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Nonnegative solutions of nonlinear integral equations

Michal Fečkan

Abstract. Existence results of nonnegative solutions of asymptotically linear, nonlinear
integral equations are studied.
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1. Introduction

The purpose of this paper is to study the existence of nonnegative solutions of
two integral equations given by

p
(

x, u(x)
)

=

1
∫

0

q
(

x, t, u(t)
)

dt, x ∈ [0, 1],(1.1)

p
(

x, u(x)
)

= m

(

x,

1
∫

0

k(x, t)u(t) dt

)

, x ∈ [0, 1],(1.2)

where k ∈ L2([0, 1]× [0, 1], R+) and p, m : [0, 1]×R → R , q : [0, 1]× [0, 1]×R → R

are nonnegative for u ∈ R+ = [0,∞) and all remaining variables. Furthermore,
p, m, q satisfy the Carathéodory continuity conditions (see [10]), they are bounded
on bounded sets and they have at most linear growth in u ∈ R+. Finally, we
suppose that p is nondecreasing in u ∈ R+ for any x ∈ [0, 1] and p(x, 0) = 0 ∀x ∈
[0, 1].
The papers [3], [11], [12] have motivated us for the study of (1.1–2). We are

interested in the existence of nonnegative solutions for (1.1–2), when p, q, m are
asymptotically linear as u → +∞ uniformly in the remaining variables. We do
not investigate uniqueness and properties of possible solutions like in the papers
[3], [11], [12], where only the convolution case for p(x, u) = uα, α > 1 and
q(x, t, u) = h(x − t)u+ f(x) : t ≤ x; q(x, t, u) = f(x) : t > x is studied. Hence the
equation (1.1) had the following special form in [3], [11], [12]

uα(x) =

x
∫

0

h(x − t)u(t) dt+ f(x).
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Our method is based on abstract existence results derived by the theory of pseu-
domonotone operators like in [4], [6], [8], [10]. These results are extensions of fixed
point theorems in [1], [9] of asymptotically linear maps leaving invariant cones in
Banach spaces.
Finally, we note that problems like (1.2) naturally occur in the study of nonlin-

ear boundary value problems of ordinary differential equations. As an example,
let us consider the equation

(1.3)
p(x,−u′′) = m(x, u)

u(0) = u(1) = 0,

where p, m have the above properties. By putting z = −u′′, i.e.

u(x) =

1
∫

0

G(x, t)z(t) dt,

where G is the Green function of −u′′ = z, u(0) = u(1) = 0, we have

(1.4) p
(

x, z(x)
)

= m

(

x,

1
∫

0

G(x, t)z(t) dt

)

, x ∈ [0, 1].

Now, if z ≥ 0 then u is concave. Since u(0) = u(1) = 0, we obtain u ≥ 0.
Hence nonnegative solutions of (1.4) generate nonnegative solutions of (1.3). In
[13], there are studied similar problems of differential equations which are not
solvable for highest-order derivatives. In the end of this paper, we also study a
discontinuous version of (1.3) by using some ideas of the papers [2], [7]. The paper
is completed by several remarks devoting to another possible applications.

2. Abstract existence theorems

In this section, we shall derive existence results of solutions for certain operator
equations. Let H be a real separable Hilbert space with the inner product (·, ·)
and norm | · |, and let K ⊂ H be a wedge, i.e. K is a closed, nonempty, convex
subset of H such that λK ⊂ K ∀λ ≥ 0. We know (see [5, p. 71]) that there is a
continuous metric retraction η : H → K such that η(λx) = λη(x)∀λ ≥ 0, ∀x ∈ H
and |η(x)| ≤ |x| ∀x ∈ H . The following definitions will be needed in the sequel
(see [4, p. 946]).
A mapping f : H → H is:

– monotone (denote f ∈ MON), if (f(u)− f(v), u − v) ≥ 0 for all u, v ∈ H ;

– pseudomonotone (f ∈ PM), if for any sequence {un} in H with un ⇀ u
(weak convergence) and lim(f(un), un −u) ≤ 0, it follows that f(un)⇀ f(u) and
(f(un), un)→ (f(u), u);
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– of class S+ (f ∈ S+), if for any sequence {un} in H with un ⇀ u and
lim(f(un), un − u) ≤ 0, it follows that un → u;

– compact (f ∈ COMP ), if it is continuous and for any bounded sequence
{un} in H the sequence {f(un)} has a convergent subsequence;
– completely continuous (f ∈ CC), if for any sequence {un} in H with un ⇀ u,

it follows that f(un)→ f(u);

– bounded, if it takes any bounded set of H into a bounded set.

