## Commentationes Mathematicae Universitatis Carolinae

Enayet U, Tarafdar
On a condition weaker than insatiability condition

Commentationes Mathematicae Universitatis Carolinae, Vol. 36 (1995), No. 4, 805--807

Persistent URL: http://dml.cz/dmlcz/118807

## Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1995

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

# On a condition weaker than insatiability condition 

E. TARAFDAR

Abstract. A condition weaker than the insatiability condition is given.
Keywords: economy, attainable state, insatiability condition, satiable consumption
Classification: 90A14, 90D13

An economy $\varepsilon$ is defined by: $m$ consumers indexed by $i=1,2, \ldots, m ; n$ producers indexed by $j=1,2, \ldots, n$; for each $i=1,2, \ldots, m$ a consumption set $\left(X, \preceq_{i}\right)$, where $X_{i}$ is a nonempty subset of $\boldsymbol{R}^{\ell}$ the production set for the producer $j$, and a priori vector $w \in \boldsymbol{R}^{\ell}$, called the total resources of $\varepsilon$. A state of economy $\varepsilon$ is an $(m+n)$-tuple of $\boldsymbol{R}^{\ell}$, which can be represented by a point of $\boldsymbol{R}^{(m+n) \ell}$.

A state $(x, y)=\left(\left(x_{i}\right),\left(y_{j}\right)\right)$ of $\varepsilon$ is called attainable if $\sum_{i=1}^{m} x_{i}-\sum_{j=1}^{m} y_{j}=$ $w$. The set of all attainable states of an economy $\varepsilon$ will be denoted by $A$. An increasing function $u_{i}: X_{i} \rightarrow \boldsymbol{R}$ is called a utility function (i.e. $x_{i}, x_{i}^{\prime} \in X_{i}$ with $\left.x_{i} \preceq_{i} x_{i}^{\prime} \Rightarrow u_{i}\left(x_{i}\right) \leq u_{i}\left(x_{i}^{\prime}\right)\right)$.

In this note we consider the economy $\varepsilon=\left(\left(X_{i}, \preceq u_{i}\right),\left(Y_{j}\right), w\right)$, where $X_{i}, \preceq u_{i}, Y_{j}$ and $w$ are defined as above, i.e. we are assuming that each preference preordering $\preceq_{i}$ can be represented by a utility function $u_{i}$. The utility function $u_{i}$ is said to satisfy the insatiability condition if $u_{i}$ has no greatest element with respect to $\preceq u_{i}$. The greatest element of $\preceq_{u_{i}}$ is called a satiation consumption. Finally, a real valued function $f$ defined on a convex set $Y$ is said to be quasiconvex if for each real number $t$, the set $\{y \in Y: f(y)>t\}$ is either empty or convex.

Any other term or concept which is not defined here can be found in Debreu [1]. In [2] and [3] the author has proved the existence of Pareto optimum of an economy under the following condition (P) instead of insatiability condition: If $(x, y)=\left(\left(x_{i}\right),\left(y_{j}\right)\right)$ and $\left(x^{\prime}, y^{\prime}\right)=\left(\left(x_{i}^{\prime}\right),\left(y_{j}^{\prime}\right)\right)$ are two attainable states of an economy $\varepsilon=\left(\left(X_{i}, \preceq u_{i}\right),\left(Y_{i}\right), w\right)$ such that $u_{i}\left(x_{i}\right) \geq u_{i}\left(x_{i}^{\prime}\right)$ for all $i$ and $u_{i}\left(x_{i}\right)>u_{i}\left(x_{i}^{\prime}\right)$ for at least one $i$ then there is an attainable state $(\bar{x}, \bar{y})=\left(\left(\bar{x}_{i}\right),\left(\bar{y}_{j}\right)\right)$ of $\varepsilon$ such that $u_{i}\left(\bar{x}_{i}\right)>u_{i}\left(x_{i}^{\prime}\right)$ for each $i=1,2, \ldots, m$.
The object of this note is to prove that under the usual conditions on the economy $\varepsilon$ the condition (P) is weaker than the insatiability condition, i.e. the insatiability condition implies the condition (P). Thus the results proved in [2] is more general than the corresponding results of Debreu [1].

