = 0. Each
one of the operations

x • y =

{

0 if x ∧ y = 0

1 otherwise
and x ∗ y =

{

0 if x ∧ y = 0

x otherwise

gives A a structure of E-frame.

An E-frame homomorphism f : (A, ·) −→ (B, ·) is just a frame homomorphism
f : A −→ B such that f(x) · 1 = f(x · 1) and f(x) · f(y) ≤ f(x · y).
The category of E-frames and E-frame homomorphisms is denoted by EFrm.
There are functors E : Frm −→ EFrm and K : EFrm −→ Frm such that

E ⊣ K. The extended frame E(A) is defined as follows: consider, in the family
of all non-empty subsets of A, the equivalence relation X ∼ Y if X ≺ Y and
Y ≺ X , where X ≺ Y means that for each x ∈ X there is an y ∈ Y such that
x ≤ y; then, E(A) is the family of equivalence classes [X ] with the operations
[X ] ∧ [Y ] = [{x ∧ y | x ∈ X, y ∈ Y }],

∨

i∈I [Xi] = [
⋃

i∈I Xi] and [X ] · [Y ] =
[{X · y | y ∈ Y }]. The E-frame homomorphism E(f) : E(A) −→ E(B) is defined
by E(f)([X ]) = [f(X)].

K(A, ·) is the frame of loci of (A, ·), i.e. K(A, ·) = {a ∈ A | a · 1 = a}, in which
finitary meet is the same as in A and join

⊔

is given by
⊔

S = (
∨

S) · 1,
∨

being
join in A. For f : (A, ·) −→ (B, ·) in EFrm the map K(f) is just the restriction
of f to K(A, ·).

The adjunction is given by the identity transformation id
·

−→KE and λ :

EK
·

−→ id defined by λ(A,·)([X ]) =
∨

X . For more details see [7]. These functors

define an equivalence between Frm and the subcategory EFrm7,8,9 of EFrm of
all E-frames (A, ·) satisfying the following additional axioms:

(7) If x · 1 ≤
∨

Y then there exists an y ∈ Y such that x · 1 ≤ y;
(8) For each x ∈ A there exists X ⊆ K(A, ·) such that x =

∨

X ;
(9) If (x · 1) ∧ (y · 1) 6= 0 then (x · 1) · (y · 1) = x · 1.

It is easy to see that each one of the axioms (7), (8) and (9) is independent
from the others.

Remarks 1.4. (i) In an extended frame (A, ·) satisfying (7), 1 =
∨

X only if
1 ∈ X . In particular, A is compact. Further, the relation x ≺ y (“x is rather
below y”), meaning there exists z such that x ∧ z = 0 and y ∨ z = 1, is not
interesting because, in this case, x = 0 or y = 1 necessarily.

(ii) Observe that, by (3) and (0) in Definition 1.1, it follows that, for every
x, y ∈ A, x · y = 0 whenever x ∧ y = 0. Since x · 1 ∈ K(A, ·) for every x ∈ A, (9)
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is equivalent to

x ∧ y 6= 0⇒ x · y = x, for every x, y ∈ K(A, ·).

So (A, ·) satisfies axiom (9) if and only if the restriction of · to K(A, ·) is the
operation ∗. Since the operation · defined in E(A) is the unique extension of
∗ to E(A) satisfying (5), (6) and the equality [X ] · 1 = [{

∨

X}], we conclude
that axiom (9) ensures us that the functor E recovers the operation · from its
restriction to K(A, ·).

In this note we study some aspects of E-frames. Namely, motivated by Re-
mark 4.4 of [7], we study the role of the axioms (7), (8) and (9) in the behaviour
of ideals (Section 2), covers and admissibility of systems of covers (Section 3) and
uniformities (Section 4) of an E-frame.

2. Ideals

Definition 2.1 [7, Remark 4.1]. An element a of an E-frame (A, ·) is called an
ideal if it satisfies the implication

x · 1 ∨ y · 1 ≤ a ⇒ (x · 1 ∨ y · 1) · 1 ≤ a, for every x, y ∈ A.