We note that the following relations hold between the above definitions

CC ⊂ COMP, S+ ⊂ PM, MON ⊂ PM

f1 ∈ S+, f2 ∈ COMP ⇒ f1 − f2 ∈ S+(2.0)

f1 ∈ PM, f2 ∈ CC ⇒ f1 − f2 ∈ PM.

In what follows, we shall assume that the mappings are bounded and continu-
ous.
In the rest of this section, we solve the equation

(2.1) L(x) = N(x) x ∈ K,

where N ∈ COMP satisfies N(K) ⊂ K and L ∈ MON is such that (L+εI)(K) =
K for any ε > 0 sufficiently small. Here I is the identity map.

We suppose

(H1) There is a linear map L∞ ∈ S+ such that |L(x) − L∞x|/|x| → 0 as
|x| → ∞, L∞x = 0⇒ x = 0 and L∞(K) = K.

(H2) There is a linear map N∞ ∈ COMP such that |N(x) − N∞x|/|x| → 0
as |x| → ∞ and N∞(K) ⊂ K.

Theorem 2.1. Assume that (H1), (H2) hold and L−N ∈ PM . If the following
condition holds

(C) L∞x = λN∞x, x ∈ K, 0 < λ ≤ 1 implies x = 0,

then (2.1) has a solution.

Proof: We solve

(2.2) L(x) + εx = N(η(x))

for ε > 0 small. We know that L+ εI is strongly monotone (i.e.
(

(L(x1)+ εx1)−
(L(x2) + εx2), x1 − x2

)

≥ ε|x1 − x2|2 ∀x1, x2 ∈ H), so it is invertible (see [5,
p. 100]). Hence, by using (L + εI)(K) = K, we see that any solution of (2.2)
belongs to K. Let ∪∞

n=1Hn = H and Hn be finite dimensional subspaces such
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that Hn ⊂ Hn+1 ∀n ∈ N . Let Pn : H → Hn be the orthogonal projections. We
rewrite (2.2) in the form

(2.3) L∞x+ εx − N∞(η(x)) =
(

L∞x − L(x)
)

+
(

N(η(x)) − N∞(η(x))
)

.

By (H2) for any ω > 0 there is a constant c(ω) > 0 such that

|N(x) − N∞(x)| ≤ ω|x|+ c(ω) ∀x ∈ H.

This implies

|N(η(x)) − N∞(η(x))| ≤ ω|η(x)|+ c(ω) ≤ ω|x|+ c(ω) ∀x ∈ H.

So we obtain
|N(η(x)) − N∞(η(x))|/|x| → 0 as |x| → ∞.

First we solve

(2.4)
Pn

(

L∞x+ εx − N∞(η(x))
)

= Pn

(

(

L∞x − L(x)
)

+
(

N(η(x)) − N∞(η(x))
)

)

x ∈ Hn.

We claim that there are constants c1 > 0, ε0 > 0, n0 > 0 such that

(2.5)
|Pn

(

L∞x+ εx − λN∞(η(x))
)

| ≥ c1|x|
∀(x, ε, n, λ) ∈ Hn × [0, ε0]× [n0,∞)× [0, 1].

Indeed, if it is not true then there is a sequence
{

(xni
, εi, ni, λi)

}∞

i=1
⊂ H × R+ × N × [0, 1]

such that xni
∈ Hni

, |xni
| = 1, εi → 0+, ni → ∞, λi → λ0 and

(2.6) |Pni

(

L∞xni
+ εixni

− λiN∞(η(xni
))
)

| → 0.

