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On a condition weaker than insatiability condition
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Abstract. A condition weaker than the insatiability condition is given.
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An economy ε is defined by: m consumers indexed by i = 1, 2, . . . , m; n produc-
ers indexed by j = 1, 2, . . . , n; for each i = 1, 2, . . . , m a consumption set (X,�i),

where Xi is a nonempty subset of R
ℓ the production set for the producer j, and

a priori vector w ∈ R
ℓ, called the total resources of ε. A state of economy ε is an

(m+ n)-tuple of Rℓ, which can be represented by a point of R(m+n)ℓ.
A state (x, y) = ((xi), (yj)) of ε is called attainable if

∑m
i=1 xi −

∑m
j=1 yj =

w. The set of all attainable states of an economy ε will be denoted by A. An
increasing function ui : Xi → R is called a utility function (i.e. xi, x

′

i ∈ Xi with
xi �i x′i ⇒ ui(xi) ≤ ui(x

′

i)).
In this note we consider the economy ε = ((Xi,�ui

), (Yj), w), whereXi, �ui
, Yj

and w are defined as above, i.e. we are assuming that each preference preordering
�i can be represented by a utility function ui. The utility function ui is said
to satisfy the insatiability condition if ui has no greatest element with respect
to �ui

. The greatest element of �ui
is called a satiation consumption. Finally,

a real valued function f defined on a convex set Y is said to be quasiconvex if for
each real number t, the set {y ∈ Y : f(y) > t} is either empty or convex.
Any other term or concept which is not defined here can be found in Debreu [1].

In [2] and [3] the author has proved the existence of Pareto optimum of an economy
under the following condition (P) instead of insatiability condition:

(P)

If (x, y) = ((xi), (yj)) and (x
′, y′) = ((x′i), (y

′

j)) are two attainable states

of an economy ε = ((Xi,�ui
), (Yi), w) such that ui(xi) ≥ ui(x

′

i) for all

i and ui(xi) > ui(x
′

i) for at least one i then there is an attainable state

(x, y) = ((xi), (yj)) of ε such that ui(xi) > ui(x
′

i) for each i = 1, 2, . . . , m.

The object of this note is to prove that under the usual conditions on the economy
ε the condition (P) is weaker than the insatiability condition, i.e. the insatiability
condition implies the condition (P). Thus the results proved in [2] is more general
than the corresponding results of Debreu [1].

We first prove the following lemma.
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Lemma 1. If (x, y) = ((xi), (yj)) and (x
′, y′) = ((x′i, y

′

j)) are two attainable

states of an economy ε = ((Xi,�ui
), (Yj), w), where each Xi is connected and no

consumption is satiated and each ui is continuous and if ui(xi) ≥ ui(x
′

i) for all i
and ui(xi) > ui(x

′

i) for at lest one i, then there is a state (x, y) = ((xi, yy)) such

that ui(xi) > ui(x
′

i) for each i = 1, 2, . . . , m.

Proof: Let J ⊂ {1, 2, . . . , m} such that ui(xi) > ui(x
′

i) for all i ∈ J and K ⊂
{1, 2, . . . , m} such that i /∈ J , i.e. ui(x) = ui(x

′

i) for all i ∈ K. Now we choose
a number ǫ > 0 such that ǫ < min{ui(xi)− ui(x

′

i) : i ∈ J}.
Since for each i = 1, 2, . . . , m, Xi is connected and ui is continuous and no

consumption is satiated, it is possible to choose x = (xi) such that

ui(xi) =











ui(x
′

i) +
ǫ
s if i ∈ K;

ui(xi) +
ǫ
r if i ∈ J, where s and r denote the cardinality

of K and J respectively.

Now it is clear that ui(xi) > ui(x
′

i) for each i = 1, 2, . . . , m and also for the sake
of interest we note that

m
∑

i=1

ui(xi) =
∑

i∈K

ui(xi) +
∑

i∈J

ui(xi)

=
∑

i∈K

ui(x
′

i) + ǫ+
∑

i∈J

ui(xi)− ǫ

=
∑

i∈K

ui(xi) +
∑

i∈J

ui(xi) =

m
∑

i=1

ui(xi).

�

Theorem 1. Let ε = ((Xi,�ui
), (Yj), w) be an economy such that

(a) for each i = 1, 2, . . . , m

(i) Xi is convex;

(ii) ui is continuous and quasiconcave;

(iii) ui is insatiable;

(b) Y =
∑n

j=1 Yj is convex.

Then ε satisfies the condition (P).

Proof: Let (x, y) = ((xi), (yj)) and (x
′, y′) = ((x′i), (y

′

j)) be two attainable

states of ε such that ui(xi) ≥ ui(x
′

i) for all i and ui(xi) > ui(x
′

i) for at least
one i. For each i = 1, 2, . . . , m, let Oi(x

′

i) = {xi ∈ Xi : ui(xi) > ui(x
′

i)}. Then
for each i = 1, 2, . . . , m, Oi(x

′

i) is a nonempty open subset of Xi by virtue of the
continuity of ui and the Lemma.
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In order to prove the theorem it will suffice to prove that w ∈
∑m

i=1Oi(x
′

i)−Y .
We prove it by contradiction.

If possible, let w /∈
∑m

i=1Oi(x
′

i) − Y = Z. Since by quasi concavity of ui,
Oi(x

′

i) is convex and by (b) Y is convex, it follows that Z is convex. Hence by
Minskowski’s theorem (see Debreu [1, p. 25]) there is a hyperplane H through w

bounding Z, i.e. there is p ∈ R
ℓ such that p 6= 0 and p · a ≥ p · w for every

a ∈ Z where · is the inner product in R
ℓ. Now by the continuity of each ui, it

follows that G =
∑m

i=1Ci(x
′

i) − Y is contained in C =
∑m

i=1Oi(x
′

i) −
∑n

j=1 Yj

where for each i = 1, 2, . . . , m, Ci(x
′

i) = {xi ∈ Xi : ui(xi) ≥ ui(x
′

i)}. Hence it
follows that

∑m
i=1C1(x

′

i)−Y is contained in C and hence in the closed half space
above the hyperplane H . Now since w = x′ − y′ ∈ G, it minimizes p · a on G.
Hence x′i minimizes p ·a on C1(x

′

i) for each i and −y′j minimizes p ·a on −Yj (see

e.g. Section 3.4 in [1, p. 45]). Hence by the result stated in [1, p. 93], ((x′i), (y
′

j))

is an equilibrium with respect to the price p and by (6.3) in Debreu [1, p. 94],
((x′i), (y

′

j)) is a Pareto optimum which is impossible. Hence w ∈ Z. �
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