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On L2,nloc -regularity for the gradient of

a weak solution to nonlinear elliptic systems

Josef Daněček

Abstract. Interior L2,n
loc
-regularity for the gradient of a weak solution to nonlinear second

order elliptic systems is investigated.
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1. Introduction

In this paper we consider the problem of the regularity of the first derivatives
of weak solutions to a nonlinear elliptic system

(1) −Dα (A
α
i (Du)) = 0, (i = 1, . . . , N)

in a bounded open set Ω ⊂ Rn. Throughout the whole text we use the summation
convention over repeated indexes.
If n ≥ 3, it is known that Du may not be continuous. Examples are provided

by nonregular solutions of elliptic systems presented by Nečas in [8]. Campanato

in [2] proved that Du ∈ L2,λloc

(

Ω, RN
)

with λ(n) < n, and u ∈ C
0,α
loc

(

Ω, RN
)

for

some α < 1 if n = 3, 4. In this paper we give sufficient condition on L2,nloc -regularity

for the gradient of a weak solution to (1). Recall that if Du ∈ L2,nloc , then u is
locally Zygmund continuous.

2. Preliminaries

Let Ω be a bounded open set in Rn with points x = (x1, . . . xn), n ≥ 3.
The notation Ω0 ⋐ Ω means that the closure of Ω0 is contained in Ω, i.e. Ω0 ⊂
Ω. For the sake of simplicity we denote by | · | and (., .) the norm and scalar
product in Rn, RN and RnN . If x ∈ Rn and r is a positive real number, we set
B (x, r) = {y ∈ Rn : |y − x| < r}, i.e. the open ball in Rn,Ω (x, r) = B (x, r) ∩ Ω.
By µ (Ω (x, r)) we denote the n-dimensional Lebesgue measure of Ω (x, r). A
bounded domain Ω ⊂ Rn is said to be of type A if there exists a constant A > 0
such that for every x ∈ Ω and all 0 < r < diam Ω it holds µ (Ω (x, r)) ≥ Arn.

Let u : Ω → RN , N ≥ 1, u (x) =
(

u1 (x) , . . . , uN (x)
)

be a vector-valued
function and Du = (D1u, . . . , Dnu), Dα = ∂/∂xα.
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By ux,r = µ−1 (Ω (x, r))
∫

Ω(x,r) u (y) dy =
∫

Ω(x,r) u (y) dy we denote mean value

of u over the set Ω(x, r) provided that u ∈ L1(Ω, RN ). Besides usually used

spaces as C∞
0

(

Ω, RN
)

, the Hölder spaces C0,α
(

Ω, RN
)

and the Sobolev spaces

Hk,p(Ω, RN ), H
k,p
loc (Ω, RN ), H

k,p
0 (Ω, RN ) (see e.g. [1], [6], [7] for definitions and

basic properties) we use the following Campanato and Morrey spaces.

Definition 1 (Campanato and Morrey spaces). Let λ ∈ [0, n], q ∈ [1,∞). The
Morrey space Lq,λ

(

Ω, RN
)

is the subspace of such functions u ∈ Lq
(

Ω, RN
)

for

which ||u||q
Lq,λ(Ω,RN )

= sup{r−λ
∫

Ω(x,r) |u (y)|
q dy : r > 0, x ∈ Ω} is finite.

Let λ ∈ [0, n + q], q ∈ [1,∞). The Campanato spaces Lq,λ
(

Ω, RN
)

and

Lq,λ
1

(

Ω, RN
)

are subspaces of such functions u ∈ Lq
(

Ω, RN
)

for which

[u]q
Lq,λ(Ω,RN )

= sup{r−λ
∫

Ω(x,r)

∣

∣u(y)− ux,r
∣

∣

q
dy : r > 0, x ∈ Ω} is finite and

[u]q
L

q,λ
1
(Ω,RN )

= sup{inf{r−λ
∫

Ω(x,r) |u(y)− P (y)|q dy : P ∈ P1} : r > 0, x ∈ Ω} is
finite. Here P1 is the set of all polynomials in n variables and of degree ≤ 1. Let us
denote ||u||Lq,λ , ||u||Lq,λ = ||u||Lq + [u]Lq,λ and ||u||

L
q,λ
1

= ||u||Lq(Ω,RN )+ [u]Lq,λ
1

.