Here we have used η(λx) = λη(x)∀λ ≥ 0, ∀x ∈ H . We can assume the existence
of z ∈ H such that xni

⇀ z. (As a matter of fact, a subsequence of {xni
}∞i=1 has

this property, but for simplicity we can consider in this way. Similar arguments
are used later on.) Let {zi}∞i=1 be a sequence satisfying zi → z and zi ∈ Hi,
∀ i ∈ N . Then by using the boundedness of {xni

}∞i=1, we have
(

L∞xni
+ εixni

− λiN∞(η(xni
)), zni

− z
)

→ 0.

Moreover, the condition (2.6) and the boundedness of {xni
}∞i=1 and {zi}∞i=1 as

well as zi ∈ Hi, ∀ i ∈ N imply

(

L∞xni
+ εixni

− λiN∞(η(xni
)), xni

− zni

)

→ 0.
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So
(L∞xni

+ εixni
− λiN∞(η(xni

)), xni
− z)→ 0.

Hence we obtain

(2.7) (L∞xni
− λ0N∞(η(xni

)), xni
− z)→ 0.

Since L∞−λ0N∞(η) ∈ S+ (see (2.0)), we can assume xni
→ z. Finally, we arrive

at the equation
L∞z − λ0N∞(η(z)) = 0.

Now, if λ0 = 0 then L∞z = 0, so z = 0; if 0 < λ0 ≤ 1 then, by using both
L∞(K) = K and the fact that the assumptions L∞ ∈ S+ and L∞x = 0⇒ x = 0
give the invertibility of L∞, we obtain z ∈ K and L∞z = λ0N∞(z), so z = 0. We
have in both the cases z = 0. But |z| = 1, this contradiction proves the validity
of (2.5).
(We prove, for the reader convenience, the claim that L∞ ∈ S+ and L∞x = 0⇒
x = 0 give the invertibility of L∞ : The equation PnL∞x = Pnh has a unique
solution xn ∈ Hn, by (2.5), for any n ∈ N sufficiently large and h ∈ H such that
|xn| ≤ |h|/c1. Hence we can assume xn ⇀ x. Similarly as for (2.7), we have
(L∞xn−h, xn−x)→ 0. This gives (L∞xn, xn−x)→ 0. Since L∞ ∈ S+, we can
assume xn → x, and so x is a unique solution of L∞x = h satisfying |x| ≤ |h|/c1.
The claim is proved.)

Now (2.5) implies for n sufficiently large

(2.8) deg
(

Pn(L∞ + εI − N∞(η)), B1n, 0
)

= deg
(

PnL∞, B1n, 0
)

6= 0,

where B1n = {x ∈ Hn | |x| < 1}. Here we have used the invertibility of PnL∞

for n sufficiently large. This follows from (2.5).
Let Ln : Hn → Hn, respectively Nn : Hn → Hn, be the semi-linear, respec-

tively nonlinear, operator defined by the left-hand, respectively right-hand, side
of (2.4). Hence (2.4) has the form Ln(x) = Nn(x). The property (2.5) gives
|Ln(x)| ≥ c1|x| for any x ∈ Hn and n ∈ N sufficiently large. Since the right-
hand side of (2.4) is asymptotically sublinear, for any r > 0 there is a constant
c = c(r) > 0 satisfying |Nn(x)| ≤ r|x| + c for any n ∈ N and x ∈ Hn. Hence
there is a constant M > 0 such that Ln(x) 6= λNn(x) for any n sufficiently large,
λ ∈ [0, 1] and x ∈ SMn = {x ∈ Hn | |x| =M}. So by (2.8) we have

deg
(

Ln −Nn, BMn, 0
)

= deg(Ln, BMn, 0) 6= 0,

where BMn = {x ∈ Hn | |x| < M}. Now it is clear that for any n ∈ N

sufficiently large, the equation (2.4) has a solution xn ∈ Hn satisfying |xn| ≤ M .
Since L + εI − N(η) is pseudomonotone (see (2.0)) (we note that a strongly
monotone operator is of class S+ and L+εI is strongly monotone for any ε > 0), by
using the standard arguments (see [4], [8] and [10, pp. 54–55]), (2.2) has a solution
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xε, |xε| ≤ M . We already know xε ∈ K. So the sequence {xε} possesses a weakly
convergent subsequence as ε → 0+ and again by using the pseudomonotony of
L − N as well as the weak closeness of K, we obtain the desired solution. The
proof is finished. �

Remark 2.2. 1. It is clear that L(K) ⊂ K.