Trivially any locus is an ideal of (A, ·).
The system of ideals is obviously closed under general meets and, hence, it is

a complete lattice. We denote it by I(A, ·). Similarly, we denote the frame of all
ideals of A by I(A).

Remarks 2.2. (i) Since (x · 1∨ y · 1) · 1 = (x∨ y) · 1, it is easy to see that a is an
ideal if and only if x ∨ y ≤ a implies that (x ∨ y) · 1 ≤ a, for every x, y ∈ K(A, ·).
Therefore, if x ∨ y ∈ K(A, ·) whenever x, y ∈ K(A, ·), then I(A, ·) = A.

(ii) Let A be a frame and consider the corresponding E-frame E(A). A subset
I of A is an ideal of A if and only if the class [I] is an ideal of E(A) and I is
decreasing. So, [X ] is an ideal of E(A) if and only if [X ] = [I] for some (necessarily
unique) ideal I of A. The map given by I 7−→ [I] defines an isomorphism between
I(A) and I(E(A)).

Lemma 2.3. Let (A, ·) be an E-frame satisfying axiom (7). Then, for every ideal
I of K(A, ·), λ(A,·)([I]) is an ideal of (A, ·).

Proof: In fact, for every x, y ∈ K(A, ·), x ∨ y ≤
∨

I implies that (x ∨ y) · 1 ≤
(a1 ∨ a2) · 1, for some a1, a2 ∈ I such that x ≤ a1 and y ≤ a2, by (7). But
(a1 ∨ a2) · 1 ∈ I by hypothesis, hence (x ∨ y) · 1 ≤

∨

I. �

In summary, we have a map

λ : I(K(A, ·)) −→ I(A, ·)

I 7−→ λ([I]) =
∨

I
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which is injective by (7). Indeed, if λ([I]) = λ([J ]), then we have, for each a ∈ I,
that a = a · 1 ≤

∨

J and thus, that there is a b ∈ J such that a ≤ b. Therefore
I ⊆ J . Similarly, J ⊆ I. Hence I = J and λ is one-one.
Now, let us consider the following property:

(8′) For every a ∈ I(A, ·), there exists X ⊆ K(A, ·) such that a =
∨

X.

Remark 2.4. This property is, even in the presence of (7) and (9), weaker
than (8). For example, the E-frame

Aα

0

β

γ

δ

1 · 0 α β γ δ 1
0 0 0 0 0 0 0
α 0 α 0 α α α

β 0 0 β β β β

γ 0 α β γ γ 1
δ 0 α β γ δ 1
1 0 1 1 1 1 1

satisfies (7), (9) and (8′), since I(A, ·) = K(A, ·) = {0, α, β, 1}, but it does not
satisfy (8).

Proposition 2.5. Let (A, ·) be an E-frame satisfying properties (7) and (8′).

Then λ is a frame isomorphism.

Proof: First, let us prove the surjectivity. For a ∈ I(A, ·) we can write a =
∨

Xa,
for some Xa ⊆ K(A, ·). Let ↓ Xa denote the set {y ∈ K(A, ·) | y ≤ x for
some x ∈ Xa}. Then ↓ Xa is an ideal of K(A, ·). In fact, if y, z ∈↓ Xa then
y ∨ z ≤ x1 ∨ x2 for some x1, x2 ∈ Xa. So y ∨ z ≤ a and then y ⊔ z ≤ a, which
implies that y ⊔ z ∈↓Xa by (7). In conclusion, we have that a = λ(↓Xa), with
↓Xa ∈ I(K(A, ·)).
Trivially, λ preserves finite meets.
Finally, let (Iγ)γ∈Γ be a family of ideals of K(A, ·). Easily, one can observe

that

λ





I(K(A,·))
∨

γ∈Γ

Iγ



 ≥

I(A,·)
∨

γ∈Γ

λ(Iγ).