Remark 1. It is worth to recall a trivial however important property saying that
∫

Ω |u − uΩ|2 dx = min{
∫

Ω |u − c|2 dx : c ∈ RN} for every u ∈ L2
(

Ω, RN
)

.

Definition 2. The Zygmund class Λ1
(

Ω, RN
)

is the subspace of such functions

u ∈ C0
(

Ω, RN
)

for which [u]Λ1(Ω,RN) = sup{|u(x) + u(y)− 2u ((x + y)/2)| /
|x − y| : x, y, (x+ y)/2 ∈ Ω} is finite.

For more details see [1], [4], [6], [7]. In particular, we will use the following result.

Proposition 1. Let Ω be of type A and 1 ≤ q < ∞. Then it holds
(a) Lq,λ

(

Ω, RN
)

, Lq,λ
(

Ω, RN
)

and Lq,λ
1

(

Ω, RN
)

equipped with norms

||u||Lq,λ , ||u||Lq,λ and ||u||
L

q,λ
1

are Banach spaces.

(b) Lq,λ
(

Ω, RN
)

is isomorphic to the C0,(λ−n)/q
(

Ω, RN
)

if n < λ ≤ n+ q,

(c) Lq,n
(

Ω, RN
)

is isomorphic to the L∞
(

Ω, RN
)

( Lq,n
(

Ω, RN
)

,

(d) L2,n+21

(

Ω, RN
)

is isomorphic to the Λ1
(

Ω, RN
)

,

(e) C0,1
(

Ω, RN
)

( Λ1
(

Ω, RN
)

(
⋂

0<α<1
C0,α

(

Ω, RN
)

.

Further, we suppose

(i) there is an M > 0 such that for every p ∈ RnN

(2) |Aα
i (p)| ≤ M (1 + |p|) ,
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(ii) Aα
i (p) are differentiable functions on RnN with the bounded and contin-
uous derivatives, i.e.

(3)

∣

∣

∣

∣

∣

∣

∂Aα
i

∂pj
β

(p)

∣

∣

∣

∣

∣

∣

≤ M for every p ∈ RnN ,

(iii) the strong ellipticity condition, i.e. there exists ν > 0 such that for every

p, ξ ∈ RnN

(4)
∂Aα

i

∂pj
β

(p) ξi
αξj

β ≥ ν|ξ|2.

From (ii) it follows (see [3, p. 169]) the existence of a real function ω(s) de-
fined on [0,∞), which is nonnegative, bounded, nondecreasing, concave, ω(0) = 0
(moreover, ω is right continuous at 0 for uniformly continuous ∂Aα

i /∂pj
β) and

such that for all p, q ∈ RnN

(5)

∣

∣

∣

∣

∣

∣

∂Aα
i

∂p
j
β

(p)− ∂Aα
i

∂p
j
β

(q)

∣

∣

∣

∣

∣

∣

≤ ω
(

|p − q|2
)

.

By a weak solution of (1) we mean a function u ∈ H1,2
(

Ω, RN
)

satisfying

(6)

∫

Ω

Aα
i (Du)Dαϕi dx = 0

for every ϕ ∈ H
1,2
0

(

Ω, RN
)

.
We will also consider the pair of complementary Young functions

(7) Φ(t) = t ln+ at for t ≥ 0, Ψ(t) =

{

t/a for 0 ≤ t < 1,

et−1/a for t ≥ 1,
where a > 0 is a constant, ln+ at = 0 for 0 ≤ t < 1/a and ln+ at = ln at for
t ≥ 1/a. Recall Young’s inequality

ts ≤ Φ(t) + Ψ(s), t, s ≥ 0.

For our consideration we also need to introduce quasiconvex functions.