2. Since L∞ ∈ S+ and L∞x = 0⇒ x = 0, we know from the above proof that
L∞ is invertible. So the equation L∞x = λN∞x is equivalent to x = λL−1

∞ N∞x.

Assume that the interior K̊ of K is nonempty and if u ∈ K \ {0}, then −u /∈ K.

If N∞(K \ {0}) ⊂ K̊ then the condition (C) of Theorem 2.1 is equivalent to
1/λ 6= r(L−1

∞ N∞), where r denotes the spectral radius (see [5, the Krein-Rutman
theorem]). Since 0 < λ ≤ 1 this means r(L−1

∞ N∞) < 1. On the other hand, we
note that the condition r(L−1

∞ N∞) < 1 always implies the validity of (C).

3. Theorem 2.1 is an extension of [9, Theorem 4.10] and [1, Theorem 1].

By using Remark 2.2 we have

Corollary 2.3. Assume that (H1), (H2) hold and moreover, suppose
r(L−1

∞ N∞) < 1,
then (2.1) has a solution.

Theorem 2.4. If all assumptions of Theorem 2.1 hold except L−N ∈ PM , then
(2.1) is almost solvable, i.e. 0 ∈ (L − N)(K).

Proof: We follow the proof of Theorem 2.1. So there is a constant M > 0 such
that for any ε > 0 sufficiently small, there is a solution xε, L(xε)+εxε−N(xε) = 0,
xε ∈ K, |xε| ≤ M . The proof is finished. �

Now we replace the assumption N ∈ COMP by N ∈ CC. Then, of course,
N ∈ COMP and L − N ∈ PM (see (2.0)). So we obtain the following

Theorem 2.5. If the assumption N ∈ COMP is strengthened to N ∈ CC in
(2.1) and all assumptions of Theorem 2.4 hold. Then (2.1) has a solution.

Remark 2.6. Problems at resonances of (2.1), i.e. if L∞x−N∞x = 0 has a solution
x ∈ K \ {0}, can be investigated as well by using both an approach suggested in
[14] and the method of the proof of Theorem 2.1.

3. Nonnegative solutions

In this section, we study the existence of nonnegative solutions of (1.1–2) by
using the results from the previous section. We assume that there are constants
α > 0, β ≥ 0 and γ ∈ L2([0, 1]× [0, 1], R+) satisfying (see Remark 3.9 below)

lim
|u|→∞

|p(x, u)− αu|
/

|u| = 0 uniformly in x ∈ [0, 1](3.1)

lim
|u|→∞

|m(x, u)− βu|
/

|u| = 0 uniformly in x ∈ [0, 1](3.2)

lim
|u|→∞

|q(x, t, u)− γ(x, t)u|
/

|u| = 0 uniformly in x, t ∈ [0, 1].(3.3)
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Theorem 3.1. Assume that (3.1), (3.3) hold and moreover, suppose

(3.4)
(

p(x, u1)− p(x, u2)
)

(u1 − u2) > 0 ∀x ∈ [0, 1], u1 6= u2.

If the equation

(3.5) αu(x) = λ

1
∫

0

γ(x, t)u(t) dt

has no nonzero nonnegative solution for any 0 < λ ≤ 1, then (1.1) has a nonneg-
ative solution.

Proof: We apply Theorem 2.1 by putting

H = L2([0, 1], R), K =
{

u ∈ L2([0, 1], R) | u ≥ 0 almost everywhere on [0, 1]
}

L(u) = p(·, u), N(u) =

1
∫

0

q
(

·, t, u(t)
)

dt

L∞u = αu, N∞u =

1
∫

0

γ(·, t)u(t) dt.

