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Stability in nonlinear evolution problems

by means of fixed point theorems

J.J. Koliha, Ivan Straškraba

Abstract. The stabilization of solutions to an abstract differential equation is investi-
gated. The initial value problem is considered in the form of an integral equation.
The equation is solved by means of the Banach contraction mapping theorem or the
Schauder fixed point theorem in the space of functions decreasing to zero at an appro-
priate rate. Stable manifolds for singular perturbation problems are compared with each
other. A possible application is illustrated on an initial-boundary-value problem for a
parabolic equation in several space variables.

Keywords: evolution equations, stabilization of solutions, parabolic problem

Classification: 34G20, 35B40, 35K20

1. Introduction

In this work we study the stability and stabilization of solutions to nonlinear
evolution problems by application of fixed point theorems in appropriate Banach
spaces of functions with specific behaviour as time tends to infinity. To this
purpose we interpret the evolution problems as differential equations in Banach
spaces and take advantage of the theory of C0-semigroups of operators, and other
relevant tools as applied for example in Pazy [10]. We investigate a problem of
type (2.1) stated below. There is a body of results in this area for which we
refer the reader to Hale [4], Krein and Dalecki [8], Pazy [10]. Our approach is
classical in the sense that we split the nonlinear problem into a linearized part
and a nonlinear perturbation assuming the existence of a stable equilibrium by
normalization placed at zero. This is close to the approach applied for example
in Rauch [11]. Next, we invert the linear part and search for a stabilizing solution
as a fixed point of the corresponding integral operator.
We start in Section 2 by a simple application of the Banach contraction prin-

ciple in the space L∞
w (0,∞;X) of functions u : (0,∞)→ X (X a Banach space)

which are measurable, essentially bounded and tending to zero at an appropriate
rate w(t)−1 as t → ∞. This technique allows a local result only. The same tech-
nique is applied in Section 3 to a singularly perturbed Problem (3.1) making it
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possible to establish at least locally the inclusion Ω0 ⊂ Ωε between stable mani-
folds (3.2) for ε = 0 and ε > 0 small. A large data result is proved in Section 4
with the help of the Schauder fixed point theorem in the space L∞

w (0,∞;X).
Some growth restriction at infinity is necessary for the nonlinear perturbation.
In Section 5 we deal briefly with the stabilization of the solution to a singularly
perturbed Problem (5.1); the investigation is brought to the point when the re-
sults of Sections 2 and 4 can be applied. Finally, in Section 6 the stabilization
of the solution to a parabolic initial-boundary value problem for large data is
investigated via method developed in Section 4.
We adopt the usual notation Lp(M ;X) for the Lp-spaces of functions from a

set M ⊂ RN into a Banach space X , W k,p(M ;X) for the Sobolev spaces of kth

order, Ck(M ;X) for the spaces of functions with continuous derivatives up to the
order k, L(X,Y ) for the space of the continuous linear operators from X into Y
with L(X) = L(X,X), and so on. By Br(0;X) we denote the ball centered at 0
with radius r in the Banach space X .

2. Stability by the Banach contraction principle

In this section we investigate the stability of the stationary solution correspond-
ing to the evolutionary problem

(2.1)
u′(t) + (A+B)u(t) = 0, t > 0,

u(0) = x.

Here A : D(A) ⊂ X → X is a linear operator in a Banach space X , B : X → X
is an operator (in general nonlinear) and x a given element of X . In order to
establish the stability of the stationary point we shall make use of the Banach
contraction principle in the space of functions u : [0,∞) → X which decrease in
an appropriate rate as t→ ∞.
We make the following assumptions:

(i) −A is a generator of a C0-semigroup {T (t)}t≥0 of bounded linear operators
in X ;

(ii) B = D − F , where D ∈ L(X) and F : X → X, F (0) = 0;

(iii) the semigroup T̃ (t) generated by −(A+D) satisfies the estimate

|T̃ (t)| ≤ ω̃(t), t ≥ 0, with some ω̃ ∈ L∞(0,∞);
(iv) there exists r0 > 0 and a continuous function λ : [0, r0) → R+ with

λ(0) = 0 such that for any r ∈ (0, r0) we have
|F (u)− F (v)| ≤ λ(r)|u − v| for u, v ∈ Br(0;X);

(v) µ(r) := sup
t∈R+

w(t)

∫ t

0
ω̃(t− s)w(s)−1λ(w(s)−1r) ds <∞ for r ∈ (0, r0],

lim sup
r→0+

µ(r) < 1 for some function w ∈ L∞
loc(0,∞) such that w(t) ≥ 1 a.e.

in (0,∞) and lim
t→∞

w(t) =∞.
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Let us note that in concrete situations typically ω̃(t) ≤ Me−αt, w(t) = eβt,
λ(r) = crµ with some constants M > 0, 0 < β < α, c > 0 and µ ∈ (0, 1].
We shall work in the space

(2.2) L∞
w (0,∞;X) = {u ∈ L∞(0,∞;X) : ‖u‖w := ess supt≥0w(t) |u(t)| <∞}.

It is a standard result that the space L∞
w (0,∞;X) is a Banach space under the

norm ‖ · ‖w.
In the following lemma we prove that the operator

(2.3) G(u)(t) =

∫ t

0
T̃ (t− s)Fu(s) ds, u ∈ Br(0;L

∞
w (0,∞;X))

is well defined and maps Br(0;L
∞
w (0,∞;X)) into itself if r > 0 is sufficiently

small.

Lemma 2.1. Let assumptions (i)–(v) be satisfied. Then there exists r1 ∈ (0, r0]
such that for any r ∈ (0, r1) the operator G defined by (2.3) maps the ball
Br(0;L

∞
w (0,∞;X)) into itself and

(2.4) ‖G(u)−G(v)‖w ≤ µ(r)‖u − v‖w for u, v ∈ Br(0;L
∞
w (0,∞;X)),

where µ(r) < 1.

Proof: If u, v ∈ Br(0;L
∞
w (0,∞;X)), then by (2.3), (iii) and (iv) we have

w(t)|G(u)(t)| ≤ w(t)

∫ t

0
|T̃ (t− s)| |Fu(s)| ds

≤ w(t)

∫ t

0
ω̃(t− s)λ(w(s)−1r)w(s)−1‖u‖w ds

≤ w(t)

∫ t

0
ω̃(t− s)λ(w(s)−1r)w(s)−1 ds · r ≤ µ(r)r.

Analogously we get

w(t)|G(u)(t) −G(v)(t)| ≤

∫ t

0
ω̃(t− s)λ(w(s)−1r)w(s)−1‖u− v‖w ds

≤ µ(r)‖u − v‖w.

The result follows immediately. �

Define an operator H by

(2.5) H(u)(t) = T̃ (t)x +G(u)(t); u ∈ Br(0;L
∞
w (0,∞;X)), t > 0, r ∈ (0, r0).

If

(2.6) lim sup
t→∞

w(t)ω̃(t) <∞,

thenH maps Br(0;L
∞
w (0,∞;X)) into L

∞
w (0,∞;X). We have the following result.
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Theorem 2.2. Let assumptions (i)–(v) be satisfied and let (2.6) hold. If |x|
(x ∈ X) is sufficiently small, then the operator H defined by (2.5) has a unique
fixed point in Br(0;L

∞
w (0,∞;X)) for r > 0 small enough. This fixed point is

a generalized solution of (2.1), and it satisfies |u(t)| ≤ rw(t)−1 for t ≥ 0; in
particular we have limt→∞ u(t) = 0 in X .