Definition 3 ([5, p. 4]). A function G : [0,∞) → R is said to be quasiconvex
(quasiconcave) on [0,∞) if there exist a convex (concave) function g (g̃) and a
constant c > 0 (c̃ > 0) such that

g(t) ≤ G(t) ≤ cg(ct), (g̃(t) ≤ G(t) ≤ c̃g̃(c̃t)) for t ≥ 0.
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Next, we will need the following properties of quasiconvex functions:

Lemma 1 ([5, p. 4]). Let us consider three statements:

(a) G(t) is quasiconvex (quasiconcave) on [0,∞);
(b) for all t1, t2 ∈ [0,∞) and all λ ∈ (0, 1)

G
(

λt1 + (1− λ)t2
)

≤ k1
(

λG (k1t1) + (1− λ)G (k1t2)
)

(

λG (t1) + (1− λ)G (t2) ≤ l1G
(

l1 (λt1 + (1− λ) t2)
)

)

;

(c) there exists a constant k2 (l2) such that for all u ∈ L2loc

(

Ω, RN
)

and all

balls B (x, r) ⊂ Ω

G
(

∫

B(x,r)

|u|2 dy
)

≤ k2

∫

B(x,r)

G
(

k2|u|2
)

dy,

( ∫

B(x,r)

G
(

|u|2
)

dy ≤ l2G
(

l2

∫

B(x,r)

|u|2 dy
)

)

.

Then (a) ⇒ (b) ⇒ (c).

Proposition 2. For all u, v ∈ L2loc

(

Ω, RN
)

, all balls B (x, r) ⊂ Ω and an arbi-
trary nondecreasing quasiconvex function G on [0,∞) we have
(a)

∫

B(x,r)

G(|u+ v|2) dy ≤ k1
2

(

∫

B(x,r)

G
(

4k1 |u|2
)

dy +

∫

B(x,r)

G
(

4k1 |v|2
)

dy
)

,

(b)
∫

B(x,r)

G
(∣

∣u − ux,r
∣

∣

2)
dy ≤ c1

∫

B(x,r)

G
(

c2 |u − c|2
)

dy,

where c1 = max{k1/2, k2}, c2 = max{4k1, 4k1k2} and c ∈ R is arbitrary.
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Proof: (a) It follows from Lemma 1 (b).

(b) From (a) we get

∫

Br

G
(∣

∣u − ux,r
∣

∣

2)
dy ≤ k1

2

(

∫

Br

G
(

4k1 |u − c|2
)

dy +

∫

Br

G
(

4k1
∣

∣c − ux,r
∣

∣

2)
dy
)

.

Now, by means of Hölder’s inequality and Lemma 1 (c)

∫

Br

G
(

4k1
∣

∣c − ux,r
∣

∣

2)
dy = µ (Br)G

(

4k1
∣

∣c − ux,r
∣

∣

2)

= µ (Br)G
(

4k1

∣

∣

∣c −
∫

Br

−u (y) dy
∣

∣

∣

2)

= µ (Br)G
( 4k1

µ2 (Br)

∣

∣

∣

∫

Br

(u(y)− c) dy
∣

∣

∣

2)

≤ µ (Br)G
(

∫

Br

−4k1 |u (y)− c|2 dy
)

≤ k2

∫

Br

G
(

4k1k2 |u(y)− c|2
)

dy

and the result follows easily. �

Lemma 2 ([9, p. 37]). Let ϕ : [0,∞] → [0,∞] be a monotone function which
is absolutely continuous on every closed interval of finite length. If v ≥ 0 is
measurable and E(t) = {x ∈ Rn : v(x) > t}, then

∫

Rn

ϕ ◦ v dx =

∞
∫

0

µ(E(t))ϕ′(t) dt.

Proposition 3. Let v ∈ L2loc (Ω, Rm), B(x, σ) ⊂ Ω, a > 0 and s ∈ [1,∞) be
arbitrary. If the inequality

∫

B(x,τσ)
|v − vx,τσ|2 dy ≤

∫

B(x,σ)
|v − vx,σ|2 dy

holds for some τ ∈ (0, 1), then there exists a constant b such that

∫

B(x,τσ)
lns+

(

a|v − vx,τσ|2
)

dy ≤ b

∫

B(x,σ)
lns+

(

a|v − vx,σ|2
)

dy.

