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Surjectivity results for nonlinear

mappings without oddness conditions

W. Feng, J.R.L. Webb

Abstract. Surjectivity results of Fredholm alternative type are obtained for nonlinear
operator equations of the form λT (x)−S(x) = f , where T is invertible, and T, S satisfy
various types of homogeneity conditions. We are able to answer some questions left open
by Fuč́ık, Nečas, Souček, and Souček. We employ the concept of an a-stably-solvable
operator, related to nonlinear spectral theory methodology. Applications are given to a
nonlinear Sturm-Liouville problem and a three point boundary value problem recently
studied by Gupta, Ntouyas and Tsamatos.

Keywords: (K, L, a) homeomorphism, a-homogeneous operator, a-stably solvable map

Classification: 47H15, 47H12, 34B10

1. Introduction

The authors of [1] studied various surjectivity results for nonlinear operator
equations of the form

(1.1) λT (x)− S(x) = f

when T is invertible. They considered various types of homogeneity conditions, in
particular a key assumption was that T was a so-called (K, L, a)-homeomorphism.
The precise definition of this and other concepts mentioned in the introduction is
given a little later.
In their paper [1], the authors gave theorems of Fredholm alternative type under

the assumptions that T is an odd (K, L, a)-homeomorphism and S : X → Y is
an odd compact (completely continuous) operator. Furthermore, they established
existence of a solution of the equation (1.1) for each f ∈ Y provided λ 6= 0 if T is
an odd a-homogeneous map and S is an odd b-strongly quasihomogeneous map
with a > b. In the case a < b they proved the same assertion in finite dimensional
spaces but the infinite-dimensional case was an unsolved problem.
In this paper, we employ different methods which allow us to answer some of

their open questions. By introducing the concept of an a-stably-solvable operator,
we obtain some surjectivity results for λT − S under weaker conditions. One of
the theorems generalizes the result of existence of a solution of (1.1) in case a < b
to the infinite-dimensional case. These results seem not to be able to be proven
by their methods.
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It is possible to give simple examples that show that our results are real ex-
tensions of the earlier ones, but we prefer to give more substantial applications.
We discuss a nonlinear Sturm-Liouville problem on the half line following work
by Toland [4]. He studied eigenvalues and asymptotic bifurcation points whereas
we obtain surjectivity when λ is not one of these eigenvalues.
We also discuss existence of solutions to a three point boundary value problem

recently studied by Gupta, Ntouyas and Tsamatos, in [6], [7], [8]. The boundary
conditions are of the type x(0) = 0, x(1) = αx(η). Those authors assume that
α < 1/η but we suppose only that α 6= 1/η. We obtain a different criterion for
existence which improves on Theorem 4 of [6] in some cases but is less good in
others.

2. Prerequisites

We will make use of the class of k-set contractive maps and of the theory of
degree for I − f where f is k-set contractive, see for example [5]. We give some
notations and definitions that we shall use.
Given any continuous map f from a subset D(f) of a complex Banach space X

into a Banach space Y written f : D(f) ⊆ X → Y , let α(Ω) denote the measure
of noncompactness of the bounded set Ω (see for example [5]), and let

α(f) = inf{k ≥ 0 : α(f(Ω)) ≤ kα(Ω) for every bounded Ω ⊂ D(f)},

ω(f) = sup{k ≥ 0 : α(f(Ω)) ≥ kα(Ω) for every bounded Ω ⊂ D(f)},

d(f) = lim inf
‖x‖→∞, x∈D(f)

‖f(x)‖

‖x‖
, |f | = lim sup

‖x‖→∞, x∈D(f)

‖f(x)‖

‖x‖
.

Here |f | is called the quasinorm of f and f is said to be quasibounded if |f | < ∞.
Maps with α(f) < 1 are k-set contractive (also condensing) with k = α(f). Note

that a map f satisfies α(f) = 0 if and only if f is compact, that is, f(Ω) is
compact for every bounded set Ω.
We shall also use of some notions employed by Furi, Martelli and Vignoli [2]

in their theory of spectrum of nonlinear operators. We recall some of these.