On the other hand, for a =
∨I(A,·)

γ∈Γ λ(Iγ) there exists a (unique) ideal I of K(A, ·)

such that a = λ(I). Then λ(Iγ) ≤ λ(I), for each γ ∈ Γ. Thus Iγ ⊆ I, for each

γ ∈ Γ, by (7) and, consequently,
∨I(K(A,·))

γ∈Γ Iγ ⊆ I. So, we have proved that λ

preserves arbitrary joins. �
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Corollary 2.6. If (A, ·) satisfies properties (7) and (8′), then I(A, ·) is a compact
frame. �

Further, it is obvious that the join in I(A) is given by the formula

I(A)
∨

γ∈Γ

Iγ =
{

x1 ∨ · · · ∨ xn | xj ∈ Iγj for some γj ∈ Γ
}

.

Therefore, if (A, ·) satisfies (7) and (8′), then the join in I(A, ·) is given by

I(A,·)
∨

γ∈Γ

aγ =
∨

{

x1 ∨ · · · ∨ xn | xj ∈ Iγj for some γj ∈ Γ
}

,

where Iγ =↓Xaγ . As we saw above, rule (9) does not have much use in the study
of the behaviour of ideals. However, as we shall see, it has a decisive role in the
study of admissible systems of covers and uniformities.

Remark 2.7. Consider the E-frames (A, ∗) of Example 1.3. They do not sat-
isfy (7) but satisfy (8) and (9). Considering A non-compact, then I(A, ·) is not
compact since I(A, ·) = A.

3. Admissible systems of covers

From now on let (A, ·) denote an E-frame.

Lemma 3.1. (i) For every X, Y ⊆ K(A, ·),
∨

X ·
∨

Y ≤
∨

y∈Y

⊔

{x · y | x ∈

X, x ∧ y 6= 0} ≤
∨

y∈Y

⊔

{x | x ∈ X, x ∧ y 6= 0}.

(ii) In (i) the left member of the inequality is equal to the right member if
and only if (A, ·) satisfies (9).

(iii) Let a, b, c, d ∈ A. If d =
∨

D for some D ⊆ K(A, ·), then a · c ≤ b · d

whenever a ≤ b and c ≤ d.

(iv) If (A, ·) satisfies (8) and (9), then, for every a, b, c ∈ A, a · b∧ c = 0 if and
only if b ∧ a · c = 0.

(v) If (A, ·) satisfies (8) and (9), then (c · b) · a = c · (b · (c · a)), for every
a, b, c ∈ A.

Proof: (i) Cf. Lemma 3.2 of [7].

(ii) Let x, y ∈ K(A, ·) such that x ∧ y 6= 0. Just take X = {x} and Y = {y}.
The converse is obvious by the proof of ([7, Lemma 3.2]).

(iii) We have b ·d =
∨

d′∈D(b ·d
′) and b ·d′ = (a∨b) · (d′ ·1) = (a ·d′ ∨b ·d′) ·1 ≥

(a · d′) · 1 = a · d′ thus b · d ≥
∨

d′∈D(a · d′) = a · d. By (5), a · d ≥ a · c.

(iv) If a, b, c, belong to K(A, ·), then a · b ∧ c = 0 if and only if a ∧ b = 0 or
a ∧ c = 0, by (ii). Also b ∧ a · c = 0 if and only if a ∧ c = 0 or a ∧ b = 0, thus
a · b ∧ c = 0 if and only if b ∧ a · c = 0. Now let a, b, c, belong to A. Then we can
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write a =
∨

X , b =
∨

Y , c =
∨

Z for some families X, Y and Z of loci of (A, ·).
We have

a · b ∧ c = 0⇔
∨

y∈Y

((

∨

x∈X

(x · y)

)

· 1

)

∧
∨

Z = 0

⇔
∨

z∈Z

∨

y∈Y

((

∨

x∈X

(x · y)

)

· 1 ∧ z

)

= 0

⇔ ∀z ∈ Z ∀y ∈ Y
⊔

x∈X

(x · y ∧ z) = 0

⇔ ∀z ∈ Z ∀y ∈ Y ∀x ∈ X x · y ∧ z = 0.

