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Normal integrands and related classes of functions

Anna Kucia, Andrzej Nowak

Abstract. Let D ⊂ T × X, where T is a measurable space, and X a topological space.
We study inclusions between three classes of extended real-valued functions on D which
are upper semicontinuous in x and satisfy some measurability conditions.

Keywords: normal integrand, Carathéodory function

Classification: 54C30, 28A20

1. Preliminaries

Throughout this paper (T, T ) is a measurable space, X a topological space,
and D a subset of T ×X . For a set A ⊂ T ×X , projT A denotes the projection
of A on T . We shall always assume that projT D = T . We say that X is Souslin
if it is a continuous image of a Polish space. By B(X) and T ⊗ B(X) we mean,
respectively, the Borel σ-field on X and the product σ-field on T ×X . The set D
is always considered with the trace σ-field D = {D ∩A |A ∈ T ⊗ B(X)}.
Let R be a family of sets. By S(R) we denote the family of all sets obtained

from R by the Souslin operation. If S(R) = R, we say R is a Souslin family. If
the σ-field T is complete with respect to a σ-finite measure, then T is a Souslin
family. We refer to Wagner [14] and Levin [10, Theorem D.7] for other sufficient
conditions for S(T ) = T .

We shall use the following projection theorem.

Theorem 1.1 ([4, Theorem 1.3], [10, Theorem D.3]). Suppose T is a Souslin
family and X is a Souslin space. Then projT A ∈ T for each A ∈ S(T ⊗ B(X)).

Let ψ : T → P(Y ), where Y is a topological space and P(Y ) is the family of
all subsets of Y . The set-valued map ψ is measurable if

ψ−1(V ) = {t ∈ T |ψ(t) ∩ V 6= ∅} ∈ T

for each open V ⊂ Y (note that Himmelberg [5] calls such a mapping weakly
measurable).
By Dt we denote t-section of D, i.e. Dt = {x ∈ X | (t, x) ∈ D}, t ∈ T . The

set D may be treated as a graph of the multifunction t → Dt. We say that D
has a Castaing representation if there exists a countable family U of measurable
functions u : T → X such that for each t ∈ T , u(t) ∈ Dt and the set {u(t) |u ∈ U}
is dense in Dt.
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The set D has a Castaing representation provided one of the following condi-
tions is satisfied:

(i) D = T ×X and X is separable.
(ii) There is a countable subset E ⊂ X such that E ∩ Dt is dense in Dt for

t ∈ T , and Dx = {t ∈ T | (t, x) ∈ D} belongs to T for x ∈ E.
(iii) X is a Souslin space, T is a Souslin family and D ∈ S(T ⊗B(X)) (see e.g.

[10, Theorem D.4]).
(iv) X is separable and metrizable, Dt are complete, and the multifunction

t→ Dt is measurable (see [5, Theorem 5.6]).

Throughout this paper we deal with extended real-valued functions f : D →
R ∪ {−∞}. By a set-valued map associated to f we mean φ : T → P(X × R)
defined by

φ(t) = {(x, r) ∈ X × R | (t, x) ∈ D and f(t, x) ≥ r}.
Note that φ(t) is the subgraph of f(t, ·). We say that such a function f is
a Carathéodory integrand if it is finite, measurable (with respect to D), and
for each t ∈ T , f(t, ·) is continuous on Dt. It is well known that if X has a count-
able base and f : T ×X → R is measurable in t and continuous in x, then f is
product measurable (i.e. f is a Carathéodory integrand).
We shall study inclusions between the following classes of functions:

F1(D) = {f : D → R ∪ {−∞} | f is measurable and for each t ∈ T , f(t, ·) is
upper semicontinuous on Dt},

F2(D) = {f : D → R ∪ {−∞} | f is the limit of a decreasing sequence
of Carathéodory integrands},

F3(D) = {f : D → R∪ {−∞} | the set-valued map associated to f is measurable
and for each t ∈ T , f(t, ·) is upper semicontinuous on Dt}.

Elements of F3(D) are called normal integrands (cf. Rockafellar [12]; note that in
[7] we use a different terminology).

The study of these functional classes is motivated by their applications in
optimization and mathematical economy. In particular, they appear when we
deal with the following problem: Let f be a real-valued function on D. We ask
under which assumptions the function
(1.1) v(t) = sup{f(t, x) |x ∈ Dt}, t ∈ T,
is measurable. Suppose for each t ∈ T this supremum is attained. Does there exist
measurable u : T → X such that u(t) ∈ Dt and v(t) = f(t, u(t)), t ∈ T ? Such
a function u is called an optimal measurable selection. The following theorem
holds:

Theorem 1.2 ([13], [3]). Suppose X is separable and metrizable. If the multi-
function t→ Dt, t ∈ T , is measurable and compact-valued, and f ∈ F2(D), then
there exists an optimal measurable selection.

In general, the assumption f ∈ F2(D) cannot be replaced by the weaker con-
dition f ∈ F1(D) (cf. [3]).
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2. Main result

We start with two auxiliary lemmata. Remind that we have assumed
projT D = T .