Definition 2.1. Let f : X → Y be a continuous map from a Banach space X
into a Banach space Y . The map f is said to be stably-solvable if the equation

f(x) = h(x)

has a solution x ∈ X for any continuous compact map h : X → Y with quasinorm
|h| = 0.
f is said to be regular if it is stably-solvable and d(f) and ω(f) are both positive.
When Y = X , the resolvent set of f is the set

̺(f) = {λ ∈ C, λI − f is regular}
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and the spectrum of f is σ(f) = C \ ̺(f).

If f is invertible then α(f−1) = 1/ω(f), so regular invertible maps have k-set
contractive inverses.
We will consider a generalization of the concept of stably-solvable maps below.

3. Surjectivity theorems

We begin with a result which generalizes Theorem 1.2 and Corollary 1.1 in
Chapter II of [1]. Those authors studied operators T that are (K, L, a)-homeo-
morphisms, where a (not necessarily linear) map T : X → Y is said to be a
(K, L, a)-homeomorphism if

(a) T is a homeomorphism of X onto Y , and

(b) there exists real numbers K > 0, a > 0, L > 0 such that

L‖x‖a ≤ ‖T (x)‖ ≤ K‖x‖a for each x ∈ X.

We do not assume so much.

Theorem 3.1. Let T : D(T ) ⊆ X → Y be an operator satisfying the following
conditions:

1. T is one to one, onto and T−1 : Y → D(T ) is continuous;
2. there exist real numbers L > 0, a > 0 and b > 0 such that

‖T (x)‖ ≥ L‖x‖a − b for every x ∈ D(T );

3. T is bounded, that is, maps bounded sets into bounded sets.

Let S : X → Y be bounded, continuous and suppose that

lim sup
x∈D(T ), ‖x‖→∞

‖S(x)‖

‖x‖a = A.

Then λT − S maps D(T ) onto Y under any one of the following conditions:

1. |λ| > max{A
L ,

α(S)
ω(T )

};

2. S is compact, and |λ| > A
L ;

3. Y is a finite dimensional space, and |λ| > A
L ;

4. S is compact, A = 0, and λ 6= 0.

Proof: Clearly it suffices to prove case 1. Also it is clear that λT −S maps D(T )
onto Y if I−F maps Y onto Y where F : Y → Y is defined by F (y) = ST−1(y/λ).
For any bounded set Ω ∈ Y , we have

α(F (Ω)) = α(ST−1(Ω/λ))

≤ α(ST−1)α(Ω/λ)

≤
1

|λ|

α(S)

ω(T )
α(Ω).
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Therefore,

α(F ) ≤
1

|λ|

α(S)

ω(T )
< 1.

[If S is compact or Y is finite dimensional, then α(F ) = 0.]
Also we have,

|F | = lim sup
‖y‖→∞

‖F (y)‖/‖y‖

= lim sup
‖y‖→∞

‖ST−1(y/λ)‖/‖y‖.

Writing x = T−1(y/λ), we have Tx = y/λ, and we obtain

|F | = lim sup
‖Tx‖→∞

‖S(x)‖

|λ|‖Tx‖

= lim sup
x∈D(T ), ‖x‖→∞

‖S(x)‖

|λ|‖Tx‖

≤ lim sup
x∈D(T ), ‖x‖→∞

‖S(x)‖

|λ|(L‖x‖a − b)

=
A

|λ|L
< 1.

Hence, by the results of [2], 1 ∈ ̺(F ), in particular I − F maps Y onto Y . �

Remark 3.2. A result similar to Theorem 3.1 was obtained in [3], where a dif-
ferent method was used.

Remark 3.3. Theorem 1.2 of [1] requires that T is a (K, L, a)-homeomorphism

and that T, S are both odd with S compact, but allow either |λ| > A
L or |λ| < A

K ,
λ 6= 0.

The following simple example shows that for 0 6= λ ∈ C, even when T is a
(K, L, a)-homeomorphism there is no result similar to Theorem 3.1 in the case

|λ| < A
K without some extra hypothesis (such as oddness of the maps).

Example 3.4. Let T and S : C → C be defined by

T (z) = z, S(x+ iy) = |x|+ iy,

and let λ = 1/2. Then a = 1, K = L = 1, T is odd, S is not odd. Also A = 1, S, T
are compact maps, but λT − S is not onto since z/2− S(z) = 1 has no solution.

