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On the range of a Jordan *-derivation

Péter Battyányi

Abstract. In this paper, we examine some questions concerned with certain “skew” prop-
erties of the range of a Jordan *-derivation. In the first part we deal with the question,
for example, when the range of a Jordan *-derivation is a complex subspace. The sec-
ond part of this note treats a problem in relation to the range of a generalized Jordan
*-derivation.
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Classification: Primary 47B47, 47D50

Let R be a *-ring. An additive mapping J : R → R is called a Jordan
*-derivation if it satisfies

J(a2) = aJ(a) + J(a)a∗ (a ∈ R).

Jordan *-derivations were introduced in the papers of Šemrl (e.g. [12], [13]). The
reason for introducing these mappings was the fact that the problem of represent-
ing quadratic forms by sesquilinear ones is closely connected with the structure
of Jordan *-derivations. In this subject we would refer to articles [14], [19].
The structure of Jordan *-derivations on standard operator algebras was de-

scribed by Šemrl [15]. From his results it also follows that a Jordan *-derivation
on the algebra B(H) of all bounded linear operators in a real or complex Hilbert
space H is of the form

J(T ) = TA − AT ∗ (T ∈ B(H))

for some operator A ∈ B(H).
Up to nowmany interesting results have been obtained concerning the structure

and the range of a Jordan *-derivation (cf. [2], [6]–[10]). The present paper also
fits into this area of research. These results concerning Jordan *-derivations were
considerably motivated by the extensive investigations in relation to the structure
and properties (range, norm etc.) of derivations. We would only mention some
better known articles on this vast subject ([1], [5], [16]–[18]).
The results derived from a paper of Molnár [6] related to the range of a Jor-

dan *-derivation are very similar to those obtained with respect to derivations
by Stampfli [16]. Indeed, at first glance these mappings may appear to be very



660 P.Battyányi

similar, and one can suspect that they bear the same properties in many as-
pects. Sometimes this is really the case, but, however, in closer investigations the
slight difference between the definitions of the two kind of mappings can lead to
completely different situations.
The first part of the paper is devoted to a problem which is quite characteristic

of the behaviour of the range of a Jordan *-derivation. Observe first that for
every A ∈ B(H) the range of the Jordan *-derivation induced by the operator A,
that is, the set

RA = {TA − AT ∗ : T ∈ B(H)}

is a real subspace of B(H). Thus it is quite reasonable to ask for which A will RA

be a complex subspace. In the case when A is normal the following theorem pro-
vides an answer to the previous question in a more general setting, RA denoting
the closure of RA in the operator norm topology.

Theorem 1. Let A ∈ B(H) be a normal operator. RA is a complex subspace if

and only if A = 0.

Proof: Let us suppose that for the normal operator 0 6= A ∈ B(H) the subspace
RA is complex. Then with T = iI/2 we have −A = i(TA − AT ∗) ∈ RA. Hence
there is a sequence (Tn)n in B(H) such that

TnA − AT ∗
n

n→∞
−−−−→ −A.

Clearly, we can assume that ‖ − A − (TnA − AT ∗
n)‖ < 1/n and Tn 6= 0 holds for

every n ∈ N.
By the triangular inequality it can be seen easily that for an arbitrary B ∈

B(H) the relations
‖ReB‖, ‖ ImB‖ ≤ ‖B‖

hold, where ReB and ImB denote the real and imaginary part of B, respectively.
As it can be readily checked

Re(−A − (TnA − AT ∗
n)) = −A1 − i(TnA2 − A2T

∗
n)

and
Im(−A − (TnA − AT ∗

n)) = −A2 + i(TnA1 − A1T
∗
n)

hold where A1 and A2 are the real and imaginary part of A, respectively. Then
the relations

‖A1 + i(TnA − AT ∗
n)‖, ‖A2 − i(TnA1 − A1T

∗
n)‖ < 1/n (n ∈ N)

follow from the previous remark.
Now let λ ∈ σ(A) and moreover µ1 = Reλ, ν1 = Imλ. Applying the spectral

theorem for normal operators there exist operators

Bn =

mn∑

j=1

µ
(n)
j P

(n)
j , Cn =

mn∑

j=1

ν
(n)
j P

(n)
j
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where µ
(n)
j , ν

(n)
j ∈ R and P

(n)
j (1 ≤ j ≤ mn) are pairwise orthogonal projections

for every n ∈ N, such that µ
(n)
1 = µ1, ν

(n)
1 = ν1 and

‖A1 − Bn‖, ‖A2 − Cn‖ < min{1/(2n‖Tn‖), 1/n}

are valid. We can carry out the following estimations with respect to the operators
defined above

‖Bn + i(TnCn − CnT ∗
n)‖ ≤

‖A1 + i(TnA2 − A2T
∗
n)‖+ ‖(Bn − A1) + i(Tn(Cn − A2)− (Cn − A2)T

∗
n)‖ <

1/n+ ‖A1 − Bn‖+ 2‖Tn‖‖Cn − A2‖ < 3/n

and

‖Cn − i(TnBn − BnT ∗
n)‖ ≤

‖A2 − i(TnA1 − A1T
∗
n)‖+ ‖(Cn − A2)− i(Tn(Bn − A1)− (Bn − A1)T

∗
n)‖ < 3/n.