Proof: By (2.6) there exists c̃ > 0 such that w(t)ω̃(t) ≤ c̃, for t ≥ 0. We

choose r > 0 in Lemma 2.1 so that λ(r) ≤ 1
2 and µ(r) < 1. Then for u, v ∈

Br(0;L
∞
w (0,∞;X)) and c̃ |x| ≤

1
2r we have

w(t)|H(u)(t)| ≤ w(t)|T̃ (t)x|+ w(t)|G(u)(t)| ≤ w(t)ω̃(t)|x| + λ(r)r

≤ c̃ |x|+ 12r ≤
1
2r +

1
2r = r,

and

w(t)|H(u)(t) −H(v)(t)| = w(t)|G(u)(t) −G(v)(t)| ≤ µ(r)‖u − v‖w.

Thus H maps Br(0;L
∞
w (0,∞;X)) into itself and is contractive therein. We apply

the Banach contraction principle in Br(0;L
∞
w (0,∞;X)) to obtain the result. �

3. Comparison of stable manifolds for a singularly perturbed problem

In this section we study the parameter dependent problem

(3.1)
u′ε(t) + (εA+B)uε(t) = 0, t > 0,

uε(0) = x, ε ∈ [0, ε0], ε0 > 0, x ∈ X.

As in Section 2, A : D(A) ⊂ X → X is a linear operator in X whereas
B : X → X may be nonlinear. We are going to consider stable manifolds associ-
ated with Problem (3.1), that is the sets

Ωε = {x ∈ X : uε(t)→ 0 in X as t→ ∞},

where uε is the generalized solution of (3.1) (dependent on x).
The aim of this section is to derive conditions under which there exists ε∗ > 0

such that for any ε ∈ (0, ε∗) we have Ω0 ⊂ Ωε at least locally. To achieve this we
shall establish convergence uε(t) → u0(t) in X as ε → 0+ pointwise on compact
intervals, and universal stability of u = 0 for ε ∈ (0, ε∗) (that means that there
exists r > 0 such that uε(t)→ 0 in X as t→ ∞ whenever |x| ≤ r and ε ∈ (0, ε∗)).
In what follows we shall make some assumptions.

(a) Let assumptions (i), (ii) and (iv) of Section 2 be satisfied. Further, denote

by ω̃ε a L
∞
loc(0,∞) function such that the semigroup T̃ε(t) generated by

−(εA+D) satisfies the estimate

(3.3) |T̃ε(t)| ≤ ω̃ε(t), t ≥ 0, ε ∈ (0, ε0],
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and introduce a family of weight functions wε ∈ L∞
loc(0,∞) such that

wε(t) ≥ 1 a.e. in (0,∞) and limt→∞ wε(t) =∞ (ε ∈ (0, ε0]).

We make also the following assumption.

(b) There exist r1 ∈ (0, r0] and κ ∈ (0, 1) such that we have

µε(r) := sup
t∈R+

wε(t)

∫ t

0
ω̃ε(t− s)wε(s)

−1λ(wε(s)
−1r) ds ≤ κ

for r ∈ (0, r1], ε ∈ (0, ε0].

Lemma 3.1. Let assumptions (i), (ii) of Section 2 be satisfied. In addition, let
us assume that F is locally Lipschitz, that there exists a family of generalized
solutions uε(t) of Problem (3.1) which is uniformly bounded in L

∞(0, t0) (t0 > 0)
with respect to ε ∈ (0, ε0], and that there is a constant c̃ > 0 such that ω̃ε(t) ≤ c̃
for t ∈ [0, t0], ε ∈ (0, ε0]. Then uε(t)→ u0(t) in X as ε→ 0+ for all t ∈ (0, t0].

Remark 3.2. Later on we shall provide some conditions which guarantee the
existence and uniform boundedness of uε(t) as assumed in Lemma 3.1.

Proof of Lemma 3.1: First, let us show that for any x ∈ X and any t > 0

we have limε→0+ T̃ε(t)x = T̃0(t)x. To prove this, consider the operator Sε(s) =

Tε(t− s)T̃ε(s), where Tε(τ) is the semigroup generated by (−εA). Then, for x ∈

D(A), the function s 7→ Sε(s)x is differentiable and S
′
ε(s)x = −Tε(t− s)DT̃ε(s)x.

Integrating S′
ε(s)x from 0 to t yields

(3.4) T̃ε(t)x = Tε(t)x−

∫ t

0
Tε(t− s)DT̃ε(s)xds for x ∈ D(A).

By continuity, the relation (3.4) can be extended to all x ∈ X . Further, Tε(t) =
T (εt) since T (τ) is generated by −A and, consequently, limε→0+ |Tε(t)x − x| =
0 for any x ∈ X locally uniformly with respect to t. In addition, there exist
constants M,ω such that

(3.5) |Tε(t)| = |T (εt)| ≤Meεωt ≤Meε0ωt for t ≥ 0.

By subtraction with ε > 0 and with ε = 0 we obtain

(3.6)

T̃ε(t)x − T̃0(t)x = (T (εt)x− x) −

∫ t

0

[
T (ε(t− s))− I

]
DT̃0(s)xds

−

∫ t

0
T (ε(t− s))D(T̃ε(s)x− T̃0(s)x) ds.

By the continuity of T the first term tends to 0 as ε → 0+ pointwise in t. The
same is true for the second term by the Lebesgue dominated convergence theorem.

Denoting ϕε(t) = |T̃ε(t)x − T̃0(t)x|, from (3.6) we obtain with the aid of (3.5)

ϕε(t) ≤ gε(t) + C

∫ t

0
ϕε(s) ds
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with some function gε satisfying limε→0+ gε(t) = 0 and with a constant C. The
Gronwall lemma yields

ϕε(t) ≤ gε(t) + Ce
Ct

∫ t

0
gε(s)e

−Cs ds

and the Lebesgue dominated convergence theorem implies limε→0+ ϕε(t) = 0.
The generalized solution uε(t) of (3.1) satisfies the relation

(3.7) uε(t) = T̃ε(t)x +

∫ t

0
T̃ε(t− s)Fuε(s) ds.

By subtraction we obtain

uε(t)− u0(t) = T̃ε(t)x − T̃0(t)x+

∫ t

0

[
T̃ε(t− s)Fuε(s)− T̃0(t− s)Fu0(s)

]
ds.

This, the uniform boundedness of uε and the fact that F is locally Lipschitz yield

|uε(t)− u0(t)| ≤ |T̃ε(t)x− T̃0(t)x| +

∫ t

0
|T̃ε(t− s)Fu0(s)− T̃0(t− s)Fu0(s)| ds

+

∫ t

0
|T̃ε(t− s)| |Fuε(s)− Fu0(s)| ds

≤ aε(t) + C

∫ t

0
|uε(s)− u0(s)| ds,

where limε→0+ aε(t) = 0 by what we have proved above, and C is a constant.
The same Gronwall lemma argument as above yields limε→0+ |uε(t)− u0(t)| = 0.
Our next step is the universal stability of the stationary solution u = 0.

Theorem 3.3. Let assumptions (a) and (b) be satisfied and let

(3.8) wε(t)ω̃ε(t) ≤ C̃ <∞ for all t ∈ [0,∞) and ε ∈ (0, ε0]

with a constant C̃ independent of t and ε. Then there exists R > 0 such that for
any x ∈ X with |x| ≤ R the generalized solution uε(t) of (3.1) converges to 0 as
t→ ∞ for all ε ∈ (0, ε0].