We recall the following concepts from [1].



Surjectivity results for nonlinear mappings without oddness conditions 19

Definition 3.5. Suppose that a > 0.

(a) A map F0 : X → Y is called a-homogeneous if F0(tu) = taF0(u) for every
t ≥ 0 and u ∈ X .

(b) F : X → Y is said to be a-quasihomogeneous relative to F0 if F0 : X → Y
is a-homogeneous and

tn ց 0, un ⇀ u0, tanF (un/tn)→ g ∈ Y

together imply that g = F0(u0). [Here un ⇀ u0 denotes weak convergence.]

(c) F : X → Y is said to be a-strongly quasihomogeneous relative to F0 if

tn ց 0, un ⇀ u0 imply that tanF (un/tn)→ F0(u0) ∈ Y.

It is known ([1]) that in case (c) F0 is a-homogeneous and also must be strongly
continuous, that is un ⇀ u0 implies F0un → F0u0.

By applying Theorem 3.1 instead of Corollary 1.1 of [1], we obtain the following
generalization of Theorem 4.1 of [1], where we can dispense with the assumption
that T, S are odd maps.

Theorem 3.6. LetX be reflexive and let T satisfy the conditions of Theorem 3.1.
Let S : X → Y be a compact b-strongly quasihomogeneous operator relative to
S0 and suppose that a > b. Then for λ 6= 0, λT − S maps D(T ) onto Y .

Proof: By Theorem 3.1, part 4, it suffices to show that

lim
‖x‖→∞, x∈D(T )

‖S(x)‖

‖x‖a = 0.

This was proved in Theorem 4.1 of [1] but we include the proof for completeness.
If this is false, there is a sequence {xn} with ‖xn‖ → ∞ and ε > 0 such that
‖Sxn‖/‖xn‖

a ≥ ε, for all sufficiently large n. Letting un = xn/‖xn‖ and tn =
1/‖xn‖ we have, for a subsequence, that

S(xn)/‖xn‖
b → S0(u0).

Since a > b this gives S(xn)/‖xn‖
a → 0, a contradiction. �

Remark 3.7. The authors of [1] say that the case a < b seems to be unsolved in
the infinite dimensional case. We shall give an answer below, see Theorem 3.12.

We introduce the following extension of the concept of stably solvable maps
which is appropriate to our needs.
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Definition 3.8. A continuous map f : D(f) ⊆ X → Y is said to be a-stably-
solvable for some a > 0 if the equation

f(x) = h(x)

has a solution x ∈ D(f) for any continuous compact map h : X → Y with

|h|a := lim sup
‖x‖→∞

‖h(x)‖

‖x‖a = 0.

Lemma 3.9. Suppose T : D(T ) ⊆ X → Y is as in Theorem 3.1. Then T is
a-stably-solvable.

Proof: Let h : X → Y be a compact map with |h|a = 0. Then α(T−1h) = 0,
and

lim sup
‖x‖→∞

‖T−1h(x)‖

‖x‖
= lim sup

‖x‖→∞

‖T−1h(x)‖

‖h(x)‖
1

a

(

‖h(x)‖

‖x‖a

)
1

a

≤ lim sup
‖x‖→∞

(

1

L

)
1

a

(

‖h(x)‖

‖x‖a

)
1

a

→ 0.

Therefore, |T−1h| = 0. This implies that 1 ∈ ̺(T−1h), so that I − T−1h is onto,
that is, there exists x ∈ D(T ) such that x = T−1h(x), that is, Tx = hx. �

Lemma 3.10 (The Continuation Principle for a-stably-solvable maps).
Let f : D(f) ⊆ X → Y be a-stably-solvable, h : X × [0, 1]→ Y be continuous,

compact and such that h(x, 0) = 0 for all x ∈ D(f). Let

U = {x ∈ D(f), f(x) = h(x, t) for some t ∈ [0, 1]}.

Then, if f(U) is bounded, the equation

f(x) = h(x, 1)

has a solution.