Lemma 1. Suppose D has a Castaing representation. If A ⊂ D is such that
A ∈ D and At is open in Dt for each t ∈ T , then projT A ∈ T .

Proof: Let U be a Castaing representation of D. Since At are open in Dt,

projT A = {t ∈ T |u(t) ∈ At for some u ∈ U} =
⋃

u∈U

{t ∈ T | (t, u(t)) ∈ A}.

The observation that the function from T to D given by t → (t, u(t)) is measur-
able, completes the proof.

�

The next lemma is a slight generalization of a result from [8, Lemma ], but for
the sake of completeness we give its proof.

Lemma 2. Let f : D → R ∪ {−∞}, and φ be the set-valued map associated
to f . Then:

(i) If φ is measurable then the function v defined by (1.1) is measurable.
(ii) If f is a Carathéodory integrand and D has a Castaing representation,
then f is a normal integrand.

(iii) If X is separable and metric, φ is measurable and g : X → R is uniformly

continuous, then the set-valued map ψ associated to h, h(t, x) = f(t, x)−
g(x), (t, x) ∈ D, is also measurable.

Proof: Observe that for any V ⊂ X , a, b ∈ R, a < b, we have

(2.1) φ−1(V × (a, b)) = φ−1(V × (a,∞)) = projT (f
−1((a,∞)) ∩ (T × V )).

Now the assertion (i) follows from the equalities

v−1((a,∞)) = {t ∈ T | f(t, x) > a for some x ∈ Dt} =

= projT f
−1((a,∞)) = φ−1(X × (a,∞)).

If f(t, ·) is continuous, then the t-section of f−1((a,∞) ∩ (T × V )) is open in Dt

for each open V ⊂ X . The application of Lemma 1 together with the equality
(2.1) prove the assertion (ii).
In order to prove (iii), take for each n ∈ N a number δn > 0 such that |g(x)−

g(y)| < 1
n
provided d(x, y) < δn, where d is a metric on X . Let E ⊂ X be

countable and dense. It is not difficult to check that for open V ⊂ X and a ∈ R

we have

{(t, x) ∈ D ∩ (T × V ) |h(t, x) > a} =

=
⋃

n∈N

⋃

e∈V ∩E

{

(t, x) ∈ D ∩ (T ×B(e, δn)) | f(t, x) > g(e) + a+
1

n

}

,
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where B(e, δn) is the open ball with center e and radius δn. This equality together
with (2.1) imply the measurability of ψ, which completes the proof. �

The following theorem summarizes our knowledge of relations between classes
Fi(D), i = 1, 2, 3. Some of these inclusions were already known. We refer to
Remark 2 for the comparison of our theorem with previous results.

Theorem 2.1. Let X be separable and metrizable, and D ⊂ T × X such that
projT D = T . Then:

(i) F3(D) ⊂ F2(D) ⊂ F1(D).
(ii) If T is a Souslin family, X a Souslin space and D ∈ S(T ⊗ B(X)), then

F1(D) = F2(D) = F3(D).
(iii) If T and X are Polish spaces, T = B(T ) and D ∈ S(T ⊗ B(X)), then

F1(D) = F2(D).
(iv) If X is σ-compact, and D has a Castaing representation and closed t-

sections Dt, t ∈ T , then F2(D) = F3(D).

Proof: (i) The inclusion F2(D) ⊂ F1(D) is obvious, thus we prove F3(D) ⊂
F2(D). Let h be an increasing homeomorphism of R ∪ {−∞} and [−1, 1). It is
immediate that if f ∈ F3(D) then h ◦ f ∈ F3(D). Similarly, if g : D → R is
a Carathéodory integrand such that |g(t, x)| < 1, (t, x) ∈ D, then h−1 ◦ g is a
Carathéodory integrand too. Hence, it suffices to prove that any f ∈ F3(D) which
satisfies −1 ≤ f(t, x) < 1 is the limit of a decreasing sequence of Carathéodory
integrands with values in the interval (−1, 1).
We adopt the classical proof of the theorem of Baire on the approximation of

a semicontinuous function by a monotone sequence of continuous ones (see e.g.
[1, p. 390]). Let the functions fn : T ×X → [−1, 1) and gn : T ×X → (−1, 1) be
defined by the formulae

fn(t, x) = sup{f(t, y)− nd(x, y) | y ∈ Dt},

gn(t, x) = max
{

fn(t, x), −1 +
1

n

}

, n ∈ N,

where d is a metric compatible with the topology ofX . By Lemma 2, the functions
fn are measurable in t. Consequently, gn are also measurable in t. From the proof
of the theorem of Baire we know that gn(t, ·) are continuous, and the sequence
gn |D is convergent to f . Being measurable in t and continuous in x the functions
gn are product measurable. Hence, gn |D are also measurable. It means that
f ∈ F2(D).

(ii) It suffices to prove that F1(D) ⊂ F3(D). Note that under our assumptions
D ⊂ S(T ⊗ B(X)). If f ∈ F1(D) then f

−1((a,∞)) ∈ D for each a ∈ R. Now
(2.1) together with Theorem 1.1 imply the measurability of the set-valued map φ
associated to f (cf. [10, Theorem D.6]).

