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Isometric classification of norms
in rearrangement-invariant function spaces

BEATA RANDRIANANTOANINA

Abstract. Suppose that a real nonatomic function space on [0, 1] is equipped with two
rearrangement-invariant norms || - || and ||| - |||]. We study the question whether or not
the fact that (X, | - ||) is isometric to (X, ||| - |||) implies that ||f|| = ||| f]|| for all f in X.
‘We show that in strictly monotone Orlicz and Lorentz spaces this is equivalent to asking
whether or not the norms are defined by equal Orlicz functions, resp. Lorentz weights.
We show that the above implication holds true in most rearrangement-invariant
spaces, but we also identify a class of Orlicz spaces where it fails. We provide a complete
description of Orlicz functions ¢ # 1 with the property that L, and L, are isometric.

Keywords: isometries, rearrangement-invariant function spaces, Orlicz spaces, Lorentz
spaces

Classification: 46B, 46E

1. Introduction

In this paper we study the following question:

Question 1. Suppose that a nonatomic function space on [0, 1] is equipped with
two rearrangement-invariant norms || -|| and |||-||| such that (X, ||-||) and (X, |||-]|)
are isometric. Does it imply that the norms | - || and ||| - ||| are same?

Here the word “the same” could be understood in two ways:

(a) we could say that || - || and ||| - ||| are the same if || f|| = ||| f]|| for all f in
X, i.e. if the identity map Id: (X, | - ||) — (X, ||| - |||) is an isometry, or

(b) if both ||-|| and |||-]|| are Orlicz or Lorentz norms we could say that they are
the same if they are defined by equal Orlicz functions or Lorentz weights,
respectively.

It is well-known that if we do not require ||| - ||| to be rearrangement-invariant
then the answer to Question 1 is no in either the sense (a) or (b), even when
(X, - 1I) = Lp[0, 1] with the usual norm (see e.g. [9]).

Question 1 (a) has been previously studied with the additional assumption that
(X1 1) = (Lp[0, 11,11 1) (see (2], (1], 3], [3)).

Question 1 (b) was asked by S. Dilworth and H. Hudzik.

Somewhat to author’s surprise the answer to both Question 1(a) and 1 (b) is
negative — there exist Orlicz functions ¢ # 4 (then, clearly, || - [|o, || - ||y are
different also in the sense (a)) so that L, and Ly, are isometric.
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In fact, Question 1 (a) and 1 (b) are equivalent for strictly monotone Orlicz-
Lorentz spaces X, Y, i.e. Id: X — Y is an isometry if and only if the Orlicz
functions ¢y, ¢y and Lorentz weights wy, wy coincide (Theorem 7; this is not
true in general, see [5]). To our surprise the proof is much less obvious than one
might expect.

Question 1 (a) for Lp[0,1] has been studied by Abramovich and Zaidenberg
[1], [2]. They proved that if Y is a (real or complex) rearrangement-invariant
nonatomic function space on [0, 1] isometric to Lp[0, 1] for some 1 < p < oo then
the isometric isomorphism can be established via an identity map, i.e. ||f|ly =
| fllp for all f € Y (cf. also [5], [3] for the case when we additionally assume that
Y is an Orlicz space on [0, 1]).

Zaidenberg [16], [17], [14] studied the general form of isometries between two
complex rearrangement-invariant spaces (r.i. spaces) and Jamison, Kamiriska and
P.K. Lin [6] studied isometries between two complex Musielak-Orlicz spaces and
between two real Nakano spaces. They proved that surjective isometries in such
settings have to be weighted composition operators and Zaidenberg characterized
situations when the existence of isometry between complex r.i. spaces X and Y
implies that the identity map is also an isometry.

Theorem 1 below generalizes these results to real spaces on [0,1]. We then
use Zaidenberg’s characterization of isometry groups of r.i. spaces to characterize
when the identity map between real r.i. spaces is an isometry. We also give a
full description of the exceptional case of Orlicz spaces which can be isometric
even when their Orlicz functions are different (Corollary 9 provides the relation
between the Orlicz functions that has to be satisfied in that case).
Acknowledgments. I wish to thank S. Dilworth and H. Hudzik for drawing my

attention to this problem, S. Dilworth for many interesting discussions, Y. Abramovich

for his interest in this work, and N. Carothers for his warm hospitality during my
visit at the Bowling Green State University, where this work was started.

2. Preliminaries

Let us suppose that €2 is a Polish space and that u is a o-finite Borel measure
on . We use the term Kothe space in the sense of [12, p.28]. Thus a Kothe
function space X on (2, 1) is a Banach space of (equivalence classes of) locally
integrable Borel functions f on 2 such that:

(D I [f] < gl a.e. and g € X then f € X with [|f[x <|gx-
(2) If A is a Borel set of finite measure then x4 € X.