Proof: Let Br = {y ∈ Y , ‖y‖ < r}, and let r > 0 be chosen so that f(U) ⊂ Br.
Let ϕ : X → [0, 1] be continuous and such that

ϕ(y) =

{

1, for y ∈ f(U),

0, for ‖y‖ ≥ r,

and let π be the radial retraction of Y onto Br. Then the equation

f(x) = πh(x, ϕ(f(x)))
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has a solution x0 ∈ D(f) since πh is compact and

|πh|a = lim
‖x‖→∞

‖(πh)(x)‖

‖x‖a = 0.

If ‖f(x0)‖ = r, then ϕ(f(x0)) = 0, and f(x0) = πh(x0, 0) = 0, a contradiction.
Thus ‖f(x0)‖ < r, and f(x0) = h(x0, ϕ(f(x0))), which shows that x0 ∈ U and
therefore f(x0) = h(x0, 1). �

Theorem 3.1 of [1] gave theorems of Fredholm alternative type for the couple
(T, S) when T, S were both odd. Recall that λ is said to be an eigenvalue for the
couple T0, S0 if there is x0 6= 0 such that λT0x0 − S0x0 = 0. Using Lemmas 3.9
and 3.10 we can give the following result when neither T nor S is odd.

Theorem 3.11. Let X be a reflexive Banach space, and let T be as in The-
orem 3.1 with D(T ) = X and also a-quasihomogeneous relative to T0. Let
S : X → Y be a compact a-strongly-quasihomogeneous operator relative to S0.
If λ 6= 0, and for every t ∈ (0, 1], λ/t is not an eigenvalue for the couple (T0, S0),
then λT − S maps X onto Y .

Proof: For arbitrary y ∈ Y, let

U = {x ∈ X, λT (x) = h(x, t) = t[S(x) + y], t ∈ [0, 1]}.

We show that U is bounded. If not, there exists xn ⊂ U , ‖xn‖ → ∞, such that

λT (xn) = tn[S(xn) + y], tn ∈ [0, 1],

so that

λT (xn)

‖xn‖a = tn

(

S(xn)

‖xn‖a +
y

‖xn‖a

)

= tn
1

‖xn‖a S

(

xn/‖xn‖

1/‖xn‖

)

+ tn
y

‖xn‖a .

Without loss of generality we assume that xn/‖xn‖ ⇀ x0, tn → t0 ∈ [0, 1]. Then
there exists a subsequence {xnk

} such that

tnk

1

‖xnk
‖a S

(

xnk
/‖xnk

‖

1/‖xnk
‖

)

→ t0S0(x0),

lim
n→∞

λT (xnk
)

‖xnk
‖a = t0S0(x0).

Since T is a-quasihomogeneous relative to T0, we obtain

λT0(x0) = t0S0(x0).
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However,
‖λT (xnk

)‖

‖xnk
‖a ≥ |λ|L −

|λ|b

‖xnk
‖a > |λ|L/2,

for nk sufficiently large so that ‖t0S0(x0)‖ > 0. Hence t0 6= 0, and S0(x0) 6= 0.
From the definition of a-strongly-quasihomogeneous operator it is easy to show

that S0(0) = 0. Thus x0 6= 0, and λ/t0 is an eigenvalue of (T0, S0), a contradiction.
Thus U is bounded. By Lemma 3.9, λT : X → Y is a-stably-solvable. So by
Lemma 3.10, the equation λT (x) = S(x)+ y has a solution x ∈ X , that is λT −S
is onto. �

The next two results extend Theorem 4.2 of [1] to the infinite dimensional case.

Theorem 3.12. Let X be a reflexive Banach space. Let T be a bounded, odd
mapping satisfying the following conditions:

1. T : D(T ) ⊆ X → Y is one to one, onto and T−1 : Y → D(T ) is continuous;
2. there exist real numbers K > 0, a > 0 and q such that

‖T (x)‖ ≤ K‖x‖a + q for every x ∈ D(T ).

Suppose that S is odd, continuous and b-strongly quasihomogeneous relative to S0,
and that inf{‖x‖=1}‖S0(x)‖ > 0. If a < b, then for every λ with |λ| > α(S)/ω(T ),

λT − S is a-stably-solvable.

