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Another note on countable Boolean algebras

Lutz Heindorf

Abstract. We prove that a Boolean algebra is countable iff its subalgebra lattice admits
a continuous complementation.
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The title refers to [4], where T. Jech proved that the subalgebra lattice Sub A
of a countable Boolean algebra A is complemented, i.e., for each B ≤ A there
exists B∗ ≤ A such that B ∩B∗ = {0, 1} and B ∪B∗ generates A. Independently
this and stronger results were proved at about the same time by J.B. Remmel
[6] and S. Todorčević (unpublished, his proof and many more facts on Sub A are
given in the survey [1]).
In Section 1 we describe a construction of complements B∗ with the additional

feature that for each a ∈ A, whether or not a belongs to B∗ depends only on
the intersection of B with a finite subalgebra of A. In other words, the mapping
B 7→ B∗ is continuous with respect to the natural topology on Sub A, a subbase
of which, by definition, consists of all sets

{C ∈ Sub A : a ∈ C} and {C ∈ Sub A : a /∈ C},

where a runs through A. Notice that all sets {C ∈ Sub A : B ∩ F = C ∩ F}
constitute a base at the point B ∈ Sub A, when F runs through all finite subal-
gebras of A.
In Section 2 we prove that countability is necessary for continuous complemen-

tation. Thus

Theorem 1. A Boolean algebra is countable iff its subalgebra lattice admits a

continuous complementation.

Our notation is in accordance with [5], with the exception that we use ∨,∧, and
− for the lattice-theoretic Boolean operations of join, meet and complementation
and reserve + for symmetric difference: a+ b = (a∧−b)∨ (b∧−a). In connection
with +, meets are sometimes called products and denoted by · instead of ∧.
Recall that each Boolean algebra is a ring with unit under this addition and
multiplication. Moreover, a+ a = 0 for all a.
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1. The construction of complements

Let A be the given countable Boolean algebra. We can assume thatA is infinite,
for, in the finite case continuity is for free and the existence of complements
guaranteed by the above mentioned results. We use the well-known fact (cf. 15.10
in [5]) that A has an ordered base, i.e., a set of generators K, say, which is a chain
under the Boolean partial order. We can and will assume that 0, 1 /∈ K. Then
there is the following normal form assertion, where 〈M〉 denotes the subalgebra
of A generated by M .

(1) If L ⊆ K, then each non-zero element of 〈L〉 can be uniquely written as
l1 + l2 + · · ·+ lq, where q ≥ 1 and l1 < l2 < · · · < lq all belong to L∪ {1}.

It is well-known that, for arbitraryM ⊆ A, the subalgebra 〈M〉 consists of 0 and
all finite sums of products (= meets) of elements ofM∪{1}. Being a chain, L∪{1}
is closed under products, which yields the existence of the desired representations.
Assuming that the element a has two different representations a = l′1+· · ·+l′p =

l′′1 + · · ·+ l′′q we get 0 = a+ a = l′1 + · · ·+ l′p + l′′1 + · · ·+ l′′q and, after cancellation

of possible pairs l′i = l′′j and rearrangement, 0 = l1 + · · ·+ lr, with 1 ≤ r ≤ p+ q

and l1 < l2 < · · · < lr. The number of terms is at least two, for 0 /∈ L ∪ {1}. But
then

lr = l1 + · · ·+ lr−1 ≤ l1 ∨ · · · ∨ lr−1 = lr−1 < lr,

which is a contradiction.
As A is countable, we can fix an injective enumeration (kn)n<ω of K. For a

given subalgebra B of A we define subsets LB
n of {ki : i < n} in the following

inductive way.

LB
0 = ∅ and LB

n+1 =











LB
n , if there are l1, . . . , lp ∈ LB

n (p ≥ 0!)

such that kn + l1 + · · ·+ lp ∈ B.

LB
n ∪ {kn}, otherwise.

We are now going to show that by letting B∗ be the subalgebra generated by
LB =

⋃

n<ω LB
n we get the desired continuous complementation. Notice first

that, by construction,

(2) kn ∈ LB ⇐⇒ kn ∈ LB
n+1.

To prove B∗ ∩ B = {0, 1}, we assume the contrary and consider some alleged
b ∈ B∗ ∩B \ {0, 1}. Passing to 1+ b if necessary, claim (1) yields a representation

b = kn1 + · · ·+ knq with all kni
∈ LB. Let nt be maximal among the ni. Then,

by construction, knt /∈ LB
nt+1
, hence, by (2), knt /∈ LB, a contradiction.

To prove that B ∪B∗ generates A, it is clearly sufficient to express each kn in
the form b + b∗. This is trivial if kn ∈ LB. But otherwise kn /∈ LB

n+1 and there

is some finite (possibly zero) sum f ∈ 〈LB
n 〉 ⊆ B∗ such that kn + f ∈ B. So,

kn = (kn + f) + f is the desired representation.
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It remains to check continuity. If a equals 0 or 1, every B∗ contains it. Other-
wise, according to claim (1), a can be uniquely written as

a = kn1 + · · ·+ knq or a = kn1 + · · ·+ knq + 1,

with kn1 , . . . knq ∈ K. By uniqueness, a ∈ B∗ ⇔ kn1 , . . . , knq ∈ LB. By con-

struction, whether or not kn belongs to LB depends only on the intersection of
B with 〈{ki : i ≤ n}〉. So, whether or not a belongs to B∗ depends only on the
intersection of B with the finite subalgebra 〈{ki : i ≤ max{n1, . . . , nq}}〉 of A.