The K&the dual of X is denoted X'; thus X’ is the Kéthe space of all g such
that [|f||g| du < oo for every f € X equipped with the norm

llgllx: = sup / |fIlg] duu. Then X’ can be regarded as a closed subspace of the
Ifllx<1
dual X* of X.
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A rearrangement-invariant function space (r.i. space) is a Kothe func-
tion space on (2, ;) which satisfies the conditions:

(1) X’ is a norming subspace of X*.

2) If 7 : Q@ — ) is any measure-preserving invertible Borel automorphism then
y g
feXifandonlyif fore X and ||f|lx =|fo7lx-

(3) lIxsllx =1if p(B) = 1.

The commonly studied r.i. spaces are classical Lebesgue spaces Ly, Orlicz,
Lorentz and Orlicz-Lorentz spaces. We recall the definitions below.

We say that ¢ : [0,00) — [0,00) is an Orlicz function if ¢ is convex and
©(0) = 0. We define the Orlicz space L, to be the space of those measurable
functions f for which || f||, is finite, where || f||, denotes the Luxemburg norm

defined b
’ _ . , |f (W)
I£le =int { e [ o(HD) dute) <1

c

If f is a measurable function, we define the non-increasing rearrangement
of f to be
f*(@) =sup{t:p(|f| > 1) >z}

If1 <g<oo,andif w: (0,00) — (0,00) is a non-increasing function, we define
the Lorentz space L 4 to be the space of those measurable functions f for
which || f|lw,q is finite, where || f||w,q denotes the Lorentz norm defined by

g = ([ 0o (@)7as) v

If ¢ is an Orlicz function, and if w : [0, 00) — [0, 00) is a non-increasing function,
we define the Orlicz-Lorentz space Ay, ,, to be the space of measurable functions
f for which || f|lw,, is finite, where || flw,, denotes the Orlicz-Lorentz norm

defined by o .
b =0t { e [~ wtro(ED)ar <1},

The Orlicz-Lorentz spaces are a common generalization of the Orlicz spaces
and the Lorentz spaces.

An operator T : X — X will be called elementary or a weighted compo-
sition operator if there is a Borel function i and a Borel map o : @ — Q such
that Tf(s) = h(s)f(o(s)) a.e. for every f € X. Observe that a necessary condition
on a and o is that if B is a Borel set with y(B) = 0 then u(c~*BN{|h| > 0}) = 0.

We now need to introduce a technical definition. We will say that an r.i. space
X has property (GP) if there exists n € N such that for every t > 0,

IX[0,2-llx < [Ix[0,2-7] + txXp2—n 17l x -

We say that X has property (GP’) if X’ has property (GP).
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Notice that if X is strictly monotone then X has property (GP). The reason
for introducing this property, rather than simply dealing with strictly monotone
spaces, is that every rearrangement-invariant space X has to satisfy at least one
of the properties (GP) or (GP’). Indeed, if X fails both (GP) and (GP’), then
for all n € N, say n = 1, there exists n > 0 small enough so that ||x|g2-1]llx =

X[0,2-1] + mxp2-1,1llx and [[x[0,2—1]llx* = [[X[0,2-1] + MX[2-1,1)l| x+- But then

1 1
5(1 +n?) = /(X[o,zfl}(s) +77X[271,1}(5))2 ds < |Ixp0,2-1llx IX[0,2-1) L+ = B

which contradicts the fact that n > 0.

Notice that for any p, 1 < p < oo, Ly, satisfies both (GP) and (GP').

An Orlicz space L, satisfies (GP) if and only if ¢(t) > 0 for all ¢ > 0 and there
exists t > 1 with ¢(t) < oco.

A Lorentz space Ly p, 1 < p < 00, satisfies (GP) whenever there exists ¢t > 0
with w(t) > 0, i.e. whenever Ly, p # Loo.

An Orlicz-Lorentz space Ay, satisfies (GP) whenever o(t) > 0 for all ¢ > 0,
there exists t > 1 with ¢(t) < oo and there exists s > 0 with w(s) > 0.

3. Isometries between two different spaces X and Y

We start with the statement of the theorem about the form of surjective isome-
tries between two different rearrangement-invariant spaces X and Y. The proof
is a technical refinement of [7, Theorem 6.4] and we present it in Section 5.

Theorem 1. Let X, Y be nonatomic rearrangement-invariant spaces on [0, 1]
which are not isometrically equal to L2[0, 1], and such that both X and Y satisfy
simultaneously the same property (GP) or (GP'). Suppose that T : X — Y is
a surjective isometry. Then there exists a Borel function h on [0, 1] with |h| > 0
and an invertible Borel map o : [0,1] — [0, 1] such that A\(¢~1(B)) > 0 if and
only if A\(B) > 0 for B € B and so that T f(s) = h(s)f(c(s)) a.e. for every f € X.