Proof: First we show that there exists R > 0 such that λx − T−1Sx 6= 0
whenever ‖x‖ ≥ R. If there exists {xn} ⊂ X , ‖xn‖ → ∞ such that

λxn − T−1S(xn) = 0

we may assume that xn

‖xn‖
⇀ x0. Then we have

‖S(xn)‖

‖xn‖b
=

λT (xn)

‖xn‖b
≤

|λ|K‖xn‖
a + q

‖xn‖b
→ 0.

Since S is b-strongly quasihomogeneous relative to S0, we have

1

‖xn‖b
S(xn) =

1

‖xn‖b
S

(

xn/‖xn‖

1/‖xn‖

)

→ S0(x0).

As S0 is strongly continuous we also have S0

(

xn

‖xn‖

)

→ S0(x0). Since

inf‖x‖=1 ‖S0(x)‖ > 0 it follows that S0(x0) 6= 0, this contradicts the above. Let

Br(0) = {x ∈ X, ‖x‖ < r}, where r > R. Then α(T−1S) < |λ| and the topological
degree d

(

I − T−1S/λ, Br(0), 0
)

is odd, hence nonzero (see, for example, [5]).
For a compact operator h : X → Y with h = 0 for ‖x‖ = r,

d
(

I − T−1S/λ − T−1h/λ, Br(0), 0
)

6= 0
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because of boundary value dependence of degree.
For each n ∈ N let σn be continuous and such that

σn(x) =

{

1 for ‖x‖ ≤ n,

0 for ‖x‖ ≥ 2n.

Then, if h : X → Y is a compact operator, with |h|a = 0, for every n > R/2, the
equation

λT (x)− S(x) = σn(x)h(x)

has a solution xn ∈ D(T ). If for all n, we have ‖xn‖ > n, then

λT (xn)− S(xn)

‖xn‖b
=

σn(xn)h(xn)

‖xn‖b
.

Assume that xn/‖xn‖ ⇀ x0. Then from

λT (xn)− S(xn)

‖xn‖b
→ −S0(x0) 6= 0 (n → ∞),

and
σn(xn)h(xn)

‖xn‖b
= σn(xn)

h(xn)

‖xn‖a

‖xn‖
a

‖xn‖b
→ 0 (n → ∞),

we reach a contradiction. Hence there exists n, such that ‖xn‖ ≤ n, and then

λT (xn)− S(xn) = h(xn),

and we are done. �

Theorem 3.13. Let X be a reflexive Banach space, T, T1 : D(T ) → Y and
S, S1 : X → Y be of the form T = T1 + R, S = S1 + R′, where T1 satisfies
the same conditions as T in Theorem 3.12, S1 is odd, continuous and b-strongly
quasihomogeneous relative to S0, and R, R′ : X → Y are compact operators with
|R|a = |R′|a = 0. Suppose that a < b, and that inf{‖x‖=1}‖S0(x)‖ > 0. Then

λT − S maps D(T ) onto Y for every λ with |λ| > α(S)/ω(T ).

Proof: For y ∈ Y , let h(x) = −λR(x) + R′(x) + y, so that h is compact and
|h|a = 0. By Theorem 3.12, the equation

λT1(x)− S1(x) = h(x)

has a solution x0 ∈ D(T ). Hence

λT (x0)− S(x0) = y,

that is λT − S is onto. �
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4. Applications

The following applications are examples of situations that can be settled by
the above theorems but apparently cannot be handled by the results in [1].

Example 4.1. We consider a nonlinear Sturm-Liouville problem on an unbounded
domain, namely the following nonlinear differential equation:

(4.1)
−(p(x)u′(x))′ + q(x)u(x) = λ{u(x) + g(x)f(u(x))},

for x ∈ (0,∞), and u(0) = 0.

In [4] it was shown that certain eigenvalues λ are asymptotic bifurcation points.
Under the same assumptions we will show that if v is continuous, the equation

(4.2)
−(p(x)u′(x))′ + q(x)u(x) = λ{u(x) + g(x)f(u(x))} + v(x)

for x ∈ (0,∞), and u(0) = 0

has a solution when λ is not one of these eigenvalues.
We recall the assumptions made in [4].