We first prove the following lemma.

Lemma 1. If $(x, y)=\left(\left(x_{i}\right),\left(y_{j}\right)\right)$ and $\left(x^{\prime}, y^{\prime}\right)=\left(\left(x_{i}^{\prime}, y_{j}^{\prime}\right)\right)$ are two attainable states of an economy $\varepsilon=\left(\left(X_{i}, \preceq u_{i}\right),\left(Y_{j}\right), w\right)$, where each $X_{i}$ is connected and no consumption is satiated and each $u_{i}$ is continuous and if $u_{i}\left(x_{i}\right) \geq u_{i}\left(x_{i}^{\prime}\right)$ for all $i$ and $u_{i}\left(x_{i}\right)>u_{i}\left(x_{i}^{\prime}\right)$ for at lest one $i$, then there is a state $(\bar{x}, \bar{y})=\left(\left(\bar{x}_{i}, \bar{y}_{y}\right)\right)$ such that $u_{i}\left(\bar{x}_{i}\right)>u_{i}\left(x_{i}^{\prime}\right)$ for each $i=1,2, \ldots, m$.
Proof: Let $J \subset\{1,2, \ldots, m\}$ such that $u_{i}\left(x_{i}\right)>u_{i}\left(x_{i}^{\prime}\right)$ for all $i \in J$ and $K \subset$ $\{1,2, \ldots, m\}$ such that $i \notin J$, i.e. $u_{i}(x)=u_{i}\left(x_{i}^{\prime}\right)$ for all $i \in K$. Now we choose a number $\epsilon>0$ such that $\epsilon<\min \left\{u_{i}\left(x_{i}\right)-u_{i}\left(x_{i}^{\prime}\right): i \in J\right\}$.

Since for each $i=1,2, \ldots, m, X_{i}$ is connected and $u_{i}$ is continuous and no consumption is satiated, it is possible to choose $\bar{x}=\left(\bar{x}_{i}\right)$ such that

$$
u_{i}\left(\bar{x}_{i}\right)= \begin{cases}u_{i}\left(x_{i}^{\prime}\right)+\frac{\epsilon}{s} & \text { if } i \in K ; \\ u_{i}\left(x_{i}\right)+\frac{\epsilon}{r} & \text { if } i \in J, \text { where } s \text { and } r \text { denote the cardinality } \\ & \text { of } K \text { and } J \text { respectively. }\end{cases}
$$

Now it is clear that $u_{i}\left(\bar{x}_{i}\right)>u_{i}\left(x_{i}^{\prime}\right)$ for each $i=1,2, \ldots, m$ and also for the sake of interest we note that

$$
\begin{aligned}
\sum_{i=1}^{m} \bar{u}_{i}\left(\bar{x}_{i}\right) & =\sum_{i \in K} u_{i}\left(\bar{x}_{i}\right)+\sum_{i \in J} u_{i}\left(\bar{x}_{i}\right) \\
& =\sum_{i \in K} u_{i}\left(x_{i}^{\prime}\right)+\epsilon+\sum_{i \in J} u_{i}\left(x_{i}\right)-\epsilon \\
& =\sum_{i \in K} u_{i}\left(x_{i}\right)+\sum_{i \in J} u_{i}\left(x_{i}\right)=\sum_{i=1}^{m} u_{i}\left(x_{i}\right)
\end{aligned}
$$

Theorem 1. Let $\varepsilon=\left(\left(X_{i}, \preceq u_{i}\right),\left(Y_{j}\right), w\right)$ be an economy such that
(a) for each $i=1,2, \ldots, m$
(i) $X_{i}$ is convex;
(ii) $u_{i}$ is continuous and quasiconcave;
(iii) $u_{i}$ is insatiable;
(b) $Y=\sum_{j=1}^{n} Y_{j}$ is convex.