Remark. Unfortunately we were not able to eliminate a technical requirement for
spaces X, Y to satisfy property (GP) or (GP'). On one hand, as discussed above,
this is not a very restrictive assumption (and this is the reason presenting it here
in this slightly unfinished form). On the other hand there is a general question
about the group W of all invertible weighted composition operations which is
interesting in itself and which would immediately imply Theorem 1. Namely if T’
is an invertible operator such that 7o W o T~1 ¢ W does it imply that T € W?
Our proof shows that the answer to this question is yes if we assume a special
form of T

Now we will apply the analysis of isometry groups of rearrangement-invariant
function spaces due to Zaidenberg [16].

Following his notation we denote by NS = NS[0,1] the group of all inver-
tible mappings of o : [0,1] — [0, 1] which, together with their inverses, preserve
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measurability. All surjective isometries of L, (p # 2) have form described in
Theorem 1 ([10]). So there is a 1-1 correspondence between the group of all
(positive) surjective isometries of L, and the group NS. Let NS, denote the
group NS equipped with the topology induced by weak convergence of operators
in L.

pro : [0,1] — [0, 1] preserves measurability then we denote by ps the measure
defined by ps(A) = p(o~1(A)). Since ps(A) = 0 iff u(A) = 0 there exists a
Radon-Nikodym derivative %% of ug, and we will denote % by o’. If G is a

subgroup of NS we denote by N(G) the normalizer of G in NS. Finally if X is
a function space we denote by Iso(X) the group of invertible isometries of X.
The following is due to Zaidenberg ([16, Theorems 2 and 3]) (for proof see [11]).

Theorem 2.

(a) If X is a rearrangement-invariant function space on [0, 1] and X # L[0, 1]
then the group of invertible isometries of X coincides with one of the
following closed subgroups of NS = N Sp:

(i) NS;
(i) NS(Ryja) = {oc € NS |3b> 0;0'(t) € {bak}zoz_oo for almost all
t € [0,1]}, where a > 1;
(ili) NS(a;d) = {0 € NS |3s€Z:d'(t) € {a*tFI}C__ for almost all
t€[0,1]}, wherea>1,d € Z,d > 1;
(iv) U = {0 € NS | 0 is measure preserving}.

(b) Two subgroups of NS from the list (i)—(iv) are conjugate if and only if
they coincide.

(c) If G is a subgroup of type (i), (ii) or (iv) then N(G) = G, and
N(NS(a;d)) = NS(Ry;a?).

Theorem 2 allows us to precisely identify which weighted composition operators
can act as surjective isometries between r.i. spaces.

Proposition 3. Suppose that X, Y are rearrangement invariant function spaces

andT: X 22V is an isometry such that T f = hfoo. Then either o is measure

preserving and |h| = 1 a.e. or there exists p, 1 < p < oo, such that X,Y are equal
to Ly, with some equivalent norms and 1" is also an isometry as an operator from
Ly to Ly, i.e. |h(t)[P =0'(t) a.e.

PROOF: We consider two cases. First we assume that Iso(X) = U (or, symmet-
rically, Iso(Y) = U). If 7 € NS we denote by V; the composition map defined

on Y by
Vef=for.
If 7 is measure preserving then 771V, T is an isometry of X. Hence we have
h t
TV, Tf(t) = _horlt) foooToo L(t)

~ hool(t)
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and coroo t € U and |(ho7(t))/(hoo 1(t))] =1 a.e. Since 7 € U is arbitrary
we conclude that |h| = const a.e. so |h| =1 a.e. and by Theorem 2 (c) o € U, i.e.
o is measure preserving.

If Iso(X) # U then by [7, Theorem 7.2] (cf. also [16]) X equals L, for some
p, 1 < p < oo, with an equivalent renorming and Boyd indices px, ¢x of X are
both equal to p. Similarly, Iso(Y’) # U implies that Y = L, and py = ¢y =p
with clearly the same p, since T' is an isometry.

Now, by [7, Proposition 7.1] (cf. also [7, Theorem 5.1]) T is an isometry of L.
We should remark that [7, Proposition 7.1] is formulated for isometries acting on
only one space X — X but in fact it uses only the equality of Boyd indices of
the range and domain spaces. Since there is no change in the proof we will not
repeat it here. (I

As an immediate consequence of Theorem 1 and Proposition 3 we obtain the
following corollary.

Corollary 4. Suppose that X, Y are nonatomic rearrangement-invariant spaces
on [0, 1] not isometrically equal to L2[0,1], and both satisfying the same property

onto

(GP) or (GP') and that there exists an isometry T : X —— Y. Then
Iso(X) = Iso(Y).

onto

Further, if Iso(X) # NS(a,d) then Id: X —= Y is also an isometry.