It is clear that L ∈ MON , N ∈ COMP , N(K) ⊂ K, L∞ ∈ S+, N∞ ∈ COMP .
Since the function p(x, y)+εy is strictly increasing in y and it tends asymptotically
linearly to ±∞ as y → ±∞ uniformly in x ∈ [0, 1], we see that this function has
the continuous inverse function in y for any x ∈ [0, 1] with at most asymptotically
linear growth in y uniformly in x ∈ [0, 1]. Now we easily verify that (L+εI)(K) =
K.
By [10, p. 61], we know that (3.4) implies L ∈ S+. So L−N ∈ PM (see (2.0)).

The assumptions (H1− 2) are proved as usually by using (3.1) and (3.3) (see [6],
[10]). For instance, let us prove (H2). By (3.3) and the boundedness of q, for any
ω > 0, there is a constant c(ω) > 0 such that

|q(x, t, u)− γ(x, t)u| ≤ ω|u|+ c(ω) ∀ (x, t, u) ∈ [0, 1]× [0, 1]× R .

This gives

|N(u)− N∞u|L2 ≤

√

√

√

√

√

1
∫

0

1
∫

0

|q(x, t, u(t))− γ(x, t)u(t)|2 dt dx

≤

√

√

√

√

√

1
∫

0

(

ω|u(t)|+ c(ω)
)2

dt ≤
√
2

√

√

√

√

√ω2

1
∫

0

u2(t) dt+ c2(ω)

≤
√
2ω|u|L2 +

√
2c(ω),
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where we have used the inequality (a+ b)2 ≤ 2(a2 + b2). So (H2) is proved.

The last assumption of Theorem 2.1: L∞u = λN∞u, u ∈ K, 0 < λ ≤ 1 implies
u = 0, is guaranteed by (3.5). Hence the proof is finished. �

Concerning the equation (3.5), we have the following easy result from Corol-
lary 2.3.

Theorem 3.2. In addition to (3.1), (3.3), (3.4), assume that either

α >

√

√

√

√

√

1
∫

0

1
∫

0

γ2(x, t) dx dt

or γ is, moreover, bounded on [0, 1]× [0, 1] satisfying

α > min

{

sup
x∈[0,1]

1
∫

0

γ(x, t) dt, sup
t∈[0,1]

1
∫

0

γ(x, t) dx

}

.

Then (1.1) has a nonnegative solution.

Proof: To prove this theorem, we use the inequality r(A) ≤ ||A||X , where
A : X → X is a bounded linear operator with the norm ||A||X in a Banach
space X , to the operator

Au =
1

α

1
∫

0

γ(·, t)u(t) dt

considered gradually on the Banach spaces L∞([0, 1], R), L([0, 1], R), L2([0, 1], R).
The inequalities of this theorem ensure that ||A||X < 1 holds at least for one of
these three cases, so the proof is finished by Corollary 2.3. �

Since the set
{

x ∈ C
(

[0, 1], R
)

| x(·) ≥ 0
}

has a nonempty interior in

C
(

[0, 1], R
)

, by applying Remark 2.2, we can strengthen Theorem 3.2 as follows.

Theorem 3.3. In addition to (3.1), (3.3), (3.4), assume that

γ ∈ C
(

[0, 1]× [0, 1], (0,∞)
)

.

Then there is a unique α0 > 0 such that

α0u(x) =

1
∫

0

γ(x, t)u(t) dt
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has a positive solution. Moreover, if α /∈ [0, α0] then (1.1) has a nonnegative
solution.

Now we consider that γ in (3.5) has a convolution form, i.e. we assume

γ(x, t) = 0 for t > x

γ(x, t) = h(x − t) for t ≤ x,

where h ∈ L2([0, 1], R+). Then (3.5) has the form

(3.6) αu(x) = λ

x
∫

0

h(x − t)u(t) dt.

It is well-known that (3.6) has the only zero solution for any 0 < λ ≤ 1. Indeed,
we have

α2u2(x) ≤
x
∫

0

h2(x − t) dt

x
∫

0

u2(t) dt ≤
1
∫

0

h2(t) dt

x
∫

0

u2(t) dt.