Then $\varepsilon$ satisfies the condition (P).
Proof: Let $(x, y)=\left(\left(x_{i}\right),\left(y_{j}\right)\right)$ and $\left(x^{\prime}, y^{\prime}\right)=\left(\left(x_{i}^{\prime}\right),\left(y_{j}^{\prime}\right)\right)$ be two attainable states of $\varepsilon$ such that $u_{i}\left(x_{i}\right) \geq u_{i}\left(x_{i}^{\prime}\right)$ for all $i$ and $u_{i}\left(x_{i}\right)>u_{i}\left(x_{i}^{\prime}\right)$ for at least one $i$. For each $i=1,2, \ldots, m$, let $O_{i}\left(x_{i}^{\prime}\right)=\left\{\bar{x}_{i} \in X_{i}: u_{i}\left(\bar{x}_{i}\right)>u_{i}\left(x_{i}^{\prime}\right)\right\}$. Then for each $i=1,2, \ldots, m, O_{i}\left(x_{i}^{\prime}\right)$ is a nonempty open subset of $X_{i}$ by virtue of the continuity of $u_{i}$ and the Lemma.

In order to prove the theorem it will suffice to prove that $w \in \sum_{i=1}^{m} O_{i}\left(x_{i}^{\prime}\right)-Y$. We prove it by contradiction.

If possible, let $w \notin \sum_{i=1}^{m} O_{i}\left(x_{i}^{\prime}\right)-Y=Z$. Since by quasi concavity of $u_{i}$, $O_{i}\left(x_{i}^{\prime}\right)$ is convex and by (b) $Y$ is convex, it follows that $Z$ is convex. Hence by Minskowski's theorem (see Debreu [1, p. 25]) there is a hyperplane $H$ through $w$ bounding $Z$, i.e. there is $p \in \boldsymbol{R}^{\ell}$ such that $p \neq 0$ and $p \cdot a \geq p \cdot w$ for every $a \in Z$ where $\cdot$ is the inner product in $\boldsymbol{R}^{\ell}$. Now by the continuity of each $u_{i}$, it follows that $G=\sum_{i=1}^{m} C_{i}\left(x_{i}^{\prime}\right)-Y$ is contained in $C=\sum_{i=1}^{m} \overline{O_{i}\left(x_{i}^{\prime}\right)}-\sum_{j=1}^{n} Y_{j}$ where for each $i=1,2, \ldots, m, C_{i}\left(x_{i}^{\prime}\right)=\left\{\bar{x}_{i} \in X_{i}: u_{i}\left(\bar{x}_{i}\right) \geq u_{i}\left(x_{i}^{\prime}\right)\right\}$. Hence it follows that $\sum_{i=1}^{m} C_{1}\left(x_{i}^{\prime}\right)-Y$ is contained in $C$ and hence in the closed half space above the hyperplane $H$. Now since $w=x^{\prime}-y^{\prime} \in G$, it minimizes $p \cdot a$ on $G$. Hence $x_{i}^{\prime}$ minimizes $p \cdot a$ on $C_{1}\left(x_{i}^{\prime}\right)$ for each $i$ and $-y_{j}^{\prime}$ minimizes $p \cdot a$ on $-Y_{j}$ (see e.g. Section 3.4 in $[1$, p. 45]). Hence by the result stated in [1, p. 93$]$, $\left(\left(x_{i}^{\prime}\right),\left(y_{j}^{\prime}\right)\right)$ is an equilibrium with respect to the price $p$ and by (6.3) in Debreu [1, p.94], $\left(\left(x_{i}^{\prime}\right),\left(y_{j}^{\prime}\right)\right)$ is a Pareto optimum which is impossible. Hence $w \in Z$.

## References

[1] Debreu G., Theory of Value, Wiley, New York, 1959.
[2] Tarafdar E., Pareto solutions of cone inequality and Pareto optimality of a mapping, Proceedings of World Congress of Nonlinear Analysis - 1992, Walter de Gruyter Publishers, 1995, Vol. III, pp. 2431-2439.
[3] Tarafdar E., Applications of Pareto optimality of a mapping to mathematical economics, Proceedings of World Congress of Nonlinear Analysis - 1992, Walter de Gruyter Publishers, 1995, Vol. III, pp. 2511-2519.

Department of Mathematics, University of Queensland, St. Lucia, Brisbane 4072, Australia