In particular identity map is an isometry if one of the spaces X or Y is equal
to Ly for some p, 1 < p < oo, p # 2, since then L, satisfies both (GP) and
(GP'). Thus we generalize the result of Abramovich and Zaidenberg [2] who
proved Corollary 4 in the case when one of the spaces X or Y equals L, for some
1<p<oo.

Also notice that, by [7, Theorem 7.2], if X, Y are not isomorphic to any L,
then Iso(X) = Iso(Y) = U and hence Corollary 4 holds.

Furthermore, since N(NS(a;d)) 2 NS(a;d) (Theorem 2 (c)) there are isomet-
ric spaces X, Y such that Iso(X) = Iso(Y) = NS(a;d) and the identity map is
not an isometry — notice that identity map is well defined since X, Y are both
equal to L, with an equivalent norm. Thus, as a consequence of Theorem 2 (c),
we get a positive answer to Question 1(a). In fact, we even can get two Orlicz
spaces with this property.

Ezample 1. (See [10], [16] and Corollary 9 below.)

Consider the Orlicz function ¢(t) = ¢ exp(sinlnt). Take any
o€ NS(Ry,e?™5)\ NS(e?™?;1) and let h be such that T'f = h f o o defines the
isometry on Ls, i.e. |h(t)|> = o’(t) for almost all t. Now define a new norm || - || x
on Ls by | fllx = |Tf|lo- Then, clearly X and L, are isometric. Moreover

1lx = Ih-foallga—inf{c : /w(w) it < 1}
:inf{c : /w-exp [sin (1n|h(t)|+lnM)} it < 1}

C
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and letting u = o(t), since |h(t)|> = o’ (t)

:inf{c : /WCLS)P - exp [Sin (%ln(a'(t))—i—ln&:)lﬂ dt < 1}

since for all ¢ there exists k(t) € Z with o’ () = be2™5k(t)

:inf{c : /'f(;;)'S - exp [Sin (m(b% . @))] dt < 1}

Thus || - || x is an Orlicz norm defined by the Orlicz function
@0 (t) = t° exp(sinlnb1/5t), where b € Ry \ {l97%; k € Z} is such that o’(t) €
{be?™5k . | e 7).

4. Isometric uniqueness of norm

In this section we study Question 1 (b) for Orlicz-Lorentz spaces. To our sur-
prise the proof, while definitely not difficult, is not completely obvious.

We will work not with the usual definition of Orlicz-Lorentz spaces (which
was presented in the preliminaries) but with the equivalent one introduced by
Montgomery-Smith [13]. We feel that this definition is very close to the spirit of
Krasnosel’skii-Rutickii’s definition of Orlicz spaces ([8]) and it is convenient for
us for technical reasons. We briefly remind the notations from [13] below.

First we define ¢-functions. These replace the notion of Orlicz functions in our
discussions.

A p-function is a continuous, strictly increasing function F : [0, 00) — [0, 00)
such that F(0) = 0; F(1) =1 and limy— F(t) = 0.

The definition of a ¢-function is slightly more restrictive than that of an Orlicz
function in that we insist that F' be strictly increasing.

If F is a o-function, we will define the function F(t) to be 1/F(1/t) if t > 0,
and 0 if t = 0.

If (Q,F, ) is a measure space, and F' and G are p-functions, then we define
the Orlicz-Lorentz functional of a measurable function f by

IflrG =1 o F oG g.

The Orlicz-Lorentz space Lrg(Q2,F,u) (or Lgg for short) is the vector
space of measurable functions f for which | f||F < oo, modulo functions that
are zero almost everywhere.

Notice that if Q = [0,1] then functions F' and G do not need to be defined on
[0,00). We require only that (F o G~1)~! is defined on [0, 1], and thus F and G
are really defined on [0, 1].
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The Orlicz-Lorentz spaces defined here are equivalent to the definition given in
the preliminaries. Namely, if w is a weight function, and G is a p-function, then
Ay = LW*loG,G’ where

We will also need the following two simple lemmas from [13]. For the sake of
completeness we present their short proofs with adjustments for our situation.

Lemma 5. Suppose that F', Gi and Gg are e-functions. Then |f||rq, =

| fllF,g, for all measurable f if and only if | f|l1,q, = ||fll1,Gg, for all measur-
able f.
ProoF: This follows because || ||z = ||/* o Fll1.6- O

Lemma 6. Suppose that G, G and H are p-functions. Then if || f|1.q, =
Il fll1,c, for all measurable f, then | f||1.G,or = || f|l1,Goon for all measurable f.