Proof: As in Section 2 we intend to apply the Banach contraction principle to
the operator Hε given by

(3.9) Hε(u)(t) = T̃ε(t)x +

∫ t

0
T̃ε(t− s)Fu(s) ds.

It suffices to show that there is R > 0 such that if x ∈ X , |x| ≤ R and ε ∈ (0, ε0],
then there exists r > 0 such that Hε maps the ball Br(0;L

∞
wε
(0,∞;X)) into itself

and is a contraction in that ball.
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So, let R > 0, |x| ≤ R, r ∈ (0, r1] and u, v ∈ Br(0;L
∞
wε
(0,∞;X)). Then, for

R ≤ (1− κ)r/C̃, we have

wε(t)|Hε(u)(t)| ≤ wε(t)ω̃ε(t)R + wε(t)

∫ t

0
ω̃ε(t− s)λ(wε(s)

−1r)wε(s)
−1 ds ‖u‖wε

≤ C̃R+ µε(r)r ≤ C̃R+ κr ≤ r,

and consequently ‖Hε(u)‖wε ≤ r. Similarly we have

wε(t)|Hε(u)(t)−Hε(v)(t)|

≤ wε(t)

∫ t

0
ω̃ε(t− s)λ(wε(s)

−1r)wε(s)
−1 ds ‖u− v‖wε ≤ κ‖u− v‖wε ,

and the assertion easily follows. �

The following main theorem of this section gives a local comparison result.

Theorem 3.4. Let assumptions (a), (b) and (3.8) be satisfied. In addition,
let F be locally Lipschitz and for any x ∈ X and any t0 > 0 let there exist a
family of generalized solutions uε(t) of Problem (3.1) which is uniformly bounded
in L∞(0, t0) with respect to ε ∈ (0, ε0]. Then for any x ∈ Ω0 there exists an
ε∗ ∈ (0, ε0] such that limε→0+ uε(t) = 0, ε ∈ (0, ε

∗), t ∈ [0, t0] for corresponding
solutions uε(t) of (3.1).

Proof: If x ∈ Ω0 then limt→∞ u0(t) = 0 in X , where u0(t) is a generalized
solution of (3.1) with ε = 0. Take R > 0 whose existence is guaranteed by

Theorem 3.3 and find t0 > 0 such that |u0(t)| ≤
1
2R for all t ≥ t0. Let uε(t), ε ∈

(0, ε0] be the family of generalized solutions of (3.1). In view of our assumptions
Lemma 3.1 may be applied on the interval (0, t0] to obtain that, in particular,

there exists ε∗ ∈ (0, ε0] such that |uε(t0)− u0(t0)| ≤
1
2R for ε ∈ (0, ε

∗). Thus we
get

|uε(t0)| ≤ |u0(t0)|+ |uε(t0)− u0(t0)| ≤
1
2R+

1
2R = R.

But taking x = uε(t0), by Theorem 3.3 we can construct a solution vε(t) of (3.1),
which converges to 0 as t→ ∞ (ε ∈ (0, ε∗)). By uniqueness (F is locally Lipschitz
continuous) we get vε(t) = uε(t0+ t) so that limt→∞ uε(t) = 0 in X for ε ∈ (0, ε

∗)
as well. �

Remark 3.5. If x ∈ D(A) then it may be easily seen that there exists t1 > 0
such that |T (t)x− x| ≤ t(1 + |Ax|). Consequently in the proof of Lemma 3.1 we
have |T (εt)x − x| ≤ εt0(1 + |Ax|) for 0 ≤ ε ≤ t1/t0 =: ε1 and by (3.6) and the

Gronwall lemma it follows |T̃ε(t)x − T̃0(t)x| ≤ const ε(1 + |Ax|), t ∈ [0, t0]. This
yields |uε(t) − u0(t)| ≤ const ε(1 + |Ax|), t ∈ [0, t0], ε ∈ [0, ε1]. Now, from the
proof of Theorem 3.4 for any R > 0 we get the existence of ε ∈ (0, ε∗) such that
Ω0 ∩BR(0;D(A)) ⊂ Ωε ∩BR(0;D(A)) for all ε ∈ (0, ε

∗), where D(A) is equipped
with the graph norm |x|D(A) = |x| + |Ax| for x ∈ D(A). For strongly positive
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operators (see Krasnosel’skij [7]) the requirement x ∈ D(A) can be relaxed to
x ∈ D(Aα) for some α > 0 with the obvious modification in the assertion. The
rate of convergence is then of order εα.

We give a reference to the question of the existence and the uniform bound-
edness of the solutions uε to (3.1). For Problem (2.1), a necessary and suffi-
cient condition for the existence of a solution is given in Iwamiya, Takahashi and
Oharu [5] in a quite general setting, and it may be modified for the singularly
perturbed Problem (3.1). We present here a rather less general result of Crandall
and Liggett [2] which is sufficient for our purpose.

Proposition 3.6. Let assumption (i) of Section 2 be satisfied and let B : X → X
be continuous. Denote by 〈·, ·〉 the pairing between X and its dual space X∗,
Φ(y) := {ϕ ∈ X∗ : 〈y, ϕ〉 = |y|2 = |ϕ|2} and 〈z, y〉i = inf{〈z, ϕ〉 : ϕ ∈ Φ(y)} for
z, y ∈ X . If there exists α ∈ R such that

〈(εA+B)y − (εA+B)z, y − z〉i ≤ α|y − z|2 for y, z ∈ D(A), ε ∈ (0, ε0],

and

R(I − λ(εA+B)) = X for λ ∈ (0,∞) with λα < 1 and ε ∈ (0, ε0],

then for each ε ∈ (0, ε0] there is a nonlinear continuous semigroup Sε := {Sε(t) :
t ≥ 0} of continuous operators on X such that

Sε(t)x = T (εt)x+

∫ t

0
T (ε(t− s))BSε(s)xds for t ≥ 0 and x ∈ X,(3.10)

|Sε(t)x − Sε(t)y| ≤ eαt|x− y| for t ≥ 0 and x, y ∈ X.(3.11)

Remark 3.7. Proposition 3.6 yields a generalized solution uε(t) = Sε(t)x of
(3.1) satisfying (3.7) by (3.10). In our case the generalized solution is uniformly
bounded since Sε(t)(0) ≡ 0, and by (3.11) we have

|uε(t)| = |Sε(t)x − Sε(t)(0)| ≤ eαt|x| ≤ const for t ∈ [0, t0] (t0 > 0).

The uniqueness follows from the local Lipschitz continuity of F by a standard
Gronwall lemma argument.

4. Stability by the Schauder fixed point theorem

We consider the problem

u′(t) + (A+B)u(t) = 0, t > 0,(4.1)

u(0) = x,(4.2)
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where A is a linear (in general unbounded) operator in a Banach space X , which
is a generator of a C0-semigroup of bounded linear operators T (t), t ≥ 0, and
B : X → X is a continuous (in general nonlinear) operator. We say that (4.1),
(4.2) has a generalized solution if there is a function u ∈ L∞

loc(0,∞;X) such that

(4.3) u(t) = T (t)x−

∫ t

0
T (t− s)Bu(s) ds, t ≥ 0.

We assume that there exists u = u ∈ X such that

(4.4) (A+B)u = 0, u ∈ D(A),

(where D(A) is the definition domain of A) and intend to establish conditions
under which u(t)→ u as t→ ∞ in X .
We suppose that u = 0 since the general case can be easily reduced to this

case, so that (4.4) can be written as

(4.5) B(0) = 0.