2. The converse

In order to keep the argument short, we use Stone duality and conceive the
given Boolean algebra A as Clop X, the algebra of all clopen (= closed and open)
subsets of some compact and zero-dimensional topological space X . Accordingly,
we use the set-theoretic notation for the Boolean operations. We assume that
B 7→ B∗ is a continuous complementation Sub A → Sub A. Our aim is to show
that X is metrizable.
For x, y ∈ X we let B(x, y) denote the subalgebra {a ∈ A : x ∈ a ⇔ y ∈ a} of

A = Clop X and use B∗(x, y) for its complement. Obviously

(3) B(x, x) = A, hence B∗(x, x) = {∅, X}.

Let x and y be distinct now. If a ∈ B∗(x, y) does not separate x and y, then it
belongs to B∗(x, y) ∩ B(x, y) = {∅, X} and equals ∅ or X . Repeated application
of this observation yields that

(4) if x 6= y, then B∗(x, y) is a four-element subalgebra of A.

Indeed, consider a, b ∈ B∗(x, y) \ {∅, X}. Then both a and b must separate x and
y, so their symmetric difference does not and equals, therefore, ∅ or X . So a = b
or a = X \ b. This shows that B∗(x, y) has at most four elements. But B∗(x, y)
cannot be the two-element subalgebra, for, otherwise, B(x, y)∪B∗(x, y) = B(x, y)
could not generate the whole of A.
Next we observe that

(5) the assignment (x, y) 7→ B(x, y) defines a continuous mapping
X2 → Sub A.

To check this, it is sufficient to consider the preimages of subbasic sets in the
space Sub A. Well, {(x, y) : a ∈ B(x, y)} = a2 ∪ (X \ a)2 and {(x, y) : a /∈
B(x, y)} = a × (X \ a) ∪ (X \ a)× a are both clopen for each a ∈ A.
It follows that the mapping (x, y) 7→ B∗(x, y) is also continuous. Finally, we

need the following claim.

(6) For every four-element subalgebra B of A the set

WB = {(x, y) ∈ X2 : B∗(x, y) = B}

is clopen in X2 and does not intersect the diagonal ∆ = {(x, x) : x ∈ X}.
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To see this, we fix b ∈ B \ {∅, X}. We already know that B∗(x, y) has at most
four elements. Therefore,

B∗(x, y) = B ⇐⇒ b ∈ B∗(x, y).

It follows that WB is clopen, being the preimage of the subbasic clopen set {C ∈
Sub A : b ∈ C} under the continuous mapping B∗. By (3), B∗(x, x) is always
two-element, so WB cannot intersect ∆.

Assertions (4) and (6) yield a representation of X2 \ ∆ as the disjoint union
⋃

B WB of clopen (hence compact) subsets of X
2. It follows that X2 \∆ is para-

compact. To end our argument it remains to apply the taylormade metrization
theorem of G. Gruenhage (2.6 in [3]): The compact space X is metrizable iff

X2 \∆ is paracompact.

3. The topological version

Recall (cf. [2, 2.7.20]) that the exponential or hyperspace exp X of a topological
space X is the set of all non-empty closed subsets of X equipped with the Vietoris
topology. A subbase of this topology consists of all

{F ∈ exp X : F ⊆ U} and {F ∈ exp X : F ∩ U 6= ∅},

where U runs through all open subsets of X .

Theorem 2. A compact and zero-dimensional space X is metrizable iff there is
a continuous mapping f : X × exp X → X such that

f(x, F ) ∈ F and f(x, F ) = x if x ∈ F .

We just sketch the proof. If F ⊆ X , then B(F ) = {b ∈ Clop X : F ⊆
b or b ∩ F = ∅} is a subalgebra of Clop X. Assuming that X is metrizable, the
Boolean algebra Clop X is countable so Theorem 1 applies and each B(F ) has a
continuously chosen complement B∗(F ). A somewhat lengthy verification then
shows that the desired mapping f : X × exp X → X can be defined by

{f(x, F )} =
⋂

{b∗△b : x ∈ b∗ ∈ B∗(F ); b ∩ F = ∅}.

Here △ means symmetric difference, the set-theoretic version of +. The reader
who wants to fill in the details is advised to prove the following claim first.

(7) Every a ∈ Clop X can be uniquely written in the form b∗△b, where b ∈
B∗(F ) and b ∩ F = ∅.

For the other direction, one can mimic the proof in Section 2. Let the mapping
f : X × exp X → X be given. For x, y ∈ X we let b(x, y) denote the clopen set
{z ∈ X : f(z, {x, y}) = x}. Then b(x, x) = X and ∅ 6= b(x, y) 6= X for x 6= y.
A routine but tedious verification shows that Wb = {(x, y) ∈ X2 : b(x, y) = b} is
clopen for all b ∈ Clop X \ {∅, X}. Then the decomposition

X2 \∆ =
⋃

{Wb : b 6= X}

witnesses the paracompactness of X2\∆ and Gruenhage’s theorem can be applied
as before.
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