1. p : [0,∞) → R is continuous and continuously differentiable on (0,∞),
with p′ bounded and 0 < P1 ≤ p(x) ≤ P2 < ∞ for all x ∈ [0,∞).

2. q : [0,∞)→ R is continuous with
0 < Q1 ≤ q(x) ≤ Q2 < ∞ for all x ∈ [0,∞).

3. f is a continuously differentiable function from R into itself, and there
exist positive real numbers P and K such that |f(p)| ≤ K|p|r for all
p ≥ P , for some r < 1.

4. g ∈ H10 (0,∞).

For u : [0,∞) → R and x ∈ [0,∞) let H be defined by (Hu)(x) = g(x)f(u(x)).
Let A : H10

⋂

W 2,2 → L2 be the self-adjoint extension of the operator A0 defined
by A0u = −(p(x)u′(x))′+ q(x)u(x) with domain the set of twice continuously dif-
ferentiable functions with compact support in (0,∞). Then, ([4]), A is a positive

self-adjoint operator in L2 and its positive square root A
1

2 is a linear homeomor-
phism of H10 onto L2, where H10 is the closure of C

∞
0 inW 1,2 and C∞

0 is the linear
space of all infinitely differentiable, real-valued functions with compact support
in (0,∞).
We claim (and will show below) that for 0 < |λ| < Q := lim infx→∞ q(x), and

λ not an eigenvalue of A, the operator

u 7→ u − λA−1u+ λA−1/2HA−1/2u

from L2 → L2 is onto. Assuming this, it follows that the equation

Au = λu + λHu+ v
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has a solution u ∈ H10
⋂

W 2,2 for any v ∈ L2 ([4, Lemma 4.18]). Hence if v is
continuous, using the same arguments as in Lemma 4.20 of [4] it follows that the
equation (4.2) has a solution.
We now establish the claim made above. Let µ = 1/λ, and let T, S : L2 → L2

be defined by
Tu = µu − A−1u, Su = A−1/2HA−1/2u.

Suppose that |µ| > α(A−1) = 1/Q ([4, Theorem 4.23]), and that µ is not an
eigenvalue of A−1. Then T is a bounded linear operator, which is one to one,
onto, and has a continuous inverse. So it is a (K, L, 1)-homeomorphism of L2 onto
L2. Furthermore, T is 1-quasihomogeneous relative to T since it has continuous
inverse. It has been shown that S is a compact operator and the quasinorm
|S| = 0 in the space L2 ([4, Lemma 4.17]). Assume that there exist un ∈ L2 with
un ⇀ u0, tn ց 0 such that

tnS (un/tn) > ε0 > 0.

Then {‖un/tn‖2} is unbounded. If ‖unk
/tnk

‖2 → ∞, (nk → ∞), then we have

‖tnk
S (unk

/tnk
) ‖2 =

‖S (unk
/tnk
) ‖2

‖unk
‖2/tnk

‖unk
‖2 → 0,

a contradiction. Thus we have shown that S is a 1-strongly quasihomogeneous
operator relative to S0 = 0 in the space L2. For any t ∈ (0, 1],

(1/t)(µI − A−1)(u) = 0 =⇒ u = 0,

so 1/t is not an eigenvalue of the couple (T, 0). By Theorem 3.11, T −S maps L2

onto L2. Thus we have reached the conclusion.

The following second-order m-point nonlinear boundary value problem (BVP)
has been studied recently by Gupta, Ntouyas and Tsamatos ([6], [7], [8]):

(4.3)

x′′(t) = f(t, x(t), x′(t)) + e(t) 0 < t < 1,

x(0) = 0, x(1) =

m−2
∑

i=1

aix(ξi).