For the constant b we have the following estimate

b ≤ h

(

∫

B(x,σ)

∣

∣v − vx,σ
∣

∣

2
dy

)(

∫

B(x,σ)
lns+

(

a
∣

∣v − vx,σ
∣

∣

2
)

dy

)−1

,
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where h(t) = (s/e(s − 1))s/(s−1) at, t ∈ [0, es/(s−1)/a] and lns/(s−1) (at), t ∈
(es/(s−1)/a,∞).
Proof: We set Eτσ(t) = {y ∈ B(x, τσ) : |v−vx,τσ|2 > t} for t ≥ 0 and 0 < τ ≤ 1.
From Lemma 2 and by means of integration by parts we get

∫

Bτσ

lns+

(

a|v − vτσ|2
)

dy =
s

µ(Bτσ)

∞
∫

1/a

µ (Eτσ(t))
lns−1(at)

t
dt

=
s

µ(Bτσ)





lns−1(at)

t

t
∫

0

µ (Eτσ(λ)) dλ





∞

1/a

+
s

µ(Bτσ)

∞
∫

1/a





t
∫

0

µ (Eτσ(λ)) dλ





lns−1(at)− (s − 1) lns−2(at)

t2
dt.

For the sake of simplicity we put Vr =
∫

B(x,r)

∣

∣v − vx,r
∣

∣

2
dy. The first integral

is zero and on the second integral we can use the mean value theorem for the
integrals and we have for some 1/a < ξτσ, ξσ < ∞,

∫

Bτσ

lns+

(

a|v − vτσ|2
)

dy = sVτσ

∞
∫

ξτσ

lns−1(at)− (s − 1) lns−2(at)

t2
dt

=
s lns−1 (aξτσ)

ξτσ
Vτσ =

ξσ ln
s−1(aξτσ)

ξτσ ln
s−1(aξσ)

Vτσ

Vσ

∫

Bσ

lns+

(

a|v − vx,σ|2
)

dy

= b(τ)

∫

Bσ

lns+

(

a|v − vx,σ|2
)

dy.

Now the result follows from Lemma 1 (c). �

3. The result

For x ∈ Ω, r > 0 we set Ur = U(x, r) =
∫

Ω(x,r)

∣

∣Du − (Du)x,r
∣

∣

2
dy, dx =

dist(x, ∂Ω) and αn = µ (B(0, 1)). We define S0 = {x ∈ Ω: limr→0+ U(x, r) > 0}.
Remark 2. Let u be a solution of (1). It is well known (see [9, pp. 75, 122]) that
limr→0+ U(x, r) = 0 for all x ∈ Ω \ E where n − 2 + β dimensional Hausdorf

measure Hn−2+β(E) = 0 for every β > 0.

Now we can formulate the main theorem.
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Theorem. Let u ∈ H1,2
(

Ω, RN
)

be a weak solution to the nonlinear system (1)
under the hypotheses (i), (ii), (iii). Let x ∈ S0 be arbitrary and suppose that
there exists d ∈ (0, dx/2) such that

(8)
Kl2ω

2

ν2

(

b

∫

B(x,2d)

ln
q/(q−1)
+

(4l2ω
2
∣

∣Du − (Du)x,2d

∣

∣

2

CU2d

)

dy

)1−1/q

<
1

4
τn,

where K = c (n, N, q) (M/ν)8, τ = (2n+5A)−1/2, l2, A are the constants from
Lemma 1 (c), Lemma 3, ω = ω(2nl2U2d), ω is from (5), C = 2n−8ν2τn/αnA
and b is the constant from Proposition 3 for the case a = 1/CU2d, σ = 2d,
v = 2

√
l2ωDu, s = q/(q − 1) where q ∈ (1, n/(n − 2)]. Then there exists a ball

B(x, rx) ⊂ Ω such that Du ∈ L2,n
(

B(x, rx), R
nN
)

and

(9) [Du]2
L2,n(B(x,rx),RnN )

≤ max{2n(4Aτ−n + 1)U2d, µ
−1(B2d)

∫

Ω

|Du − (Du)Ω|2 dx}.