PROOF: Suppose that || f|1,q, = I|f]l1,G, for all measurable f. Fix ¢ > 0 and let g
be any simple function such that 1/(1+¢) < ||g/l1,Goomr < 1and g* = 3711 a;x4,-
Then there exists A < 1 such that

1, ~ 4 ~ . 1
1 Z/GgoHo XQ*OH_loGQ_I(I)dI_Z/G20H<XaiXé2oﬁ(A.)(I)> dx
1=1

—Y GyoH (%) u(Ga o FI(A)) > 3 Ga o H(an)u(Ga o FI(A))
i=1 1=1

:/Gonog*oﬁ_loGEI(sL‘)dw,

since H is strictly increasing.
Therefore, ||H o g* o H| ™14 G, < 1,and hence [|[H o g* o H711 g, <1. There-
fore,

/Gl(Hog*Oﬁ_loGll(x)) dr <1,

that is, we have
/G1 oH(g*o H 1o él_l(x)) dr <1,

that is, ||gll1,Gom < 1. Hence ||g|l1,ciom < (14+¢)[l9ll1,Go0m- Since € is arbitrary
and by symmetry we get that ||g|l1.¢,0r = ||9ll1,Go0m for all simple functions.
(Il

We are now ready to prove the main result of this section.
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Theorem 7. Suppose that L, G,, L, q, are Orlicz-Lorentz spaces and that
the identity map is an isometry, i.e. for all f € Lr, q,, Iflr.ci = IfllF,c.-
Then Fy(t) = F»(t) and G1(t) = Ga(t) for all t.

Remark. Notice that, by Corollary 4, whenever L, ¢,, LE, g, are isometric and
Iso(Lp, ¢,) # N(a,d), for any a > 1, d € N, then the identity map is an isometry.
In particular this holds whenever Lp, ¢,, LF, g, are not isomorphic to any Ly,
and also when Lp g, = Lp.

PrOOF: Let A C Q. Then for i =1,2

||XAHFZ-,G1- = ﬁi(#(A) = W

Hence if Q = [0,00) then Fy(t) = Fy(¢) for all ¢ > 0 and if Q = [0,1] then
Fi(t) = Fy(t) for t > 1, but as we mentioned in the definition of Lz ([0,1]),
[1,00) is the required domain of F' in this case. Now by Lemma 5 we get that for
all f ||fll1,c, = lIfll1,q, and by Lemma 6 Hf”l,GloGgl =[[fl1,1- So it is enough
to prove that if || f|l;,¢ = ||f[l1 for all f € Ly then G(t) =t for all t. For any
5;0<s<landa, 0<a<l< % consider f = 11__“35)([071_8} + ax[1—s,1]- Then
[ flli =1and f*= f. Hence || f|1,g = 1. Since

fo (N;_l(t) = w}([o 1] —i—ax[

1
S ’G(1/s) G(l/s)’l]

and since G is continuous, | f|l;, ¢ = 1 implies that for all 5, 0 < s < 1 and q,
O0<a<l< %:

(1) G(ll/S)G<1_z+aS>+<l—ﬁ) G(a) = 1.

Now, for a fixed s, take a left derivative of equation (1) with respect to a. We get

i (2552 (22) (- )t

where G’(t) denotes the left derivative of G. In particular when a = 1 we have

G(ll/s) G'(1) <#> + <1 - ﬁ) G/'(1) = 0.

Since G is convex and strictly increasing G’(1) # 0, so

aum (7) + () =0
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and, after simplification G(1/s) = 1/s for all s, 0 < s < 1, i.e. G(t) = ¢ for all
t > 1 which ends the proof in the case when Q = [0,1] since in that case G is
considered as a function from [1, c0).

If Q@ = [0,00) we consider any a < 1. Then # > 1 and (1) can be

rewritten as:

l1—a+as
8.7
s

+ (1 -s)G(a) =1.

and therefore

l—a+as+(1—-s)G(a)=1
(1-25)G(a) =a(l—2s)
G(a) =a for all a < 1.

By continuity G(t) =t for all ¢ > 0. O

As a corollary of Theorem 7 we obtain the characterizations of isometric Lorentz
spaces and Orlicz spaces.

Corollary 8. Two Lorentz spaces Ly, p;[0,1], Lw, p,[0,1] are isometric if and
only if wi(t) = wa(t) a.e. and p1 = pa, or L, p;s Luw,,p, are isometric to Lo,
ie fori=1,2, p; = 0o or w;(t) =0 for all t> 0.

PROOF: If there exist t1, to such that w;(t;) > 0 for i = 1,2, and p1, p2 # oo, then
Loy .p1s Lws,p, satisfy property (GP). Also, by [4], Iso(Luwy; p1) = Is0(Lwg,py) =
U. Hence, by Corollary 4, Id : Ly, p; — Luws,p, is an isometry.