Similarly, b∧a·c = 0 if and only if, for any z ∈ Z, y ∈ Y and x ∈ X , y∧x·z = 0.
Hence a · b ∧ c = 0 if and only if b ∧ a · c = 0.

(v) By axiom (5) it suffices to prove (v) for a ∈ K(A, ·). In this case

(c · b) · a = (c ·
∨

Y ) · (a · 1) =
⊔

y∈Y

((c · y) · a) =
⊔

{c · y | y ∈ Y, c · y ∧ a 6= 0}.

Using (iv) we obtain

(c · b) · a =
⊔

{c · y | y ∈ Y, y ∧ c · a 6= 0} = c ·
⊔

{y ∈ Y | y ∧ c · a 6= 0}

= c ·
⊔

y∈Y

(y · (c · a)) = c ·
(

(
⊔

Y ) · (c · a)
)

= c · (b · (c · a)).

�

Remarks 3.2. (i) The four-element chain 0 < α < β < 1 with the operation

· 0 α β 1
0 0 0 0 0
α 0 α α 1
β 0 α 1 1
1 0 α β 1

is an E-frame which satisfies (7) and (9) but not (8′). However, it does not satisfy
the properties (iii) and (v) of the Lemma.

(ii) Instead, if we consider the operation

· 0 α β 1
0 0 0 0 0
α 0 α α α

β 0 α β β

1 0 β β 1

we get an E-frame which satisfies (7) and (8) but not (9) and it also fails property
(v) of the Lemma.
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Definition 3.3 [7, Remark 4.1]. An element a of A is a cover of (A, ·) if a ·1 = 1.

The covers in (A, ·) form, obviously, a filter in A that we denote by cov(A, ·).

Lemma 3.4. Assume that (A, ·) satisfies axiom (8). Then:

(i) x ≤ c · x for every x ∈ A and every c ∈ cov(A, ·).
(ii) c · (b · a) ≤ (c · b) · a, for every a, b ∈ A and c ∈ cov(A, ·), provided (A, ·)
also satisfies axiom (9).

Proof: (i) Let x =
∨

X , where each element of X is a locus. For any y ∈ X , we
have y = 1 ∧ y = (c · 1) ∧ (y · 1) = (c ∧ y) · 1 ≤ (c · y) · 1 = c · y. Consequently,
x ≤ c · x.

(ii) By (i) we have that a ≤ c · a. Therefore c · (b · a) ≤ c · (b · (c · a)). The
conclusion follows from Lemma 3.1 (v). �

Remarks 3.5. (i) Consider the E-frame of Remark 2.4, which does not satisfy
(8) but satisfies (7), (8′) and (9). The element γ is a cover but γ · δ < δ. So, from
now on, axiom (8) will be decisive in all the results that we present.

(ii) The examples of Remarks 3.2 also fail property (ii) of the above Lemma.

For any C,D ⊆ cov(A, ·), we say that C majorizes D, and write C maj D, if for
every c ∈ C there is a d ∈ D such that d ≤ c. In particular, C ⊆ D implies that
C maj D.

For any x, y ∈ A, x
C
⊳y means that c · x ≤ y for some c ∈ C. By Lemma 3.1 (iii)

we have that

C maj D ⇒ (x
C
⊳y ⇒ x

D
⊳y)

in case (A, ·) satisfies axiom (8). This result is not true for a general (A, ·): take,
for instance, in the E-frame of Remark 3.2 (i), C = {1}, D = {β} and x = y = β.

C is said to be meet-closed if for every c1, c2 ∈ C there is a c ∈ C such that
c ≤ c1 ∧ c2.
The following properties of ⊳ are easily proved:

Proposition 3.6. (a) If x
C
⊳y, x′ ≤ x and y ≤ y′ then x′

C
⊳y′.