The Gronwall lemma gives u = 0.
So we have

Theorem 3.4. In addition to (3.1), (3.3), (3.4), assume that

γ(x, t) = 0 for t > x

γ(x, t) = h(x − t) for t ≤ x,

where h ∈ L2([0, 1], R+). Then (1.1) has a nonnegative solution.

By applying Theorem 2.4, we obtain the following result.

Theorem 3.5. If the assumption (3.4) in Theorems 3.1– 4 is dropped (so p is
only nondecreasing in u) and the remaining ones are valid, then (1.1) has almost
a nonnegative solution.

Now we apply Theorem 2.5 to study (1.2) by assuming (3.1), (3.2) and setting

H = L2([0, 1], R), K =
{

u ∈ L2([0, 1], R) | u ≥ 0 almost everywhere on [0, 1]
}

L(u) = p(·, u), N(u) = m

(

·,
1
∫

0

k(·, t)u(t) dt

)

L∞u = αu, N∞u = β

1
∫

0

k(·, t)u(t) dt.

Since a compact linear mapping is completely continuous and a composition of
a continuous mapping and a completely continuous one is also completely contin-
uous, we have N ∈ CC. Hence Theorem 2.5 is applicable. Moreover, (1.2) is very
similar to (1.1). So, by using the above procedure, we obtain
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Theorem 3.6. Assume that (3.1), (3.2) hold. Then replacing γ by k and the
equation (3.5) by

αu(x) = λβ

1
∫

0

k(x, t)u(t) dt,

Theorems 3.1– 4 can be straightforwardly rewritten to obtain the existence results
of a nonnegative solution of (1.2).

For instance, a modified version of Theorem 3.4 has the following form.

Theorem 3.7. Assume that (3.1), (3.2) hold and (1.2) has the form

(3.7) p
(

x, u(x)
)

= m

(

x,

x
∫

0

h(x − t)u(t) dt

)

, x ∈ [0, 1],

where h ∈ L2([0, 1], R+). Then (3.7) has a nonnegative solution.

Remark 3.8. We see that the nonlinearity on the right-hand side of (1.2) is stronger
than the corresponding one of (1.1), because the assumption (3.4) can be dropped
in (1.2) for obtaining its nonnegative solution.

Remark 3.9. The asymptotic behaviors in (3.1–3) can be considered only for
u → +∞, because we are only interested in nonnegative solutions.
Finally, we apply Theorem 3.6 to solve (1.3) and its discontinuous version.

Theorem 3.10. Consider (1.3) and assume (3.1), (3.2) hold. If β < π2α then
(1.3) has a nonnegative concave solution.

Proof: In this case, the linear equation in Theorem 3.6 has the form (see (1.4))

u(x) =
λβ

α

1
∫

0

G(x, t)u(t) dt,

which is equivalent to −u′′(x) = λβ
α u(x), u(0) = u(1) = 0. It is well known

(see [5]) that this equation has a nonzero nonnegative concave solution only if
λβ
α = π2. Since 0 < λ ≤ 1 and β < π2α, the proof is finished. �

In the end of this paper, we consider the following discontinuous version of (1.3)

(3.8)
p(x,−u′′(x)) = g(u(x)) + f(x)

u(0) = u(1) = 0,

where we assume
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1. p is continuous possessing the properties of Introduction;

2. g : R → R is increasing and continuous on R \ A for a subset A ⊂ R with
no finite accumulation points such that

inf g = −∞, sup g = +∞
g(0+) = lim

s→0+
g(s) ≥ 0, g(0−) = lim

s→0−
g(s) ≤ 0 ;

3. f ∈ C([0, 1], R+).

By a solution of (3.8) we mean u such that u′′ ∈ L2([0, 1], R) and the following
relation holds almost everywhere on [0, 1]

(3.9)
p(x,−u′′(x)) − f(x) ∈ [g(u(x)−), g(u(x)+)]
u(0) = u(1) = 0.