Let us suppose that fn ∈ rng P
(n)
1 (n ∈ N) are unit vectors. Since for arbitrary

λ ∈ σ(A) and ε > 0 the projection E(D(λ, ε)) 6= 0, where E is the spectral
measure corresponding to A and D(λ, ε) denotes the open disc in the plane with

center λ and radius ε, thus the projections P
(n)
1 can be chosen in a way that

P
(n)
1 6= 0 should hold for every n ∈ N. In this case, with αn = 〈Tnfn, fn〉, the
following inequalities can be established

(1.1)
|µ1 + i(αnν1 − αnν1)| = |〈(Bnfn + i(TnCn − CnT ∗

n)fn, fn〉| ≤

‖Bn + i(TnCn − CnT ∗
n)‖ < 3/n.

Likewise

(1.2) |ν1 − i(αnµ1 − αnµ1)| = |〈(Cn − i(TnBn − BnT ∗
n))fn, fn〉| < 3/n.

Let us assume µ1ν1 6= 0. Then, dividing (1.1) by ν1 and (1.2) by µ1 and adding
together the results obtained we have

|µ1/ν1 + ν1/µ1| ≤

|µ1/ν1 + i(αn − αn)|+ |ν1/µ1 − i(αn − αn)| < 3/nν1 + 3/nµ1.

The right-hand side of the above inequality tending to zero and on the left-hand
side being a positive constant, we have arrived at a contradiction. Thus µ1ν1 = 0.
Then either µ1 or ν1 equals 0, which implies, considering (1.1) and (1.2), that the
other one must be 0, too. Hence λ = 0. So or assumption that for the normal
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A the subspace RA is a complex one yields σ(A) = {0}, which is equivalent to
A = 0. �

To answer the above question for an arbitrary A ∈ B(H) seems to be a more
difficult task. Obviously, the condition A = 0 as a sufficient and necessary condi-
tion is out of the question in this case. For, if x and y are independent vectors
in H , the range of the Jordan *-derivation induced by A = x ⊗ y is a complex
subspace. It would be an interesting problem to examine the above question for a
weighted unilateral shift, that is, if U =

∑
γ∈Γ αγeγ ⊗ eγ+1, where (eγ)γ∈Γ is an

orthonormal basis for H and αγ ∈ C (γ ∈ Γ), what the necessary and sufficient

conditions are for RU or, furthermore, for RU to be a complex subspace.
The following theorem is concerned with a question which is close to the pre-

vious one in approach in the sense that it reveals further “skew” properties of
Jordan *-derivations. Note that if A ∈ S(H) where S(H) stands for the set of all
symmetric operators of B(H), then TA−AT ∗ is skew-symmetric for every T ∈ B,
that is, RA ⊂ iS(H). Similarly, if A ∈ iS(H), then RA ⊂ S(H) holds. For which
A can be RA the whole S(H) or iS(H), respectively?

Theorem 2. Let H be a complex separable Hilbert space. With the above

notation RA = S(H) if and only if A is a skew-symmetric, invertible operator.
In the same way, RA coincides with iS(H) if and only if A is an invertible,
symmetric operator.

Proof: Let us deal with the first statement of the theorem only, as the second
one can be proved analogously. Assume that A is an invertible, skew-symmetric
operator. According to the above remark RA ⊂ S(H) holds. For an arbitrary
S ∈ S(H)

(SA−1)A − A(SA−1)∗ = S + S = 2S,

thus RA = S(H) is indeed valid.
Conversely, let us suppose that RA = S(H). In this case, since

(iI)A − A(iI)∗ = 2iA ∈ S(H)

we come to the conclusion that A ∈ iS(H). Now, in order to demonstrate the
invertibility of A, it is enough to prove that A is left-invertible. In accordance
with the Banach theorem stating the invertibility of a linear bijection between
Banach spaces, an operator in B(H) is left-invertible if and only if it is bounded
below. Thus it is enough to show the latter property for the above operator A.
Prior to this, let us prove that A is injective. Suppose that x 6= 0 ∈ ker A. We
can assume that ‖x‖ = 1. On account of the relation RA = S(H) there is a
T ∈ B(H) such that

TA − AT ∗ = x ⊗ x.

At the same time

〈(x ⊗ x)x, x〉 − 〈(TA − AT ∗)x, x〉 = 1− (〈TAx, x〉 + 〈T ∗x, Ax〉) = 1,
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which is a contradiction.
Let us suppose now that A is not bounded below. Then there is a sequence

(en)n in H such that ‖en‖ = 1 (n ∈ N) and

Aen
n→∞
−−−−→ 0.

Applying the well-known fact that every bounded sequence in a Hilbert space has

a weakly convergent subsequence, we can assume that en
w
−→ e for some e ∈ H .