(b) If (A, ·) satisfies (8) then:

(i) x
C
⊳y ⇒ x ≤ y;

(ii) xi

C
⊳yi (i = 1, 2) imply that x1 ∧x2

C
⊳y1 ∧ y2 and x1 ∨x2

C
⊳y1∨ y2 whenever

C is meet-closed. Moreover, if (A, ·) satisfies (9) then x1 · x2
C
⊳y1 · y2.

�

Let us denote by ≺K the relation “rather below” in the frame K(A, ·).
Let A1 be a subset of A and denote by D((A, ·), A1) the system of all covers c

of (A, ·) for which c = a ∨ b, for some loci a, b in A1.
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Lemma 3.7. Let C be a system of covers such that D((A, ·), A) maj C. Then,

for every x, y ∈ K(A, ·), x ≺K y implies x
C
⊳y.

Proof: Consider a ∈ K(A, ·) such that a ∧ x = 0 and a ⊔ y = 1. Since a ∨ y ∈
D((A, ·), A), there is a c ∈ C with c ≤ a∨y. Then c ·x ≤ (a∨y) ·x = (a ·x∨y ·x) ·1.
But a · x = 0, thus c · x ≤ y · x ≤ y. �

In the presence of rule (9) we have:

Lemma 3.8. Assume (A, ·) satisfies (8) and (9) and let C be a system of covers.

If x
C
⊳y then x · 1 ≺K y · 1.

Proof: Let c · x ≤ y with c ∈ C and consider the pseudocomplement x∗ of x. It
follows immediately that (x · 1)∧ (x∗ · 1) = 0. On the other hand, if c =

∨

C and
x =

∨

X , where C, X ⊆ K(A, ·), we have

y ∨ x∗ ≥ c · x ∨ x∗ =
∨

x′∈X

⊔

{c′ ∈ C | c′ ∧ x′ 6= 0} ∨ x∗

≥
∨

x′∈X

∨

{c′ ∈ C | c′ ∧ x′ 6= 0} ∨ x∗ ≥ c.

Hence y · 1 ⊔ x∗ · 1 = 1. �

Therefore we can conclude that if (A, ·) satisfies (8) and (9) and

D((A, ·), A) maj C, the restriction of
C
⊳ to K(A, ·) is exactly the relation ≺K .

Now, for any C ⊆ cov(A, ·), put (A, ·)C = {a ∈ A | a =
∨

{b ∈ A | b
C
⊳a}}. The

set C is called admissible if (A, ·)C = A.
The following lemma is easy to prove:

Lemma 3.9. Assume (A, ·) satisfies (8). Then:

(i) C maj D ⇒ (A, ·)C ⊆ (A, ·)D;
(ii) (A, ·)C is an upper sub-semilattice of A. Moreover, if C is meet-closed,
then (A, ·)C is a subframe of A. �

Proposition 3.10. Assume (A, ·) satisfies (8) and (9) and let C be a system of
covers such that D((A, ·), A) maj C. Then the following assertions are equivalent:

(i) C is admissible;

(ii) K(A, ·) is regular and, for every a ∈ K(A, ·),
∨

{b ∈ K(A, ·) | b
C
⊳a} ∈

K(A, ·);
(iii) For every a ∈ K(A, ·), a =

∨

{b ∈ K(A, ·) | b ≺K a}.

Proof: (i) ⇒ (ii) Consider a ∈ K(A, ·). Note that
∨

{b ∈ K(A, ·) | b
C
⊳a} is equal

to
∨

{b ∈ A | b
C
⊳a} so if C is admissible then

∨

{b ∈ K(A, ·) | b
C
⊳a} = a, that is,
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∨

{b ∈ K(A, ·) | b
C
⊳a} is a locus. Also a = (

∨

{b ∈ A | b
C
⊳a}) · 1, thus it follows

that a ≤
⊔

{b ∈ K(A, ·) | b ≺K a} ≤ a by Lemma 3.8. Hence a =
⊔

b≺Ka b.