Proposition 4. Set ω∞ = limt→∞ ω(t), V1 = c1 (M/ν)3n+8 (ω∞/ν)2 and V2 =

c2 (M/ν)3n+6 (ω∞/ν)2. If

(10) V2 ≤ eq & qq−1V1V
1−1/q
2 < 1 or V2 > eq & V1 ln

q−1 V2 < 1,

then condition (8) holds for every x ∈ S0. Here q ∈ (1, n/(n−2)], c1 = c1 (n, N, q)
and c2 = c2 (n, N).

Proof: Let x ∈ S0 and d ∈ (0, dx/2) be arbitrary such that U (x, 2d) > 0.
From Proposition 3 it follows that the left hand side of (8) is equal or less than

Kl2ω
2
∞h1−1/q

(

4ω2∞U2d
)

/ν2. From the definition of the function h (t) and as-
sumption (10) it follows that (8) is satisfied.

�

Example. We can consider the system (1) for n = 3, N = 2 where Aα
i (p) =

(

a δijδαβ + b δiαδjβ arctan |p|2 /2π
)

p
j
β, a, b are constants, 0 < b/6 < a. We have

∂Aα
i

∂p
j
β

(p) ξi
αξ

j
β ≥ (a − b/6) |ξ|2 , ∀ ξ, p ∈ R6,

ω∞ ≤ b and
∣

∣

∣∂Aα
i /∂p

j
β (p)

∣

∣

∣ ≤ M = a + b. Setting P = b/a we get that V1 <

4c1P
2 (1 + P )3n+8 / (1− P/6)3n+10, V2 < 4c2P

2 (1 + P )3n+6 / (1− P/6)3n+8

and it is not difficult to see that (10) is satisfied for P sufficiently small.
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Corollary 1. Let Ω0 ⋐ Ω be arbitrary and of type A and the assumptions of
Theorem be satisfied for every x ∈ Ω0∩S0. Then there are constants U , d0, r0 > 0
such that Du ∈ L2,n

(

Ω0, R
nN
)

and the following estimate

(11)

[Du]2
L2,n(Ω0,RnN ) ≤ max{2

n(4Aτ−n + 1)U ,

µ−1(B2d0)

∫

Ω

|Du − (Du)Ω|2 dx,

(Arn
0 )

−1
∫

Ω0

∣

∣Du − (Du)Ω0
∣

∣

2
dx}

holds.

Proof: From Remark 2, Theorem and the definition of the set S0 it follows that
for every x ∈ Ω0 there exists B(x, rx) ⊂ Ω such that Du ∈ L2,n

(

B(x, rx), R
nN
)

.

As Ω0 is the compact set and the system balls {B(x, rx)} covers of Ω0 we can
choose a finite subcover {B(xj , rxj )}m

j=1. If we set U = max{U(xj , 2dxj ) : 1 ≤
j ≤ m}, r0 = min{rxj : 1 ≤ j ≤ m} and d0 = min{dxj : 1 ≤ j ≤ m}, then the
estimate follows from Remark 1. �

Corollary 2. Let the assumptions of Corollary 1 be satisfied. Then u ∈
Λ1
(

Ω0, R
N
)

.

Proof: It follows from Proposition 1 (d), Poincaré’s inequality and Corollary 1.
�

4. Lemmas

The statement of the following lemma is well known (see e.g. [1], [3], [7], [8]).

Lemma 3. Let v ∈ H1,2
(

Ω, RN
)

be a weak solution to the system (1) satisfying

(i), (ii) and (iii), where ∂Aα
i /∂p

j
β are the constants. Then there exists a constant

A = c (n, N) (M/ν)6 such that for every x ∈ Ω and 0 < σ ≤ R ≤ dist (x, ∂Ω) the
following estimate holds

∫

B(x,σ)

|Dv(y)− (Dv)x,σ|2 dy ≤ A
( σ

R

)n+2
∫

B(x,R)

|Dv (y)− (Dv)x,R |2 dy.