If wy (t), wa(t) > 0 for all ¢ > 0, we can apply Theorem 7 to get the conclusion.
Otherwise let

Fsi(a) = |Ix[0,5) T aX[s,1) lws,pi

for i = 1,2. Since the identity map is an isometry Fs1(a) = Fs2(a) for all s,
a < 1. In particular

@) <Aﬂm@ﬁ> _&Mm—&ﬂm—<4dm@ﬁ>,

Moreover
3) %Hm®ﬁ=ﬁﬂﬁﬂhm=lum®ﬁ

Since (2) and (3) hold for all s < 1 we conclude that p; = p2 and w1 (t) = wa(t)
a.e.

If wi(t) = 0 for all ¢ > 0 or if p; = oo, then Ly, p, = Lo and, by [2]
Id : Ly, py = Loo — Luws,p, is an isometry, and thus also pg = oo or wa(t) =
for all t > 0.

0o
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Corollary 9. Let o, 1 be two Orlicz functions such that 0 < ¢(t) < oo and
0 < %(t) < oo for all t > 0. Then Orlicz spaces L, and L, are isometric if and
only if one of the two possibilities holds:
(1) () = (1) for all t;
(2) there exist b> 0 and p > 1, such that o(t) = (1/b)(b/P)t) for all t. In
this case Ly, Ly, are isomorphic to Lyp.

Remark. If p(t) = ¢ (t) = oo for all ¢ > 1, then L, and Ly, are isometric with Lo
via an identity map ([5, Corollary 1]).

For the proof of the above corollary we need a description of isometry groups
of Orlicz spaces, which is due to Zaidenberg [15], [16]. However, since the Eng-
lish translation of [16] has an unfortunate misprint (the author has not seen the
original Russian version) and since the proof is not presented in full there, we will

enclose both the exact statement and its proof (we use the same notation as in
Theorem 2).

Lemma 10. If Ly is a (real or complex) Orlicz space (L, # L2) then the group
G, of all surjective isometries of L, equals:
(a) NS, when (t) =tP for some p > 1, p # 2,
(b) NS(@P,1), when the multiplier group of ¢ is generated by @, a > 1, and
L, is isomorphic to Ly,
(¢c) U, otherwise.

PRrROOF OF LEMMA 10: By [15, Theorem 4] (cf. also [7]) every surjective isometry
S of L, has form

Sf=~h foo,
where o an invertible Borel map o : [0,1] — [0,1] and 4 : [0,1] — K (K =R or
C) are such that
(4) o(|h(t)| - ) = o' (t)p(z) for a.e. t and all 2 > 0.
By Theorem 2 (a) the isometry group G, coincides with one of the following
groups: NS, NS(R+,a), NS(a,1), U.
As mentioned above, it is well known that G, = NS if and only if L, = L.

If G, # U then L, is isomorphic to Ly, ([16, Theorem 4], [7, Theorem 7.2]).
Moreover, in this case we have:

(5) IhO)P =o'(t) ae.

Suppose that G, 2 U. Then G, € NS(Ry,a) for some a > 1, i.e. there exists
b > 0 with o'(t) € {baF}*<Z for all t.

Consider o € G, \ U. Without loss of generality we can assume that p({¢ :
o'(t) = b}) > 0. Then by (5) and (4) we get

o(bYPz) = byp(z) for all z.
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In particular, when x = 1, we get gp(bl/p) = b. Therefore
(6) o(0YPz) = (b /P)p(x) for all .

Hence b/? belongs to the multiplier group of (. If the multiplier group of ¢ is
trivial (i.e. = {1}) then b =1 for all 0 € G, \ U, which is impossible. Thus the
multiplier group of ¢ is cyclic, generated, say, by a.

Let k € Z be such that u({t: o'(t) = ba¥}) > 0. Similarly as above we get by
(5), (4) and (6)

go(bl/pak/p.%') _ bakgo(ac) _ akgp(bl/pw)

= p(a"/P)p(b!/Px)
for all z > 0.
Thus a*/P belongs to the multiplier group of ¢, i.e. ak/P = @" for some n € N.
Hence G, = NS(a”,1). O

PROOF OF COROLLARY 9: Assume first that L, and L, are isometric.

Since 0 < ¢(t) < oo and 0 < 9(t) < oo for all £ > 0, Ly, and Ly, both satisfy
(GP). Thus, by Corollary 4, Iso(Ly) = Iso(Ly,).

Further, if Iso(Ly) = Iso(Ly) # NS(a, 1) for any a > 1, then the identity map
between L, and Ly, is also an isometry and thus, by Theorem 7, we have (1).