(ii) ⇒ (iii) Let a ∈ K(A, ·). Then

a =
⊔

{b ∈ K(A, ·) | b ≺K a} =
∨

{b ∈ K(A, ·) | b ≺K a}

since b ≺K a if and only if b
C
⊳a.

(iii) ⇒ (i) Since K(A, ·) ⊆ (A, ·)C , the conclusion follows from the fact that
(A, ·)C is an upper sub-semilattice of A. �

Similarly one can show that, in case C is finite, C is admissible if and only if
K(A, ·) is an atomic Boolean algebra and, for every a ∈ K(A, ·),

∨

{b ∈ K(A, ·) |

b
C
⊳a} ∈ K(A, ·).
On the other hand, in the presence of (7), we have an alternative characteriza-

tion:
Proposition 3.11. If (A, ·) satisfies (7) and (8) then a system of covers C is

admissible if and only if a
C
⊳a for every locus a.

Proof: Consider a ∈ K(A, ·). By hypothesis, a =
∨

{b ∈ A | b
C
⊳a}, so, using (7),

we conclude that, for some b, a ≤ b
C
⊳a. Hence a

C
⊳a.

The converse is trivial since (A, ·)C is an upper sub-semilattice. �

By Lemmas 3.7 and 3.8, if (A, ·) satisfies (8) and (9) and D((A, ·), A) maj C,

then the condition a
C
⊳a for every a ∈ K(A, ·) means that K(A, ·) is a Boolean

algebra. Thus, Proposition 3.11 gives us the following corollary:

Corollary 3.12. If (A, ·) ∈ EFrm7,8,9, then (A, ·) has an admissible system of
covers if and only if K(A, ·) is a Boolean algebra. �

4. Uniformities

We say that a subset U of cov(A, ·) is a u-basis on (A, ·) if for each a ∈ U there
is a b ∈ U such that b · b ≤ a.

In this case, when (A, ·) satisfies (8) and (9), the relation
U
⊳ interpolates. In

fact, if x
U
⊳y, i.e. a · x ≤ y (a ∈ U), then, for z = b · x (where b ∈ U is such that

b · b ≤ a), x
U
⊳z and, by Lemma 3.4 (ii), z

U
⊳y. Then one easily obtains a similar

characterization to Proposition 3.10:

Proposition 4.1. If (A, ·) satisfies (8) and (9) and U is a u-basis such that
D((A, ·), A) maj U , then U is admissible if and only if K(A, ·) is a completely

regular frame and
∨

{b ∈ K(A, ·) | b
U
⊳a} ∈ K(A, ·), for every a ∈ K(A, ·). �

Based on the usual notion of uniformity for frames, it is natural to define
a uniformity of an E-frame as follows:
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Definition 4.2. Let U ⊆ cov(A, ·). Then U is a uniformity on (A, ·) provided
that:
(α) U is a filter with respect to ≤;
(β) U is a u-basis;
(γ) U is admissible.

An E-frame (A, ·) with a uniformity U is called a uniform E-frame. A uniform
E-frame homomorphism f : ((A, ·),U) −→ ((B, ·),V) is just an E-frame morphism
f : (A, ·) −→ (B, ·) such that f(U) ⊆ V . This way we have the category UEFrm

of uniform E-frames and uniform E-frame homomorphisms.
The category of uniform frames (cf. [4]) is denoted by UFrm.

Proposition 4.3. If (A, ·) satisfies (8) and (9) and C is a meet-closed system of

covers, then a
C
⊳a for every locus a if and only if K(A, ·) is a Boolean algebra and

D((A, ·), A) maj C.