To show that under appropriate assumptions u(t) → 0 as t → ∞ in X we shall
make use of the Schauder fixed point theorem to find the solution of (4.3) in an
appropriate Banach space of functions u : R+ → X for which u(t) → 0 in X as
t→ ∞.
Let w ∈ L∞

loc(0,∞) be such that w(t) ≥ 1 a.e. in (0,∞) and limt→∞w(t) =∞.
As in Section 2 we define

(4.6) L∞
w (0,∞;X) = {u ∈ L∞(0,∞;X) : ‖u‖w := ess supt≥0w(t) |u(t)| <∞}.

In the sequel we shall need the following compactness criterion which we prove
for reader’s convenience.

Proposition 4.1. A set K ⊂ L∞(0,∞;X) is relatively compact in L∞
w (0,∞;X)

if the following conditions hold:

(i) there is a set M ⊂ (0,∞) of measure zero such that for any t ∈ (0,∞)\M
the orbit Xt = {f(t) : f ∈ K} of t under K is relatively compact in X ;

(ii) for any ε > 0 there is a finite partition of (0,∞) into measurable sets
A1, . . . , An such that

ess sups,t∈Aj
|w(s)f(s)− w(t)f(t)| < ε

for all j ∈ {1, . . . , n} and all f ∈ K.

Proof: Let ε > 0. There is a measurable partition A1, . . . , An of (0,∞) and a

set B ⊂ (0,∞) of measure zero such that |w(s)f(s) − w(t)f(t)| < 1
3ε whenever

t, s ∈ Aj\B for some j and f ∈ K. We may assume that Aj\(M ∪B) is nonempty
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for all j. Choose points tj ∈ Aj\(M ∪ B) for j ∈ {1, . . . , n} and define a map
P : K → Xn by

P (f) = (w(t1)f(t1), . . . , w(tn)f(tn)) for all f ∈ K.

The set P (K) is relatively compact in X being a subset of a relatively compact

set w(t1)Xt1 × · · · × w(tn)Xtn . Let {P (f1), . . . , P (fp)} be a
1
3ε-net for P (K)

with respect to the norm |(x1, . . . , xn)| = max(|x1|, . . . , |xn|). We show that
{f1, . . . , fp} is an ε-net for K: Let f ∈ K. There is k ∈ {1, . . . , p} such that

|P (f)−P (fk)| <
1
3ε. Given t ∈ (0,∞)\(M ∪B), there is j ∈ {1, . . . , n} such that

t ∈ Aj\(M ∪B). So

|w(t)f(t) − w(t)fk(t)| ≤ |w(t)f(t) − w(tj)f(tj)|+ |w(tj)f(tj)− w(tj)fk(tj)|

+ |w(tj)fk(tj)− w(t)fk(t)|

< 1
3ε+ |P (f)− P (fk)|+

1
3ε < ε,

which shows that ‖f − fk‖w < ε. �

Assume that

(4.7) B = D − F where D ∈ L(X) and F is locally Lipschitz.

Then the operator −(A+D) generates a C0-semigroup T̃ (t), t ≥ 0, of continuous
linear operators in X (see Pazy [10, Section 3.1, Theorem 1.1]). It can be shown
that the operator F is locally bounded and that it transforms each strongly mea-
surable function from (0,∞) into X onto a strongly measurable function from
(0,∞) into X . Let u ∈ L∞

loc(0,∞;X). Then the function

v(t) =

∫ t

0
T̃ (t− s)Fu(s) ds

belongs to L∞
loc(0,∞;X) as well. Indeed, given t0 > 0 we have |Fu(s)| ≤ const

a.e. in (0, t0) and there exist M > 0 and ω ∈ R such that |T̃ (τ)| ≤ Meωτ , τ ≥ 0,
which yields the desired estimate. Define

(4.8) G(u)(t) =

∫ t

0
T̃ (t− s)Fu(s) ds, t ≥ 0, for u ∈ L∞

loc(0,∞;X).

Then G maps L∞
loc(0,∞;X) into itself. Now, more generally, let there exist a

function ω̃ ∈ L1loc([0,∞)) such that

(4.9) |T̃ (τ)| ≤ ω̃(τ), τ > 0.

We have the following.
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Lemma 4.2. Let (4.7) hold and let the weight function w be such that

(4.10) lim sup
t→∞

w(t)

∫ t

0
ω̃(t− s)w(s)−1 ds <∞.

Then G maps L∞
w (0,∞;X) into itself and is locally Lipschitz.

Proof: By (4.10) we have w(t)
∫ t
0 ω̃(t − s)w(s)−1 ds ≤ const < ∞ for t ≥ 0.

Since for u ∈ L∞
w (0,∞;X) we have |u(s)| ≤ const < ∞, a.e. and F (0) = 0, by

(4.7) we have |Fu(s)| ≤ k|u(s)| a.e. with some k > 0. Hence

|T̃ (t− s)Fu(s)| ≤ ω̃(t− s)k|u(s)| ≤ k‖u‖w ω̃(t− s)w(s)−1,

and consequently

|w(t)G(u)(t)| ≤ kw(t)

∫ t

0
ω̃(t− s)w(s)−1 ds ‖u‖w ≤ const ‖u‖w

which yields the first result.
Now, having u, v ∈ L∞

w (0,∞;X), ‖u‖w, ‖v‖w ≤ R (R > 0), we have u, v
bounded, and by (4.7) there is k = k(R) > 0 such that |Fu(s) − Fv(s)| ≤
k|u(s)− v(s)| a.e. Thus we obtain

w(t)|G(u)(t) −G(v)(t)| ≤ kw(t)

∫ t

0
ω̃(t− s)w(s)−1 ds ‖u− v‖w,

which yields the Lipschitz continuity of G in the ball BR(0;L
∞
w (0,∞;X)). �

In the following lemma we give a sufficient condition for G to map some ball
in L∞

w (0,∞;X) into itself.

Lemma 4.3. Let there exist a nondecreasing function ϕ such that

|F (u)| ≤ ϕ(|u|) for all u ∈ X,(4.11)

κ := sup
σ>0
(σ−1ϕ(σ)) sup

t>0
w(t)

∫ t

0
ω̃(t− s)w(s)−1 ds < 1,(4.12)

S̃ := sup
s>0

w(s)ω̃(s) <∞.(4.13)

Then for any R > 0 we have ‖G(u)‖w ≤ κR for all u ∈ BR(0;L
∞
w (0,∞;X)); for

any x ∈ X there exists R > 0 such that the mapping H defined by (2.5) maps
BR(0;L

∞
w (0,∞;X)) into itself. The radius R can be chosen independently of

x ∈ Br(0;X) for any fixed r > 0.
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Proof: Let R > 0 and u ∈ BR(0;L
∞
w (0,∞;X)). Then we have

w(t)|G(u)(t)| ≤ w(t)

∫ t

0
ω̃(t− s)|F (u(s))| ds ≤ w(t)

∫ t

0
ω̃(t− s)ϕ(|u(s)|) ds

= w(t)

∫ t

0
ω̃(t− s)w(s)−1w(s)R−1ϕ(w(s)−1w(s)|u(s)|) dsR

≤ w(t)

∫ t

0
ω̃(t− s)w(s)−1w(s)R−1ϕ(w(s)−1R) dsR

≤ sup
σ>0
(σ−1ϕ(σ))w(t)

∫ t

0
ω̃(t− s)w(s)−1 dsR ≤ κR.