Thus suppose that Iso(Ly) = Iso(Ly) = NS(a, 1) for some a > 1. Then, by
Lemma 10, there exists p (1 < p < 00) so that L, Ly, are isomorphic to Ly and

a=a/Pisa generator of the multiplier group for ¢ (resp. ) i.e.

Y(at) = P(a)y(t), for all ¢
and if ¥(ct) = ¥ (c)y(t) for all ¢, then ¢ = a™ for some n € Z.
Now, since Ly, is isomorphic to Ly, we can represent ¢ as:
Y(t) =tP - 4(t) for all ¢,
where, by [8, Theorem 8.1]
(7) C1 <9(t) < Cy for all t > tg,

for some C1, Ca, tg > 0 (and (t) # const since Ly, is not isometric to Ly).
It is easy to see that

d(ct) = D(e)d(t) < P(ct) = (v (t).

Thus a is a generator of the multiplier group for 1/3 Further

¥(@") = ((a))” for all n e N.
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Therefore, by (7), we get ¢(a) = 1.

Now suppose that T": L, — Ly, is a surjective isometry. Then by Theorems 1
and 2 (c) there exist o € NS(Ry,a) and a map h on [0,1] with |h(t)[P = o/(t)
a.e., such that

Tf=h-foo forall f& L.

Thus for all f € L, we have:

g =t fe - [ (HOLEEON) 4, <)
o« [ BHOP VOO 5 (MOLIOONY 4, )
0

cP c

letting s = o(t), since |h(t)|P = o’'(t), we get

e [uor; (|h<o-1<s)>| S 4 <)
0

cP c

. PSP - (6 PaREP f(s))
_mf{c./o 7 1/)( . ds <1

where k(s) € Z is such that /(0 1(s)) = baF(®) (since 0 € NS(R4, a))

: LIf(s)P = (017 |f(s)]
_mf{c:/O " 1/)( . )dsgl}

since a!/P = @ is a multiplier for ¢ and ¢ (al/P) =1,

_inf{c ;/011/)1 ('f(cs)|> ds < 1}

= [ fllps 5

where 1 (z) = (1/b)y(bY/Px), for all z.
Thus Id : Ly, — Ly, is an isometry and by Theorem 7, o(z) = ¥1(x) a.e.,

ie. o(z) = (1/b)yp(b1/Pz). 0
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5. Proof of Theorem 1

The proof of Theorem 1 follows the same essential steps as that of [7, The-
orem 6.4].

Notice that, similarly as in [7], it is enough to assume that spaces X, Y satisfy
property (GP). Otherwise X', Y satisfy (GP) and we prove that 77 : V' — X’
is elementary. Then by [7, Lemma 2.4] we get that also T is elementary (see also
final remarks in the proof of Theorem 6.4 in [7, p. 322]).

We will need an analogue of [7, Proposition 6.3]. The proof is the same so we
omit it.

Proposition 11. Let X be an r.i. space on [0, 1] with property (GP), and such
that X # Lo (isometrically) and let Y be any Kothe function space on [0, 1] for
which Y’ is norming. Suppose T : X — Y is a surjective isometry. Then there
exists a sequence of Borel maps oy, : [0,1] — [0,1] and Borel functions a, on
[0,1] so that |an(s)| > |an+1(s)| a.e. for every n and op,(s) # on(s) whenever
m # n and s € [0, 1] and for which

Tf(s)=_ an(s)f(on(s)) ae. forall f€ Lo,
n=1

and the above random measure representation (also called abstract kernel) is
unique.
Further, there exists a constant C, independent of the isometry T, such that

1/ o©
/ (Z |an(s)|> ds < C.
0 n=1

Remark. The reader might have noticed a slight difference in the assumptions of
Proposition 11 here and Proposition 6.3 in [7]. In fact property (GP) described
here is weaker than property (P) from [7]. Because of the excessive technical
terminology we do not wish to fully analyze the slight differences that this pro-
duces — we just want to point out that property (P) was introduced to ensure
the validity of [7, Lemma 5.3], which provides the crucial step for the argument
in [7]. The generalized property (GP) even though weaker than property (P) still
is sufficient for [7, Lemma 5.3] to hold (with identical proof) and hence there is
no difference in any subsequent arguments including the proof of the proposition
quoted above.

Next we need to show that |aa(s)| = 0 a.e. We follow the construction very
similar to that presented in [7]. We will recall all the necessary notations.

First, by Proposition 11, T~! has a random measure representation with all
the properties described above:

T f(s) = > bu(s)f(on(s)) ae. forall f€ Lo,
n=1
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and there exists K > 0, depending only on Y, such that

1 [e.e]
/ (Z |bn<s>|> ds < K.
0 n=1

Let My (s) be the greatest index such that o1(s),...,op(s) belong to distinct
dyadic intervals D(N, k). Then My (s) — oo for all s and it follows easily that
given £ > 0 we can find M, N and a Borel subset E of [0,1] with A(E) > 1—¢
and such that My(s) > M for s € E, and

/ Z|an )| dt < e
0,1]\
/ Z lan(s)| ds < e.

n=M+1

Next we use the group 7 defined in [7]. We recall the definition.