(iii) This is a consequence of Theorem 3.1 from [7].
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(iv) We prove the inclusion F2(D) ⊂ F3(D). Any f ∈ F2(D) is the limit of
a decreasing sequence {fn |n ∈ N} of Carathéodory integrands. Denote by φ and
φn, respectively, the set-valued maps associated to f and fn. It is not difficult to
check that

φ(t) =
⋂

{φn(t) |n ∈ N}.

By Lemma 2 (ii), each φn is measurable (and closed-valued). Since X is σ-
compact, it implies the measurability of φ ([5, Corollary 4.2]). It means that
f is a normal integrand, which completes the proof. �

Remarks. 1. Theorem 2.1 is a generalization of the main result from [8], where
we studied the case D = T ×X .

2. We shall discuss some previous results, but note that the definition of the
normal integrand varies from paper to paper. An analogous result to (ii) for
D = T ×X was already given by Berliocchi and Lasry ([2, Theorem 2 and The-
orem 2′ ]). In Theorem 2 they studied the case when T is a locally compact
Polish space endowed with a Radon measure, and the corresponding properties
of f(t, ·) are required for almost all t ∈ T . Theorem 2′ for an abstract mea-
sure space was given without proof. Rockafellar ([12, Theorem 2A]) proved that
F1(T ×R

n) = F3(T ×R
n), under assumption that the σ-field T is complete. The

equality F1(T × X) = F2(T × X) was given by Pappas ([11, Corollary 1]) for
the case, when T is complete and X is a locally compact Polish space. Levin
([9, Theorem 7]) gave the equality F2(T ×X) = F3(T ×X) for compact X , but
without proof. Related result to (ii) for D = T × X was obtained by Zygmunt
([15, Theorem 3.4]).

3. If there is a function f : D → R∪ {−∞} such that its associated set-valued
map φ is measurable, then D is the graph of a measurable multifunction. In the
proof of this fact we may assume that −1 ≤ f(t, x) < 1 for (t, x) ∈ D (cf. the
proof of (i)). Then for any open V ⊂ X ,

{t ∈ T |Dt ∩ V 6= ∅} = {t ∈ T | (t, x) ∈ D for some x ∈ V } = φ−1(V × R) ∈ T .

Hence, t→ Dt, t ∈ T , is a measurable multifunction.

3. Examples

In this section we give two examples which show that in general, the classes
Fi(D), i = 1, 2, 3, do not coincide.

Example 1. Recently the first author ([6]) gave an example of a non-Borel func-
tion g : T → [0, 1] with the graph W being a Gδ-set in T × [0, 1], where T is
a coanalytic subset of the plane. It is based on the Sierpiński example from
1931. Let X be the interval [0, 1], T = B(T ) and D = T × X . We show that
F1(D) 6= F2(D).
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Let f be the characteristic function of the setW . It is obvious that f ∈ F1(D).
We claim that f does not belong to F2(D). If not, there is a decreasing sequence
of Carathéodory functions fn, which converges to f . Replacing fn by min{fn, 1},
we may assume that 0 ≤ fn(t, x) ≤ 1, (t, x) ∈ D, and fn(t, x) = 1 for (t, x) ∈ W .
Denote

An = f
−1
n

((1

2
, 1

])

, Bn = f
−1
n

([1

2
, 1

])

,

An = {(t, x) ∈ T ×X |x ∈ cl (An)t}.

We have

(3.1) W ⊂ An ⊂ An ⊂ Bn, n ∈ N.

It is easy to see that

(3.2) W =
⋂

{Bn |n ∈ N}.

Since vertical sections of An are open in [0, 1], the set-valued map t → (An)t
is measurable. Indeed, for each open V ⊂ X ,

{

t ∈ T | (An)t ∩ V 6= ∅
}

= projT (An ∩ T × V ) ∈ T ,

because of Lemma 1. Consequently, An is a graph of a measurable multifunction
too. It follows from (3.1) and (3.2) that

W =
⋂

{

An |n ∈ N
}

.

The intersection of countably many measurable multifunctions with compact val-
ues is a measurable set-valued map ([5, Theorem 4.1]). Hence W is a graph of
a Borel function, which is a contradiction.

This example gives a negative answer to the question from [7]. Recently Burgess
and Maitra [3] constructed a function f ∈ F1(T × X), where X is a compact
metric space, for which there is no optimal measurable selection. It follows from
Theorem 1.2 that such a function does not belong to F2(T ×X).

Example 2. Let X be the set of irrationals, T the interval [0, 1], T = B(T ) and
D = T ×X . Let A ⊂ T ×X be closed and such that projT A is not Borel. Finally,
let f be the characteristic function of A. It is immediate that f ∈ F1(D), and the
function v corresponding to f by (1.1) is the characteristic function of projT A.
It follows from Lemma 2 (i) that f /∈ F3(D). Thus F1(D) = F2(D) 6= F3(D).

Note that in Example 1 we have F1(D) 6= F2(D) = F3(D). Therefore it is
interesting to construct a set D such that F1(D) 6= F2(D) 6= F3(D). It can be
done by combining Examples 1 and 2; we omit the details.
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