Hence, if r > 0 and x ∈ Br(0;X) then

w(t)|H(u)(t)| ≤ sup
s≥0
(w(s)ω̃(s)) |x|+ κR ≤ S̃r + κR.

Now it suffices to take R so large that S̃r + κR ≤ R. �

For a typical example, let us note that, if |F (u)| ≤ c0|u|
µ0 for |u| ≤ η0, |F (u)| ≤

c1|u|
µ1 for |u| > η0 with some constants c0, c1 > 0, µ0 ≥ 1, µ1 ∈ [0, 1), η0 > 0

and ω̃(t) = e−αt, w(t) = eβt with 0 < β < α then κ in (4.12) is estimated from
above by (α− β)−1max{c0η0, c1/η0}.

Lemma 4.4. Let K ⊂ L∞
w (0,∞;X) be bounded and let Y →֒→֒ X be a Banach

space such that either

(i) T̃ ∈ L1loc(0,∞;L(X,Y )) and F : X → X is locally bounded
or

(ii) T̃ ∈ L1loc(0,∞;L(Y )) and F : X → Y is locally bounded from X to Y .

Then for any t ≥ 0 the set {G(u)(t) : u ∈ K} is relatively compact in X .

Proof: Let (i) hold. For any u ∈ K we have
∣∣∣
∫ t

0
T̃ (t− s)Fu(s) ds

∣∣∣
Y

≤

∫ t

0
|T̃ (t− s)|L(X,Y ) |Fu(s)| ds

≤ const

∫ t

0
|T̃ (s)|L(X,Y ) ds

since |u(s)| ≤ constw(s)−1 ≤ const for almost all s ∈ (0, t) and all u ∈ K. So,
for all t ≥ 0, {G(u)(t) : u ∈ K} is bounded in Y and, by the compactness of the
imbedding, relatively compact in X .

If (ii) holds, then similarly we have
∣∣∣
∫ t

0
T̃ (t−s)Fu(s) ds

∣∣∣
Y

≤

∫ t

0
|T̃ (t−s)|L(Y ) |Fu(s)|Y ds ≤ const

∫ t

0
|T̃ (s)|L(Y ) ds

with the same conclusion. �

The next lemma provides a sufficient condition for (ii) of Proposition 4.1.
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Lemma 4.5. Let Y →֒ X be a Banach space with the norm | · |Y , w ∈ C([0,∞))
and let there exist r0 > 0, δ0 > 0 and functions η ≥ 0, ψ ∈ L1loc([0,∞);R

+) such
that the following relations are satisfied:

(4.14)






|F (u)| ≤ const |u|1+δ0 for u ∈ Br0(0;X);

|T̃ (τ)y − y| ≤ η(τ)|y|Y for y ∈ Y and τ ≥ 0;

|T̃ (τ)x|Y ≤ ψ(τ)|x| for x ∈ X and τ > 0;

lim sup
τ→0+

η(τ) = 0;

lim sup
t→∞

w(t)

∫ t

0
ω̃(t− τ)w(τ)−1−δ0 dτ = 0.

If M ⊂ L∞
w (0,∞;X) is bounded, then the set K = G(M) ⊂ L∞

w (0,∞;X)
satisfies condition (ii) of Proposition (4.1).

Proof: First, let t∗ > 0 be arbitrary and assume that t∗ < s < t <∞. If u ∈M
and v = G(u), we can write

(4.15)

w(t)v(t) − w(s)v(s) =

∫ t

0
w(t)T̃ (t− τ)Fu(τ) dτ

−

∫ s

0
w(s)T̃ (s− τ)Fu(τ) dτ

=

∫ s

0
(w(t)T̃ (t− s)− w(s)I)T̃ (s− τ)Fu(τ) dτ

+

∫ t

s
w(t)T̃ (t− τ)Fu(τ) dτ.

Since |u(τ)| ≤ constw(τ)−1 and since F is locally Lipschitz continuous, then

|Fu(τ)| ≤ const |u(τ)|1+δ0 even if |u(τ)| ≥ r0, and consequently

(4.16)

∣∣∣
∫ s

0
(w(t)T̃ (t− s)− w(s)I)T̃ (s− τ)Fu(τ) dτ

∣∣∣

≤ const

∫ s

0
(w(t)ω̃(t− τ) + w(s)ω̃(s− τ))w(τ)−1−δ0 dτ ‖u‖1+δ0

w

≤ const

(
w(s)

∫ s

0
ω̃(s− τ)w(τ)−1−δ0 dτ

+ w(t)

∫ t

0
ω̃(t− τ)w(τ)−1−δ0 dτ

)
‖u‖1+δ0

w .

Similarly we get

(4.17) w(t)
∣∣∣
∫ t

s
T̃ (t−τ)Fu(τ) dτ

∣∣∣ ≤ constw(t)
∫ t

t∗
ω̃(t−τ)w(τ)−1−δ0 dτ ‖u‖1+δ0

w .
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So by (4.14), for any ε > 0, t∗ can be chosen so that

|w(t)v(t) − w(s)v(s)| < 1
2ε for t > s > t∗.

Let k ∈ N and put tj = jt∗/(k − 1), j = 0, 1, . . . , k − 1. Choose a particular
j ∈ {1, . . . , k − 1} and estimate |w(t)v(t) − w(s)v(s)| for tj−1 ≤ s ≤ t ≤ tj .
Denote

δk = sup {|w(τ1)− w(τ2)| : |τ1 − τ2| ≤ t∗/(k − 1), τ1, τ2 ∈ [0, t
∗]}.

Then using (4.14) we can estimate the integral (4.16) as follows:
∣∣∣
∫ s

0
(w(t)T̃ (t− s)− w(s)I)T̃ (s− τ)Fu(τ) dτ

∣∣∣

≤ w(t)
∣∣∣
∫ s

0
(T̃ (t− s)− I)T̃ (s− τ)Fu(τ) dτ

∣∣∣

+ |w(t) − w(s)|
∣∣∣
∫ s

0
T̃ (s− τ)Fu(τ) dτ

∣∣∣

≤ w(t)

∫ s

0
|T̃ (t− s)− I|L(Y,X) |T̃ (s− τ)|L(X,Y ) constw(τ)

−1 dτ

+ δk const

∫ s

0
|T̃ (s− τ)|w(τ)−1 dτ

≤ const
[
w(t)η(t − s)

∫ s

0
ψ(s− τ)w(τ)−1 dτ + δk

∫ s

0
ω̃(s− τ)w(τ)−1 dτ

]
.

By (4.14) and the uniform continuity of w on [0, t∗] the last expression is less than
1
4ε for a sufficiently large k ∈ N .
Finally, (4.17) is estimated in the following way:

w(t)
∣∣∣
∫ t

s
T̃ (t− τ)Fu(τ) dτ

∣∣∣ ≤ constw(t)
∫ t

tj−1

ω̃(t− τ)w(τ)−1 dτ

≤ const sup
τ∈[0,t∗]

w(τ)

∫ t∗/(k−1)

0
ω̃(σ) dσ;

the last expression may be made less than 14ε when k is chosen appropriately
large. So the system of intervals [tj−1, tj), j = 1, . . . , k − 1, [tk−1,∞) is the

desired measurable partition of R+ corresponding to the given ε > 0 as required
in condition (ii) of Proposition 4.1. The proof is complete. �

Remark 4.6 (Analytic semigroups). The assumptions concerning the semigroup

T̃ (t) in the preceding lemmas can be easily met when assuming that T̃ (t) is a
(compact) analytic semigroup. It suffices to choosew(t) = eαt with an appropriate
α > 0. In particular, (4.14) is then satisfied with Y = D((A + D)α), η(τ) =
const τα, ψ(τ) = const τ−α. The corresponding results on analytic semigroups
can be found for instance in Pazy [10, Sections 2.5, 2.6].