Proof: The fact that K(A, ·) is a Boolean algebra follows from Lemma 3.8.
Let c = c1 ∨ c2 be a cover of D((A, ·), A). By hypothesis, there are d1, d2 ∈ C

such that d1 · c1 ≤ c1 and d2 · c2 ≤ c2. Consider d ∈ C with d ≤ d1 ∧d2. We claim
that d ≤ c:
Let us write d =

∨

D, D ⊆ K(A, ·) \ {0}. For every d′ ∈ D, d′ ∧ c · 1 6= 0, i.e.
c · d′ 6= 0. But c · d′ ≤

⊔

{cj | j ∈ {1, 2}, cj ∧ d′ 6= 0}, so for every d′ ∈ D there is

a j ∈ {1, 2} such that cj ∧ d′ 6= 0. Hence

(1) d′ ≤
⊔

{d′′ ∈ D | d′′ ∧ c1 6= 0} ∨
⊔

{d′′ ∈ D | d′′ ∧ c2 6= 0}.

On the other hand, d′′ ∧ cj 6= 0 (d′′ ∈ D, j ∈ {1, 2}) implies that d′′ ≤ d · cj since
d′′ ≥ d′′∧d·cj = d′′∧

⊔

d′∈D(d
′·cj) =

⊔

d′∈D(d
′′∧(d′·cj)) ≥ d′′∧(d′′·cj) = d′′∧d′′ =

d′′. Therefore, from (1) it follows that d′ ≤ d·c1∨d·c2 ≤ d1 ·c1∨d2 ·c2 ≤ c1∨c2 = c.
Hence d ≤ c.
The converse is an immediate consequence of Lemma 3.7. �

If q is a system of covers of a frame A, then Uq = {[C] : C ∈ q} is a sys-
tem of covers of the E-frame E(A). Since D(A, A) maj q (cf. [2]) if and only
if D(E(A), E(A)) maj Uq and, moreover, KE = id, the following corollary is
a particular case of the previous proposition.

Corollary 4.4. If A is a frame and q is a system of covers of A such that for

every C1, C2 ∈ q there is a refinement C ∈ q of C1∧C2, then a
q
⊳a for every a ∈ A

if and only if A is a Boolean algebra and D(A, A) maj q. �

We call a uniform frame (A, q) Boolean if it satisfies the equivalent conditions
of Corollary 4.4. By BUFrm we denote the (full) subcategory of UFrm of all
Boolean uniform frames.
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Proposition 4.5. Let (A, q) ∈ UFrm. Then (E(A),Uq) is a uniform E-frame if
and only if (A, q) is Boolean.

Proof: If (E(A),Uq) is a uniform E-frame, then [{a}]
Uq

⊳[{a}], for every a ∈ A,

by Proposition 3.11, that is, a
q
⊳a for every a ∈ A.

Conversely, conditions (α) and (β) are trivially satisfied. Condition (γ) is
a consequence of Proposition 3.11 since KE(A) = A is a Boolean algebra and
D(A, A) maj q. �

Furthermore, for any f : (A, q1) −→ (B, q2) in UFrm, the E-frame map E(f)
is always uniform. Immediately, the functor

E : BUFrm −→ UEFrm

(A, q) 7−→ (E(A),Uq)

f 7−→ E(f)

is a full embedding.
In order to have a functor K : UEFrm −→ BUFrm and an adjunction E ⊣ K

we need the conditions (7), (8) and (9). For ((A, ·),U) ∈ UEFrm7,8,9 and a ∈ U

let (X i
a)i∈Ia

be the family of all sets X i
a of loci such that a =

∨

X i
a. By (8) each

Ia is non-empty.

Proposition 4.6. The family qU = (X
i
a)a∈U ,i∈Ia

is a uniformity on K(A, ·).

Proof: Each X i
a is a cover of K since

⊔

X i
a = (

∨

X i
a) · 1 = a · 1 = 1.

Let X i
a ∈ qU and let C be a cover of K(A, ·) such that X i

a ≺ C. Obviously
a =

∨

X i
a ≤

∨

C. Thus
∨

C ∈ U and, therefore, C ∈ qU .