The following lemma is possible to derive by the difference quotient method
(see e.g. [1], [3], [7], [8]).

Lemma 4. Let u ∈ H1,2
(

Ω, RN
)

be a weak solution to the system (1) satisfying

(i), (ii) and (iii). Then u ∈ H
2,2
loc

(

Ω, RN
)

and for all x ∈ Ω, 0 < σ < ̺ ≤
dist(x, ∂Ω)) we have

∫

B(x,σ)

|D2u|2 dy ≤ 6n (M/ν)2

(̺ − σ)2

∫

B(x,̺)

|Du − (Du)x,̺ |2 dy.
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Lemma 5 ([6]). Let 1 ≤ p, q < ∞, p−1 − q−1 ≤ n−1, R > 0, x ∈ Rn. Then for

u ∈ H1,p
(

B (x, R) , RN
)

we have

( ∫

B(x,R)

|u (y)|q dy

)1/q

≤ cR1+n/q−n/p
(

R−p
∫

B(x,R)

|u (y)|p dy +

∫

B(x,R)

|Du (y)|p dy

)1/p

,

where c = c(n, N, p, q) is a constant independent of x, R and u.

Lemma 6. Let u ∈ H1,2
(

Ω, RN
)

be a weak solution to (1) satisfying (i), (ii)
and (iii). Then for every ball B (x, 2R) ⊂ Ω and an arbitrary constant a > 0 we
have

∫

B(x,R)

∣

∣Du − (Du)x,R

∣

∣

2
ln+
(

a
∣

∣Du − (Du)x,R

∣

∣

2)
dy

≤ c

(

M

ν

)2
(

∫

B(x,2R)
ln

q/(q−1)
+

(

4a
∣

∣Du − (Du)x,2R

∣

∣

2)
dy

)1−1/q

∫

B(x,2R)

∣

∣Du − (Du)x,2R

∣

∣

2
dy,

where 1 < q ≤ n/(n − 2) and c = c (n, N, q).

Proof: Let x ∈ Ω and 0 ≤ R ≤ 1
4dist (x, ∂Ω). We denote BR = B (x, R) for

simplicity. From Lemma 4 it follows that Du ∈ H
1,2
loc

(

Ω, RN
)

. By means of

Sobolev’s imbedding theorem H1,2
(

BR, RN
)

→֒ Ls
(

BR, RN
)

, where BR ⊂ Ω be
arbitrary and 1 ≤ s ≤ 2n/(n − 2). From this we obtain by Proposition 2 (b) and
Lemma 5
∫

BR

|Du − (Du)R|2 ln+
(

a |Du − (Du)R|2
)

dy

≤ 4
∫

BR

|Du − (Du)2R|2 ln+
(

4a |Du − (Du)2R|2
)

dy

≤ 4
(
∫

BR

|Du − (Du)2R|2q dy

)1/q(∫

BR

ln
q/(q−1)
+

(

4a |Du − (Du)2R|2
)

dy

)1−1/q

≤ cRn(1/q−1)+2
(

R−2
∫

BR

|Du − (Du)2R|2 +
∫

BR

∣

∣

∣D2u
∣

∣

∣

2
dy
)

×
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×
(∫

BR

ln
q/(q−1)
+

(

4a |Du − (Du)2R|2
)

dy

)1−1/q

≤ c

(

M

ν

)2

R−n(1−1/q)
∫

B2R

|Du − (Du)2R|2 dy ×

×
(

∫

BR

ln
q/(q−1)
+

(

4a |Du − (Du)2R|2
)

dy
)1−1/q

and we finally obtain the result. �

5. Proof of Theorem

Set Aαβ
ij (ζ) = ∂Aα

i /∂pj
β (ζ), A

αβ
ij,0 = Aαβ

ij ((Du)R),

Ã
αβ
ij =

1
∫

0

A
αβ
ij ((Du)R + t (Du − (Du)R)) dt,

BR = B(x, R) and UR = U(x, R) for simplicity. Then the system (1) can be
rewritten as

−Dα

(

A
αβ
ij,0Dβuj

)

= −Dα

((

A
αβ
ij,0 − Ã

αβ
ij

)(

Dβuj −
(

Dβuj
)

R

))

.