It was shown that the problem of existence of a solution for the BVP (4.3) can
be studied via the three boundary value problem

(4.4)
x′′(t) = f(t, x(t), x′(t)) + e(t) 0 < t < 1,

x(0) = 0, x(1) = αx(η),

where η ∈ (0, 1) and α ∈ R.
Some conditions for the existence of a solution for the BVP (4.4) were obtained

in [6] using the Leray-Schauder continuation theorem. Their results suppose that
α < 1/η. By using Theorem 3.1, we obtain the following result which gives a
different condition for the existence of a solution for (4.4) under the more general
hypothesis α 6= 1/η.
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Theorem 4.2. Let f : [0, 1] × R2 → R be a function satisfying Carathéodory’s

conditions. Assume that there exist functions p(t), q(t), r(t) in L1(0, 1) such that

|f(t, x1, x2)| ≤ p(t)|x1|+ q(t)|x2|+ r(t)

for a.e. t ∈ [0, 1] and all (x1, x2) ∈ R2. Also let η ∈ (0, 1), α ≥ 0, α 6= 1/η be
given. Then for any given e ∈ L1(0, 1) the boundary value problem (4.4) has at
least one solution in C1[0, 1] provided that

(4.5) ‖p‖1 + ‖q‖1 <

{

(1− αη)/2, if αη < 1,

(αη − 1)/2αη, if αη > 1.

Proof: Let X denote the Banach space C1[0, 1] with the norm

‖x‖ = max{‖x‖∞, ‖x′‖∞}.

Let Y denote the Banach space L1(0, 1) with its usual norm.
The linear operator L : D(L) ⊂ X → Y is defined by setting

D(L) = {x ∈ W 2,1(0, 1) : x(0) = 0, x(1) = αx(η)},

and for x ∈ D(L),
Lx = x′′.

For x ∈ X , let
(Nx)(t) = f(t, x(t), x′(t)), t ∈ [0, 1].

Then N is a bounded map from X into Y . It can be shown that L : D(L) ⊂ X →
Y is one to one and onto when α 6= 1/η. In fact, L−1 = K, where K is the linear
operator K : Y → D(L) ⊂ X defined by

(Ky)(t) =

∫ t

0
(t− s)y(s) ds+

αt

1− αη

∫ η

0
(η− s)y(s) ds−

t

1− αη

∫ 1

0
(1− s)y(s) ds.

For y ∈ Y , we have

‖Ky‖∞ ≤

(

1 +
αη + 1

|1− αη|

)

‖y‖1,

where ‖y‖1 is the norm of y in the space L1(0, 1). Also

‖(Ky)′‖∞ ≤

(

1 +
αη + 1

|1− αη|

)

‖y‖1.

Thus we have

‖Ky‖ ≤

(

1 +
αη + 1

|1− αη|

)

‖y‖1.
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Let T = I and S = KN . Then α(S) = 0 by the Arzela-Ascoli theorem. Also we
have

A = lim sup
‖x‖→∞

‖S(x)‖

‖x‖

= lim sup
‖x‖→∞

‖KN(x)‖

‖x‖

≤ lim sup
x→∞

(

1 +
αη + 1

|1− αη|

)

‖N(x)‖1
‖x‖

≤

(

1 +
αη + 1

|1− αη|

)

lim sup
‖x‖→∞

‖p‖1‖x‖∞ + ‖q‖1‖x
′‖∞ + ‖r‖1

‖x‖

≤

(

1 +
αη + 1

|1− αη|

)

lim sup
‖x‖→∞

(‖p‖1 + ‖q‖1)‖x‖+ ‖r‖1
‖x‖

=

(

1 +
αη + 1

|1− αη|

)

(‖p‖1 + ‖q‖1)

=

{ 2
1−αη (‖p‖1 + ‖q‖1) for αη < 1

2αη
αη−1 (‖p‖1 + ‖q‖1) for αη > 1.

By the assumption (4.5) we see that A < 1. Hence, from Theorem 3.1, the
operator I − S = I − KN maps X onto X .
Hence, given any e ∈ L1(0, 1), there exits x ∈ C1[0, 1] such that

x(t)− (KNx)(t) = Ke(t).

Thus x = KNx+Ke ∈ D(L) and

Lx − Nx = e.

This proves that the BVP (4.4) has at least one solution in C1[0, 1]. �

Remark 4.3. When αη < 1, the condition (4.5) gives a better result than The-
orem 4 of [6] in case α(1 − η) > 2 since their condition demands ‖p‖1 + ‖q‖1 <
1−αη

α(1−η)
, but is worse in the case α(1 − η) < 2. Also our result can apply when

αη > 1.
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