Choosing an arbitrary y ∈ H

〈Aen, y〉 = 〈en, A∗y〉
n→∞
−−−−→ 〈e, A∗y〉.

On the other hand, since Aen −→ 0 implies 〈Aen, y〉 −→ 0,

(2.1) 〈e, A∗y〉 = 0 (y ∈ H).

Owing to the relation rng A∗ = ker A⊥ = {0}⊥ = H the operator A∗ has dense
range and thus (2.1) can be valid only if e = 0.

We shall make use of F. Wolf’s theorem (cf. [4]), which claims that if en
w
−→ 0

and Aen −→ 0, then the sequence (en)n can be chosen to be orthonormal. In
other words, with the notation above, for the A in question there is an orthonormal
sequence (en)n for which Aen −→ 0. Let P =

∑
∞
n=1 en ⊗ en. Then for every

T ∈ B(H)

〈Pen, en〉 − 〈(TA − AT ∗)en, en〉 =

〈Pen, en〉 − 〈TAen, en〉 − 〈T ∗en, Aen〉
n→∞
−−−−→ 1,

hence P /∈ RA. Thus A must be bounded below, the proof is completed. �

We end up the examination of the present question with an open problem.
Namely, what can be said about A if S(H) ( RA, that is, S(H) is a proper
subset of RA?
In the last part of the paper we shall treat a question in regard to general-

ized Jordan *-derivations. The antecedent of the notion of generalized Jordan
*-derivations was the concept of Jordan *-derivation pairs, which was introduced
by Zalar [19] giving a more natural proof than Šemrl with respect to the prob-
lem of representing quadratic forms by sesquilinear ones on modules over *-rings.
Molnár has shown ([8]) that on standard operator algebras Jordan *-derivation
pairs are of the form

E(T ) = TA− BT ∗, F (T ) = TB − AT ∗ (T ∈ B(H))

for some operators A, B ∈ B(H).
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For the case of generalized derivations Fialkow and Loebl [3] proved that the
range

JAB = {TA− BT : T ∈ B(H)}

of the generalized derivation T 7→ TA − BT is contained in an ideal I of B(H)
if and only if both A and B are in I. In the present situation, if H is a complex
Hilbert space, one can easily check that exactly the same conditions work for a
similar question pertinent to generalized Jordan *-derivations. The problem is
getting more complicated if we demand equality instead of inclusion, in other
words: what can be said about A and B if RAB = I, where I is an ideal in B(H).

Theorem 3. Let H be an infinite dimensional, complex, separable Hilbert space
and A, B ∈ B(H). Then RAB cannot coincide with a non-zero proper ideal

of B(H).

Proof: Let us suppose that for A, B ∈ B(H) the rangeRAB is a non-zero proper
ideal of B(H). Then by a well-known theorem of Calkin we have F(H) ⊂ RAB ⊂
C(H). Because of the ideal property of RAB we also have

i(TA− BT ∗) + (iT )A − B(iT )∗ = 2iTA ∈ RAB

for every T ∈ B(H), thus A ∈ RAB . It can be proved in a similar way that
B ∈ RAB holds, too. Let 0 6= K ∈ RAB be arbitrary. Since H is infinite
dimensional and K is compact, K 6= λI for any λ ∈ C. In this case, according to
a result of Radjavi and Rosenthal [11, Theorem 2] there is an orthonormal basis
{en}n in H for which

〈Ken, em〉 6= 0 (n, m ∈ N).

As A and B∗ are compact operators, they map weakly convergent sequences into
norm convergent ones, hence ‖Aen‖, ‖B

∗en‖ −→ 0. Let αn = 〈Ken, en〉 6= 0.
Now, as in the proof of [16, Theorem 2], let (ekn

)n be a subsequence of (en)n such
that

‖Aekn
‖ ≤ |αn|/n (n ∈ N)

and
‖B∗ekn

‖ ≤ |αn|/n (n ∈ N)

hold. Let U be a partial isometry defined as follows

Uekn
= en (n ∈ N)

and U is zero on the orthogonal complement of the subspace generated by the
vectors {ekn

}n. Since RAB is an ideal there is a T ∈ B(H) for which

TA − BT ∗ = U∗KU ∈ RAB .
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With this T we obtain

|αn| = |〈Ken, en〉| = |〈U∗KUekn
, ekn

〉| ≤

|〈TAekn
, ekn

〉|+ |〈T ∗ekn
, B∗ekn

〉| ≤ 2‖T ‖|αn|/n.

It follows from the inequalities above that ‖T ‖ ≥ n/2 for every n ∈ N, which
contradicts the boundedness of T . �

Remark. We would mention that RAB = B(H) may occur. This is the case, for
example, if A is an invertible operator and B = 0 or vice versa. We cannot,
however, give a necessary and sufficient condition for the surjectivity of RAB .
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(Timisoara/ Herculane, 1980), Birkhäuser, Basel-Boston, Mass., 1981, pp. 319–328.
[19] Zalar B., Jordan *-derivation pairs and quadratic functionals on modules over *-rings,

preprint.
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