Split u as v + w where v is the solution of the Dirichlet problem






− Dα

(

A
αβ
ij,0Dβvj

)

= 0 in BR

v − u ∈ H1,20
(

BR, RN
)

.

For every 0 < σ ≤ R from Lemma 3 it follows
∫

Bσ

|Dv − (Dv)σ |2 dy ≤ A
( σ

R

)n+2
∫

BR

|Dv − (Dv)R |2 dy,

hence

(12)

∫

Bσ

|Du − (Du)σ|2 dy ≤ 2A
( σ

R

)n+2
∫

BR

|Dv − (Dv)R |2 dy + 2

∫

BR

|Dw|2 dy.

Now w ∈ H1,20
(

BR, RN
)

satisfies
∫

BR

A
αβ
ij,0DβwjDαϕi dy ≤

∫

BR

∣

∣

∣A
αβ
ij,0 − Ã

αβ
ij

∣

∣

∣

∣

∣

∣Dβuj −
(

Dβuj
)

R

∣

∣

∣

∣

∣

∣Dαϕi
∣

∣

∣ dy

≤







∫

BR

ω2
(

|Du − (Du)R|2
)

|Du − (Du)R|2 dy







1/2





∫

BR

|Dϕ|2 dy







1/2
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for any ϕ ∈ H1,20
(

BR, RN
)

, where ω is from (5). Hence, choosing ϕ = w, we get

ν2
∫

BR

|Dw|2 dy ≤
∫

BR

ω2
(

|Du − (Du)R |2
)

|Du − (Du)R |2 dy.

Now applying the Young inequality (with the complementary functions (7)) on
the right-hand side, we obtain for every ε > 0

(13) ν2
∫

BR

|Dw|2 dy ≤ ε

∫

BR

|Du − (Du)R|2 ln+
(

aε |Du − (Du)R|2
)

dy

+
2

a

∫

BR

eω2R/ε−1 dy,

where ω2R = ω2(|Du − (Du)R|2).
From (12) and (13) it follows

(14)

∫

Bσ

|Du − (Du)σ|2 dy ≤ 4A
( σ

R

)n+2
∫

BR

|Du − (Du)R|2 dy

+
2(2A+ 1)

ν2

(

ε

∫

BR

|Du − (Du)R|2 ln+
(

aε |Du − (Du)R|2
)

dy

+
2

a

∫

BR

eω2
R

/ε−1 dy

)

,

We can estimate the right-hand side by means of Lemma 1 (c) (for the quasicon-
cave case), Lemma 6 and we get
∫

Bσ

|Du − (Du)σ|2 dy ≤ 4A
( σ

R

)n+2
∫

BR

|Du − (Du)R|2 dy

+
2(2A+ 1)

ν2

[

εc

(

M

ν

)2(∫

B2R

ln
q/(q−1)
+

(

4aε|Du − (Du)2R |2
)

dy

)1−1/q

×

×
∫

B2R

|Du − (Du)2R|2 dy +
2αnRn

a
el2ω2(l2UR)/ε−1

]

.

Setting

φ (t) =

∫

Bt

|Du − (Du)t |2 dy,

Fε(t) =







∫

Bt

− lnq/(q−1)
+

(

4aε|Du − (Du)t |2
)

dy







1−1/q

,
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we can rewrite the previous inequality as follows:

(15) φ(σ) ≤ 4A
( σ

R

)n+2
φ(R) +

Kε

ν2
Fε(2R)φ(2R)

+
24αnA

aν2
el2ω2(2nl2U2R)/ε−1Rn,

where K = c (n, N, q) (M/ν)8. From the assumptions of Theorem it follows that
there exists d ∈ (0, dx/2) such that (8) holds. Now we are going to prove that

(16) φ
(

2τkd
)

≤ τknφ (2d)

for every natural number k and τ = (2n+5A)−1/2. Let k = 1. If we put in (15)
a = 1/CU2d, ε = l2ω

2(2nl2U2d), σ = 2τd and R = d we get

φ(2τd) ≤ 2n+4Aτn+2φ(d) +
Kl2ω

2

ν2
Fε(2d)φ(2d) +

24αnA

ν2
CU2dd

n

≤ 2n+4Aτn+2φ(2d) +
Kl2ω

2

ν2
b1−1/qFε(2d)φ(2d) +

1

4
τnφ(2d)

≤
(

2n+4Aτ2 +
1

4
+
1

4

)

τnφ(2d) = τnφ(2d).