Set P = 2N and let us identify the circle group T with R/Z = [0,1) in the
natural way. For 6 € [0,1)" we define a measure preserving Borel automorphism
v =(y1,-.-,0p) given by v(0) = 0 and then

v(s) =s+ (0 — p)2~

for (k—1)27N < s < k27N where p = 1if 2V s+6), > k and p = 0 otherwise. Thus
~ leaves each D(N, k) invariant. The set of all such + is a group of automorphisms
I' which we endow with the structure of the topological group T¥ = [0, 1)P . We
denote Haar measure on I' by dy. For each k let T'y be the subgroup of all ()
for which 6; =0 when i # k. ThusI' =T;...T'p.

We also let the finite permutation group IIp act on [0,1] by considering a
permutation 7 as inducing an automorphism also denoted 7 by 7(0) = 0 and then
m(s) = w(k) — k + s for (k —1)27" < s < k27N, We again denote normalized
Haar measure on IIp by dn. Finally note that the set I'llp = 7 also forms a
compact group when we endow this with the product topology and Haar measure
dr = dydm when 7 = 7.

We now wish to consider the isometries V; : X — X for 7 € 7 defined by
Vrx = xor. For every 7 € T the operator S(7) = TV;T~1 is a surjective isometry
of Y and so, by [7, Theorem 6.4], the unique random measure representation of
S(7) consists of exactly one term i.e. there exist Borel function » on [0, 1] and an
invertible Borel map o : [0,1] — [0, 1] such that S(r)f =hfoo forall finY.

On the other hand the abstract kernels of 71, V; and T ‘multiply’ i.e., more
precisely, the following version of [7, Lemma 6.5] holds (with the identical proof).
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Lemma 12. For almost every 7 € T we have that

1 00 o0
(8) /ZZW )|bn(10;8)| ds < o0

n=1j=1

9) Z Z a;(8)bn(10;8)0(0nT0)8) = VE(T) a.e.

n=1j=1
Finally, we state an equivalent of [7, Lemma 6.6] in the formulation more
convenient for our present purpose.

Lemma 13. For almost every (s,7) € ExT and for any two distinct pairs (n, j),
(m,i) where m,n € N and 4,5 < M if pp70j8 = 0m70;s then a;(s)bp(10j5) =0
or a;(8)bm(7o;s) = 0.

We now complete the proof that |az(s)| = 0 a.e.
By Lemma 12 we have that for almost every (s,7) € E x 7 the series

Z Z a;j(s)bn(10;5)0(0nT0}5)

n=1j=1
has length one. Hence for all, except one pair (j,n) € N x N we have
(10) aj(s)bp(Tojs) = — Z ag(s)by(Toys),
k,lel(jn,T,s)

where 1(j,n,7,s) = {(k,l) : onTO;5 = 0TOYS}.

We restrict our attention to j = 1,2 and n = 1. Then (10) is valid for at least
one of the pairs (1,1), (2,1). By Lemma 13 for almost every (s,7) € E x 7T if
(k,1) € I(j,1,7,s) then k > M. Hence, if (10) holds for (j,1) we have

/EXT laj(s)b1(To;s)|dsdr = / | Z ap(s)by(Togs)| dsdr

ExT lel(jnTs)

/ Z Z|ak |bl T0k8)|d8d7'
E

XT M 1=1

:/ Z lag. (s |/Z|bl Tos)|dr | ds
E

k>M

1
But for almost every s / |bj(Togs)|dr = / |b;(t)| dt. Thus we obtain:
T 0

/EXT|aj(s)b1(7'a] |dsd7</ > lag(s |ds/ > Ibi(t)]dt < eK.

k>M =1
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On the other hand,

/EXT|aj(s)b1(T0js)|dsdT=/E|aj(s)|/7_|b1(7'ajs)|des

—/E|aj<s>|ds/01 |b1(t>|dt:g/E|aj<s>|ds,

1
where 3 / bi()|dt (0 < B < K).
0
Therefore / o (o) ds < K
a;(s)]ds < —
[ - B
and

1 eK
/ |aj(s)|ds=/ |aj(s)|ds+/ laj(s)]ds < <X 4 .
0 E [0,1]\E B

Since € > 0 was chosen arbitrarily we see that (10) implies that

1
laj(s)|ds = 0. Therefore (10) cannot hold for (1,1) and, thus, it holds for
0
(2,1) and |aa(s)| =0 a.e. O
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