Now we rewrite (3.9) by using a method from [2], [7]. So we are able to find
a continuous nondecreasing function e : R → R such that

e(t) = a, if t ∈ [g(a−), g(a+)],

where g(a±) = lim
s→a±

g(s).

Hence the equation (3.9) is equivalent to

e
(

p(x,−u′′(x)) − f(x)
)

= u(x).

Finally, we obtain

(3.10) e
(

p(x, z(x))− f(x)
)

− e(−f(x)) =

1
∫

0

G(x, t)z(t) dt − e(−f(x)),

where G is the above Green function. We see that (3.10) has the form of (1.4).
Moreover, if (3.1), respectively (3.2), holds for p, respectively m(x, u) = g(u) +
f(x) with β > 0, then the function

p1(x, z) = e
(

p(x, z)− f(x)
)

− e(−f(x))

has the linear asymptote αz/β as z → ±∞ uniformly in x ∈ [0, 1]. It is also clear
that p1 is nondecreasing in z, p1(·, 0) = 0 and it is nonnegative for z ≥ 0. Lastly,
the function −e(−f(x)) is nonnegative, since e(0) = 0 and e is nondecreasing. So,
by applying Theorem 3.6 like in the proof of Theorem 3.10, we obtain

Theorem 3.11. Consider (3.8) and assume (3.1), (3.2) hold for p, m(x, u) =
g(u) + f(x), respectively. If απ2 > β > 0 then (3.8) has a nonnegative concave
solution (see (3.9)).
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4. Concluding remarks

Remark 4.1. The proof of Theorem 2.1 can be considered also for the equation

(4.1) L(x) = N1(x) +N2(x), x ∈ K,

where L has the above properties, N1 ∈ COMP , N2 ∈ CC are such that

1. (N1 +N2)(K) ⊂ K and L − N1 ∈ PM ;

2. There are linear N1,∞, N2,∞ ∈ COMP such that |N1(x)+N2(x)−N1,∞x−
N2,∞x|/|x| → 0 as |x| → ∞ and (N1,∞ +N2,∞)(K) ⊂ K;

3. L∞x = λ(N1,∞x+N2,∞x), x ∈ K, 0 < λ ≤ 1 implies x = 0.

Then (4.1) has a solution.

Remark 4.2. Remark 4.1 implies the existence of a nonnegative solution of the
equation

(4.2) p
(

x, u(x)
)

=

1
∫

0

q
(

x, t, u(t)
)

dt+m

(

x,

1
∫

0

k(x, t)u(t) dt

)

, x ∈ [0, 1],

where p, q, m, k possessing the properties from Introduction and satisfying
(3.1–4) are such that the linear equation

αu(x) = λ

1
∫

0

(

γ(x, t) + βk(x, t)
)

u(t) dt

has no nonzero nonnegative solution for any 0 < λ ≤ 1.
Remark 4.3. Theorem 2.5 can be applied to certain nonlinear boundary value
problems of integrodifferential equations similarly as for (1.3) and (3.8). For
instance, it is applicable to the equation

(4.3)
p
(

x,−u′′(x)
)

=

1
∫

0

q
(

x, t, u(t)
)

dt+m(x, u(x)), x ∈ [0, 1]

u(0) = u(1) = 0,

where p, q, m possessing the properties from Introduction and satisfying (3.1–3)
are such that the linear equation

− u′′(x) =
λ

α

( 1
∫

0

γ(x, t)u(t) dt+ βu(x)

)

u(0) = u(1) = 0
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has no nonzero nonnegative concave solution for any 0 < λ ≤ 1. Then the equation
(4.3) has a nonnegative solution. Indeed, the equation (4.3) is equivalent to

(4.4)
p
(

x, z(x)
)

=

1
∫

0

q

(

x, t,

1
∫

0

G(t, s)z(s) ds

)

dt+m

(

x,

1
∫

0

G(x, t)z(t) dt

)

x ∈ [0, 1],

where G is the above Green function. It is clear that the right-hand side of (4.4)
is completely continuous (see the arguments over Theorem 3.6). So Theorem 2.5
can be used similarly as for (1.2) in Theorem 3.6.
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