Let X i
a, X

j
b
∈ qU . Then, since a ∧ b ∈ U and a ∧ b =

∨

x∈Xi
a

∨

y∈X
j
b

(x ∧ y),

X i
a ∧ X

j
b
∈ qU .

Let X i
a ∈ qU . By hypothesis there is a b ∈ U such that b · b ≤ a. We claim that

X
j
b
· X

j
b
≺ X i

a, for every j ∈ Ib. Indeed, for any y ∈ X
j
b
, X

j
b
· y =

⊔

{x ∈ X
j
b
|

x ∧ y 6= 0}. On the other hand, we have that b · b ≤ a if and only if

∨

y∈X
j
b

(

(
∨

{x | x ∈ X
j
b
, x ∧ y 6= 0}) · 1

)

≤
∨

z∈Xi
a

z,

by Lemma 3.1 (ii). Thus (
∨

{x | x ∈ X
j
b
, x ∧ y 6= 0}) · 1 ≤

∨

z∈Xi
a

z, for every

y ∈ X
j
b . Applying (7) we get that for each y ∈ X

j
b there is a z ∈ X i

a such that

(
∨

{x | x ∈ X
j
b
, x ∧ y 6= 0}) · 1 ≤ z, i.e. Xj

b
· y ≤ z.

Finally we have to prove that x =
⊔

{y | y
qU
⊳x}, for every locus x. It suffices

to show that x ≤
⊔

{y | y
qU
⊳x}. By hypothesis, x =

∨

{y ∈ A | y
U
⊳x}. Let a ∈ U
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and y ∈ A such that a · y ≤ x. Assuming that a =
∨

γ∈Γ aγ and y =
∨

δ∈∆ yδ

are decompositions of a and y given by (8), we have that
∨

δ∈∆((
∨

{aγ | γ ∈
Γ, aγ ∧ yδ 6= 0}) · 1) ≤ x, by Lemma 3.1 (ii). This implies that, for every δ ∈ ∆,

((
∨

{aγ | γ ∈ Γ, aγ ∧ yδ 6= 0}) · 1) ≤ x, i.e. X i
a · yδ ≤ x for some X i

a ∈ qU . Hence

x =
∨

a∈U

∨

{y ∈ A | a · y ≤ x} ≤
∨

Xi
a∈qU

∨

{y ∈ K(A, ·) | X i
a · y ≤ x}

≤
⊔

Xi
a∈qU

{y ∈ K(A, ·) | X i
a · y ≤ x}

=
⊔

{y ∈ K(A, ·) | y
qU
⊳x}.

�

Remark 4.7. Consider again the frame (A, ·) of Remark 2.4. The set U = {δ, 1}

is a uniformity but the family qU = {X i
1, X

j
δ
| i ∈ I1, j ∈ Iδ} = {{1}} is not

a uniformity on K(A, ·). In fact {1} · y = 1 for any y 6= 0, so
⊔

{y | y
qU
⊳x} is not

equal to x in case x = α or x = β.

In case ((A, ·),U) ∈ UEFrm7,8,9, then D(K(A, ·), K(A, ·)) maj qU , since this is
equivalent to D((A, ·), A) maj U , andK(A, ·) is a Boolean algebra. Consequently,
(K(A, ·), qU ) ∈ BUFrm whenever ((A, ·),U) ∈ UEFrm7,8,9.
In conclusion, we have a functor K : UEFrm7,8,9 −→ BUFrm, and then,

easily, the categories BUFrm and UEFrm7,8,9 are equivalent.
We point out that in order to get a category of E-frames equivalent to UFrm

we should modify condition (γ) in the definition of uniform E-frame as follows:

(γ′) For every a ∈ K(A, ·), a =
⊔

{b ∈ K(A, ·) | b
U
⊳a}.

In fact, with this modification, the functor E above may be defined in the cate-
gory UFrm and one can conclude similarly that the functors E and K define an
equivalence between UFrm and this category of E-frames.
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