We are now in position to state the main result of this section.
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Theorem 4.7. Let the following assumptions be satisfied:

(i) A is a generator of a C0-semigroup in X ;

(ii) B = D + F , D ∈ L(X) and T̃ (t) satisfies

|T̃ (t)| ≤ ω̃(t) for t > 0, where ω̃ ∈ L1loc([0,∞));
(iii) F : X → X is locally Lipschitz continuous and there exist constants

δ0 > 0, r0 > 0, k0 > 0, and a nondecreasing function ϕ such that
|F (u)| ≤ k0|u|

1+δ0 for u ∈ Br0(0;X),
and (4.11), (4.12) hold;

(iv) there exists a Banach space Y →֒→֒ X such that either

(a) T̃ ∈ L1loc(0,∞;L(X,Y ))
or

(b) T̃ ∈ L1loc(0,∞;L(Y )), F : X → Y is locally bounded;
in both cases we assume that
|T̃ (τ)y − T̃ (0)y| ≤ η(τ)|y|Y , y ∈ Y , τ ≥ 0,

|T̃ (τ)ξ|Y ≤ ψ(τ)|ξ|, ξ ∈ X , τ > 0,
where η ≥ 0, lim sup

τ→0+
η(τ) = 0, ψ ∈ L1loc([0,∞);R

+);

(v) there is a positive function w ∈ C([0,∞)) with lim
t→∞

w(t) = ∞ and such

that
lim sup
t→∞

w(t)ω̃(t) = 0,

lim sup
t→∞

w(t)

∫ t

0
ω̃(t− τ)w(τ)−1−δ0 dτ = 0.

Then for any x ∈ X there exists a (unique) generalized solution u ∈ L∞
w (0,∞;X)

of Problem (4.1), (4.2).

Proof: We shall make use of the Schauder fixed point theorem in the ball
BR(0;L

∞
w (0,∞;X)) with R > 0 sufficiently large. To this end (as in (2.5)) define

H(u)(t) = T̃ (t)x+G(u)(t), t ≥ 0, u ∈ L∞
w (0,∞;X),

where G is defined by (4.8). By Lemma 4.2 the operator H maps L∞
w (0,∞;X)

continuously into itself. By assumption (v) and Lemma 4.3, for any u in the ball
BR(0;L

∞
w (0,∞;X)) with R > 0 sufficiently large we find

‖H(u)‖w ≤ ‖T̃ (·)x‖w + ‖G(u)‖w ≤ S̃|x|+ κR ≤ R.

Finally, by Lemmas 4.4, 4.5 and Proposition 4.1, the mapping H is compact in
L∞

w (0,∞;X). So H satisfies the assumptions of the Schauder fixed point theorem
in BR(0;L

∞
w (0,∞;X)) for a sufficiently large R > 0 and hence it has a fixed point

u ∈ L∞
w (0,∞;X), that is u = H(u). Thus u is a solution of (4.3). �

5. Stabilization for a singularly perturbed problem

Let us consider the problem

(5.1)
εu′ε(t) + (A+B)uε(t) = 0, t > 0,

uε(0) = x, ε ∈ [0, ε0], ε0 > 0, x ∈ X,
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where A and B satisfy assumptions (i)–(iii) of Section 2. Then the generalized
solution of Problem (5.1) is u0(t) ≡ 0 for ε = 0 and a function uε ∈ L∞

loc(0,∞;X)
such that

(5.2) uε(t) = T̃ (t/ε)x+
1

ε

∫ t

0
T̃

( t− s

ε

)
Fuε(s) ds, t ≥ 0,

if ε ∈ (0, ε0]. Introducing new variables

(5.3) τ = t/ε, v(τ) = uε(ετ),

we transform Problem (5.1) into the problem

(5.4)

{
v′(τ) + (A+B)v(τ) = 0, τ > 0,

v(0) = x.

Now we can apply the results of Section 2 and 4 to Problem (5.4). If we succeed
in finding a weight function w(t) such that the hypotheses of Theorem 2.2 or 4.7,
respectively, are satisfied, then we get

(5.5) |v(τ)| ≤ Cw(τ)−1, τ ≥ 0

with a constant C depending only on the radius r of the ball Br(0;X) the initial
datum x ∈ X is taken from. The relation (5.5) translated to (t, u)-setting reads

|uε(t)| ≤ Cw(t/ε)−1, t ≥ 0, ε ∈ (0, ε0].

This yields not only the stabilization of the solutions for x ∈ B(0;X) to the zero
stationary solution as t → ∞ but also the pointwise convergence of uε(t) to 0 as
ε→ 0+ for t > 0, and the rate of convergence in terms of t/ε.
The reader can easily formulate the corresponding theorems for Problem (5.1)

by just modifying Theorems 2.2 and 4.7, respectively.

6. Application to a parabolic equation

As an illustration of application of the results of Section 4 let us consider a
semilinear parabolic equation and formulate an explicit condition that guarantees
the assumptions of Theorem 4.7. So, let Ω ⊂ Rn be a bounded domain with
uniformly C2-boundary and let

(6.1)

aij ∈ C2(Ω), aji = aij , i, j = 1, . . . , n

n∑

i,j=1

aij(x)ξiξj ≥ c0|ξ|
2 for ξ ∈ Rn, ξ 6= 0 with c0 > 0
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and

(6.2) g ∈ C1(R), g(0) = 0.

Consider the initial-boundary-value problem

(6.3)

ut −

n∑

i,j=1

(aijuxj )xi = g(u), x ∈ Rn, t > 0

u(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), x ∈ Rn.

Let s ∈ (0, 1), p > n/s, and let X := W̊ s
p (Ω), where W

r
q (0 < r < ∞,

1 ≤ q ≤ ∞) stands for the usual Sobolev space, W̊ r
q (Ω) being the closure in

W r
q (Ω) of C

∞
0 (Ω). Also, denote by ‖·‖q the norm in L

q(Ω) and by ‖·‖r,q in W
r
q .

Let us note that if r ∈ (0, 1) then for v ∈W r
q (Ω) we use the norm

‖v‖r,q :=

{∫

Ω
|v(x)|q dx+

∫

Ω

∫

Ω

|v(x)− v(y)|q

|x− y|n+rq dxdy

}1/q

(see for instance [1]).

Proposition 6.1. Let assumption (6.1) be satisfied. If A is defined by

(6.4)

D(A) :=W 2p (Ω) ∩ W̊
1
p (Ω),

(Av)(x) := −

n∑

i,j=1

(aij(x)vxj (x))xi for v ∈ D(A),

then the operator (−A) is a generator of an analytic exponentially decreasing
semigroup {T (t)}t≥0 of continuous linear operators in L

p(Ω) which is an expo-
nentially decreasing C0−semigroup of contractions in X .