Thus (16) holds for k = 1. Consequently U2τd ≤ U2d and by means of Proposi-

tion 3 we have Fε (2τd) ≤ b1−1/qFε (2d).
Let us suppose that (16) holds for k ≥ 1. Similarly to consideration above we

have U2τkd ≤ U2d and Fε

(

2τkd
)

≤ b1−1/qFε (2d). We will show that (16) holds

for k + 1. Setting a = 1/CU2d, ε = l2ω
2(2nl2U2d), σ = 2τ

k+1d and R = τkd in
(15) we obtain

φ(2τk+1d) ≤ 2n+4Aτn+2φ
(

τkd
)

+
Kl2ω

2

ν2
Fε(2τ

kd)φ(2τkd)

+
24αnA

ν2
eω2(2nl2U2τkd)/ω2(2nl2U2d)−1τknCU2dd

n

≤ 2n+4Aτn+2φ
(

2τkd
)

+
Kl2ω

2

ν2
Fε(2τ

kd)φ(2τkd) +
1

4
τ (k+1)nφ(2d)

≤ 2n+4Aτn+2τknφ (2d) +
Kl2ω

2

ν2
b1−1/qFε(2d)τ

knφ(2d) +
1

4
τ (k+1)nφ(2d)

≤
(

2n+4Aτ2 +
1

4
+
1

4

)

τ (k+1)nφ(2d) = τ (k+1)nφ(2d).

Let us consider the two possibilities:
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(a) if τ ≤ t < 1, then t−nφ (td) ≤ τ−nφ (td) ≤ τ−n supt∈[τ,1) φ (td) and also

(17) φ (td) ≤
(

τ−n sup
t∈[τ,1)

φ (td)

)

tn,

(b) if 0 < t < τ , then there exists natural k ≥ 1 such that τk+1 ≤ t < τk . From
Proposition 3, (8), (16) and (15) with a = 1/CU2d, ε = l2ω

2(2nl2U2d), σ = td

and R = τkd we have

(18)

φ(td) = φ

(

t

τk
(τkd)

)

≤ 4A
(

t

τk

)n+2

φ
(

τkd
)

+
Kε

ν2
Fε(2τ

kd)φ
(

2τkd
)

+
24αnA

aν2
el2ω2(2nl2U2τkd)/ε−1τkndn

≤ 4A
(

t

τk

)n+2

τknφ (2d) +
Kl2ω

2

ν2
b1−1/qFε (2d) τ

knφ (2d)

+
24αnA

ν2
CU2dτkndn

≤
(

4A

(

t

τk

)n+2

τkn + τ (k+1)n

)

φ (2d)

≤
(

4Aτ−n
(

t

τk

)n+2

+ 1

)

τ (k+1)nφ (2d) <
(

4Aτ−n + 1
)

tnφ (2d) .

In both cases (17) and (18) we obtain

t−nφ (td) ≤ c, t ∈ (0, 1] ,

where c = max{τ−n supt∈[τ,1) φ (td) ,
(

4Aτ−n + 1
)

φ(2d)} =
(

4Aτ−n + 1
)

φ(2d).

Let 0 < r < dist (B (x, rx) , ∂Ω). Hence U(y, r) is uniformly continuous for fixed

r in B (x, rx) ⊂ Ω. According to Proposition 3, the expression

Kl2ω
2

ν2

(

b

∫

B(y,r)
ln

q/(q−1)
+

(4l2ω
2
∣

∣Du − (Du)y,r
∣

∣

2

CU (y, r)

)

dz

)1−1/q

is also uniformly continuous with respect to y in B (x, rx) and we arrive at the
conclusion. �
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