Proof: The proof of the analyticity of the semigroup generated by A in Lp(Ω)
can be found for example in [12]. Also, the fractional powers of A are well de-
fined. Taking v ∈ D(A), v∗ := v|v|p−2, by Green’s lemma, (6.1) and Poincaré’s

inequality in W̊ 12 (Ω) we find

‖Av‖p

( ∫

Ω
|v|p dx

)(p−1)/p

≥
〈
Av, v∗

〉
≥ c0(p− 1)

∫

Ω

n∑

j=1

( ∂

∂xj
|v|p/2

)2
dx

≥
4c0m(p− 1)

p2

∫

Ω
|v|p dx,
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where 〈·, ·〉 is the duality between Lp and L(p−1)/p, c0 > 0 is the constant from
(6.1) and

(6.5) m := inf
{ ∫

Ω
|∇v|2 dx

/∫

Ω
v2 dx : v ∈ W̊ 1p (Ω), v 6= 0

}
.

Now taking ϕ ∈ D(A) and setting u(t) := T (t)ϕ we get

(6.6) ut +Au = 0.

Put u∗ := u|u|p−2. Then

1

p

d

dt
‖u‖p

p =
〈
ut, u

∗
〉
= −

〈
Au, u∗

〉
≤ −
4c0m(p− 1)

p2
‖u‖p

p

from where ‖u(t)‖p ≤ e−ct‖u(0)‖p with c := 4c0m(p − 1)/p
2. By continuity the

above estimate can be extended to ϕ ∈ Lp(Ω). Thus we have

(6.7) ‖T (t)‖L(Lp(Ω)) ≤ e−ct.

Further, having defined the space

DA(θ, q) := {v ∈ Lp(Ω) : t→ z(t) := ‖t1−θ−1/qAT (t)v‖p ∈ Lq(0,∞)},

(0 < θ < 1, 1 ≤ q ≤ ∞)

equipped with the norm ‖v‖DA(θ,q) := ‖v‖p + ‖z‖Lq(0,∞), it may be shown [9,

Theorem 3.2.3] that

(6.8) DA

(s
p
, p

)
= W̊ s

p (Ω)

algebraically and topologically. It is immediate that {T (t)}t≥0 is a C0-semigroup
on X and by (6.7) we have

(6.9) ‖T (t)‖L(X) ≤ e−ct, t ≥ 0.

�

Assume now that

(6.10) g(u) = du+ f(u), u ∈ R

with d < c. In what follows we shall make use of the equivalent form of Prob-
lem (6.3) which can be written as follows:

(6.11) u(t) = Aνexp[−(d+A)t]A−νu0+

∫ t

0
Aνexp[−(d+A)(t−s)]A−νf(u(s)) ds,
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where ν is for convenience chosen from the interval (s/p, 1). Now we intend to

apply Theorem 4.7 with T̃ (t) := Aνexp[−(d+A)t], x := A−νu0, Dv := dv, Fv :=
A−νf(v) for v ∈ X . This requires a slight modification of our considerations in
Section 4. First, in place of (4.13) we use the estimate | exp[−(d + A)t]u0| ≤

e−(c−d)t |u0|. Further, in (4.15) the semigroup property of T (t) is to be used, the
operator Aν being once applied only which makes it possible to require the third

estimate in (4.14) with T (τ) instead of T̃ (τ) with obvious corrections in the on
going estimates of the individual terms in (4.15). The modification in (4.14) has
to be considered in the condition (iv) of Theorem 4.7. Now, consider the operator
A restricted to X . Then (−A) is a generator of the C0−semigroup {T (t)/X}t≥0

on X . Indeed, T (t)X ⊂ X for t ≥ 0 is elementary and by the Lebesgue theorem,
for v ∈ X we have limτ→0

∫ ∞
0 tp−s−1‖AT (t)(T (τ)v−v)‖

p
p dt = 0. So {T (t)/X}t≥0

is a C0−semigroup in X and by [10, Theorem 5.5] the assertion follows. So the
condition (i) of Theorem 4.7 is satisfied. Let us verify (ii). Let v ∈ X and t > 0.
Then we have (cf. [10, Theorem 6.13])

∫ ∞

0
τp−s−1‖Aν+1exp[−(d+A)(t+ τ)]v‖p

p dτ

≤

∫ ∞

0
τp−s−1‖Aexp[−(d+A)τ ]v‖p

p dτ ‖A
νexp[−(d+A)t]‖p

L(Lp(Ω))

≤ C(ν, ε)t−pνe−(c−d−ε)pt‖v‖p
X ,

where C(ν, ε) is a constant and 0 < ε < c− d. This yields

(6.12) ‖T̃ (t)‖L(X) ≤ c(ν)t−νe−γt for t > 0, where γ = (c− d)/2.

So (ii) is satisfied with ω̃(t) := c(ν)t−νe−γt.

Lemma 6.2. Let f ∈ C1(R), f(0) = 0, with f ′ locally Lipschitz continuous, s, p

as above. Then f maps W̊ s
p (Ω) into itself and is locally Lipschitz continuous.

Proof: We shall outline the proof of the Lipschitz continuity only since the rest
is standard. Let r > 0 and v, w ∈ Br(0; W̊

s
p (Ω)). Then for x, y ∈ Ω we can write

f(v(x)) − f(w(x)) −
(
f(v(y))− f(w(y))

)

=

∫ 1

0

[
f ′(αv(x) + (1− α)w(x)) − f ′(αv(y) + (1− α)w(y))

]
dα

(
v(x) − w(x)

)

+

∫ 1

0
f ′(αv(y) + (1 − α)w(y)) dα

(
v(x) − w(x) − (v(y)− w(y))

)

=: A1 +A2.

Since ‖z‖∞ ≤ C ‖z‖s,p for all z ∈ W s
p (Ω) we have |αv(ξ) + (1 − α)w(ξ)| ≤

max{‖v‖∞, ‖w‖∞} ≤ Cr for all α ∈ [0, 1], ξ ∈ Ω. Hence by assumption there
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exists L(r) > 0 such that |f ′(z1(x)) − f ′(z2(x))| ≤ L(r)|z1(x) − z2(x)| for all
z ∈ Br(0;W

s
p (Ω)) and x ∈ Ω. So we have

|A1| ≤ L(r)

∫ 1

0
|α(v(x) − v(y)) + (1− α)(w(x) − w(y))| dα |v(x)− w(x)|

≤ L(r)max
{
|v(x) − v(y)|, |w(x) − w(y)|

}
‖v − w‖∞

which yields
(∫

Ω

∫

Ω

|A1|
p

|x− y|n+sp dxdy

)1/p

≤ L(r)Cr ‖v − w‖s,p.

Similarly we find

|A2| ≤ sup
{
|f ′(ρ)|; |ρ| ≤ Cr} |v(x) − w(x) − (v(y)− w(y))|

from where
(∫

Ω

∫

Ω

|A2|
p

|x− y|n+sp dxdy

)1/p

≤ const ‖v − w‖s,p.

�

Assume now that there exist positive constants δ0, k, r1 such that

(6.13)

|f(v)| ≤ k|v|1+δ0 , |f ′(v)| ≤ k|v|δ0 for |v| ≤ r1,

S := sup
v 6=0

∣∣∣
f(v)

v

∣∣∣ <∞.

Let C be a constant of the imbedding W s
p (Ω) →֒ L∞(Ω), i.e. ‖v‖∞ ≤ C ‖v‖s,p

for v ∈ W s
p (Ω), and take r0 > 0 such that Cr0 ≤ r1. Then for v ∈ Br0(0;X) by

(6.13) we have ‖f(v)‖p ≤ Ck‖v‖1+δ0
s,p . Similarly as in the proof of Lemma 6.2 we

can show that for v ∈ W̊ s
p (Ω) we have |f(v(x)) − f(v(y))| ≤ k‖v‖δ0

∞|v(x) − v(y)|,
x, y ∈ Ω. Hence

∫

Ω

∫

Ω

|f(v(x)) − f(v(y))|p

|x− y|n+sp dxdy ≤ kpCpδ0‖A−ν‖
p
L(Lp(Ω))

‖v‖
p(1+δ0)
s,p

since, clearly, A−ν ∈ L(Lp(Ω)) and ‖A−νz‖s,p ≤ ‖A−ν‖L(Lp(Ω))‖z‖s,p for z ∈

W̊ s
p (Ω). Thus we have proved ‖F (v)‖ ≤ const ‖v‖1+δ0

s,p . Further, for z ∈ D(Aν)
we have

∫ ∞

0
tp−s−1‖AT (t)z‖p

p dt ≤

∫ ∞

0
tp−s−1‖A1−νT (t)‖p

p dt ‖A
νz‖p

p

≤ C(ν)p
∫ ∞

0
tpν−s−1e−cptdt ‖z‖

p
D(Aν)

= C(ν)p(cp)s−pνΓ(pν − s)‖z‖p
D(Aν)

= k(ν, p)p‖z‖p
D(Aν)

,
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where C(ν) := supt>0{t
ν−1e−ct‖A1−νT (t)‖}, k(ν, p) = C(ν)(cp)s−pνΓ(pν − s).

Hence ‖z‖s,p ≤ k(ν, p)‖Aνz‖p. Taking v ∈ X and putting z = Fv, we find

‖Fv‖s,p ≤ k(ν, p)‖AνA−νf(v)‖p = k(ν, p)‖f(v)‖p ≤ k(ν, p)S‖v‖p,

so that (4.11) is satisfied with ϕ(r) = Sk(ν, p)r, r ≥ 0. Choose α ∈ (0, γ) and put
w(t) := eαt for t ≥ 0. Elementary calculations with (4.12) yield κ = κ0k(ν, p)S,

where κ0 =
∫ ∞
0 τ−νe(α−γ)τdτ . So, to fulfil (4.12) we require

(6.14) S < κ−10 k(ν, p)−1.

Thus we have satisfied all conditions listed in (iii). Let us choose in (iv), Y :=

D(A) =W 2p (Ω)∩W̊
1
p (Ω). Then by the Sobolev imbedding theorem Y is compactly

imbedded in X . By [6, Proposition 5.2], for 0 < θ < s/p we have DA(s/p, p) ⊂

D(Aθ) and for v ∈ DA(s/p, p),

Aθv =
1

Γ(1− θ)

∫ ∞

0
t−θAT (t)v dt.

For ε ∈ (0, c) there is M(ε) > 0 such that ‖AT (t)v‖p ≤M(ε)t−1e−(c−ε)t‖v‖p for
t > 0 (see [10]); hence we have

∫ ∞

1
t−θ‖AT (t)v‖p dt ≤ const ‖v‖p.

In addition, by Hölder’s inequality we have

∫ 1

0
t−θ‖AT (t)v‖p dt =

∫ 1

0
t(s+1)/p−1−θt1−(s+1)/p‖AT (t)v‖p dt

≤

( ∫ 1

0
t(s+1−p−θp)/(p−1) dt

)(p−1)/p(∫ 1

0
tp−s−1‖AT (t)v‖p

p dt

)1/p

≤ const ‖v‖X ,

whenever (1 + s − p − θp)/(p − 1) > −1, i.e. θ < s/p. So we have proved that

‖Aθv‖p ≤ const ‖v‖X for v ∈ X and θ ∈ (0, s/p) arbitrary but fixed. Now, (iv)(a)

is satisfied since for v ∈ W̊ s
p (Ω), ν as above and ν0 ∈ (0, s/p), ν1 = ν− ν0 we have

‖AνT (t)v‖Y ≤ const ‖A1+νT (t)v‖p ≤ const ‖Aν1T (t)‖L(Lp(Ω))‖A
ν0v‖p

≤ const t−ν1e−γt‖v‖s,p.

Assume now 2s < p if n = 1 and ν ∈ (s/p, 1− s/p) in any case. Besides, let 0 <

θ < 1− ν − s/p. Then, in (iv) the nontrivial term in the norm ‖T̃ (τ)v− T̃ (0)v‖
p
X
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can be estimated as follows (cf. [10, Theorem 6.13]):∫ ∞

0
tp−s−1‖AT (t)Aν(exp[−(d+A)τ ]v − v)‖p

p dt

≤ const

∫ ∞

0
tp−s−1‖Aν+θT (t)‖

p
L(Lp(Ω))

‖(exp[−(d+A)τ ] − I)A1−θv‖p
p dt

≤ const

∫ ∞

0
tp−s−1−p(ν+θ)ep(c−d−ε)t dt τpθ‖Av‖p

p

≤ const τpθ‖v‖
p
Y for v ∈ D(A),

and

‖AT (τ)v‖p ≤ ‖A1−θT (τ)‖p‖A
θv‖p ≤ const τθ−1‖v‖X for v ∈ X.

This yields (iv) with η(τ) := const τθ, ψ(τ) := const τθ−1. Finally, as far as (v)
is concerned, since α < γ it remains to satisfy the last condition in (v). By the
choice of w and ω̃ we have

w(t)

∫ t

0
ω̃(t− τ)w(τ)−1−δ0 dτ = eαt

∫ t

0
(t− τ)−νe−γ(t−τ)e−α(1+δ0)τ dτ

= e−αδ0t
∫ t

0
σ−νexp[α(1 + δ0)− γ]σ dσ.

The last expression tends to 0 as t → ∞ whenever α < γ(1 + δ0)
−1. So the

following theorem holds.

Theorem 6.3. Let Ω ⊂ Rn be a bounded domain with a C2-boundary and let
the functions aij , g be such that (6.1), (6.2) hold. In addition, assume that there
are given numbers s ∈ (0, 1), p > n/s, where 2s < p if n = 1. Define m by
(6.5), c := 4c0m(p − 1)/p

2, and assume that (6.10) holds with d < c and that

(6.13), (6.14) are satisfied. Choose α : 0 < α < 1
2 (c − d)(1 + δ0)

−1 and put

w(t) := eαt, t ≥ 0. Then for any u0 ∈ W̊ s
p (Ω) there exists a unique solution

u ∈ L∞
w (0,∞; W̊

s
p (Ω)) of Problem (6.3); in particular we have

(6.15) ‖u(t)‖s,p ≤ const e−αt, for almost all t > 0.

Proof: The theorem is a consequence of Theorem 4.1 and our previous consid-
erations.

�

Remark 6.4. The constant in (6.15) depends only on u0, p, s,Ω and the constants
from conditions (6.1). (6.10) and (6.13). The constant m is the least eigenvalue
of the operator (−∆) if considered as an operator in L2(Ω) with the domain

of definition W 22 (Ω) ∩ W̊ 12 (Ω). Let us note that using the results contained for
example in [9] we could consider much more general elliptic operator and boundary
conditions than those in (6.3) to obtain an analogous result but we prefer to avoid
extra technical complications intending to make the presentation of the method
more lucid. �
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