
Commentationes Mathematicae Universitatis Carolinae

Klaus Dohmen
A note on Möbius inversion over power set lattices

Commentationes Mathematicae Universitatis Carolinae, Vol. 38 (1997), No. 1, 121--124

Persistent URL: http://dml.cz/dmlcz/118907

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1997

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/118907
http://project.dml.cz


Comment.Math.Univ.Carolin. 38,1 (1997)121–124 121

A note on Möbius inversion over power set lattices

Klaus Dohmen

Abstract. In this paper, we establish a theorem on Möbius inversion over power set
lattices which strongly generalizes an early result of Whitney on graph colouring.
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1. Introduction

An important technique in combinatorics is the principle of Möbius inversion
over partially ordered sets (see [3, Chapter 25]). For power set lattices, the prin-
ciple of Möbius inversion states the following:

Proposition. Let S be a finite set, f and g mappings from the power set of S
into an additive group such that g(X) =

∑

Y ∈ [X,S] f(Y ) for any X ⊆ S, where

[X, S] denotes the interval {Y |X ⊆ Y ⊆ S}. Then, for any X ⊆ S,

(1) f(X) =
∑

Y ∈ [X,S]

(−1)|Y \X| g(Y ).

Proof: By the asserted relation between f and g, the sum in (1) equals

∑

Y ∈ [X,S]

(−1)|Y \X|
∑

Z∈ [Y,S]

f(Z) =
∑

Z∈ [X,S]

f(Z)
∑

Y ∈ [X,Z]

(−1)|Y \X| ,

and this is f(X) since the inner sum on the right is zero unless X = Z. �

2. A modified inversion formula

The following theorem states that under certain conditions not all terms have
to be considered when evaluating the sum in (1). It can be thought of as a
generalization of Whitney’s Broken-Circuits-Theorem on graph colouring.

Theorem. Let S be a poset and f, g mappings from the power set of S into
an additive group such that g(X) =

∑

Y ∈ [X,S] f(Y ) for any X ⊆ S. For fixed

X ⊆ S, let C be a set of non-empty subsets of S such that each C ∈ C is bounded
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from below by an element C ∈ S \ (C ∪ X) and f(Y ) = 0 for all Y including
C ∪ X and not containing C. Then

(2) f(X) =
∑

Y ∈ [X,S]∩Y0

(−1)|Y \X| g(Y ),

where

(3) Y0 := {Y ⊆ S |Y 6⊇ C for all C ∈ C}.

Proof: Let ≤ denote the partial ordering relation on S and ≤∗ one of its linear
extensions. For each subset Y of S, min∗ Y denotes the minimum of Y with
respect to ≤∗. Consider an enumeration C1, . . . , Cn of C such that min∗ C1 ≤∗

. . . ≤∗ min∗ Cn, and define Ym := {Y ⊆ S |Cm ⊆ Y, Cm+1 6⊆ Y, . . . , Cn 6⊆ Y } for
m = 1, . . . , n. Obviously, the power set of S is the disjoint union of Y0, . . . ,Yn.
The proposition gives

f(X) =
n

∑

m=0

∑

Y ∈ [X,S]∩Ym

(−1)|Y \X| g(Y ).

We claim that the inner sum on the right-hand side is zero for m = 1, . . . , n. The
assertions force Cm < c and hence Cm <∗ c for every c ∈ Cm. From the latter we
conclude Cm <∗ min∗ Cm ≤∗ min∗ Ck and therefore Cm /∈ Ck for k = m, . . . , n.
For such k, Ck ⊆ Y if and only if Ck ⊆ Ym where Ym := (Y \{Cm})∪({Cm}\Y ).
By this, Y ∈ Ym if and only if Ym ∈ Ym. In addition, X ⊆ Y if and only if
X ⊆ Ym. Hence,

∑

Y ∈ [X,S]∩Ym

(−1)|Y \X| g(Y ) =
1

2

∑

Y ∈ [X,S]∩Ym

(

(−1)|Y \X| g(Y ) + (−1)|Ym\X| g(Ym)
)

.

Since |Y \ X | 6≡ |Ym \ X |(mod 2), it suffices to check g(Y ) = g(Ym) for all
Y ∈ [X, S] ∩ Ym. By the asserted relation between f and g,

g(Y ) =
∑

Z∈ [Y,S],
Cm /∈Z

f(Z) +
∑

Z∈ [Y,S],
Cm∈Z

f(Z).

It is easy to see that the right sum remains unchanged when Y is replaced by Ym.
The same holds for the left sum which, by the assertions of the theorem, equals
zero. �



A note on Möbius inversion over power set lattices 123

Remark. To compare the number of terms in (1) and (2), we define χ := |Y0 ∩
[X, S]|/|[X, S]|. Obviously, 0 ≤ χ ≤ 1. By the well-known principle of inclusion
and exclusion (which is a particular case of the next corollary),

(4) χ =
∑

C′⊆C

(−1)|C
′|2|X|−|X∪

S
C∈C′

C| .

Hence, if C contains n pairwise disjoint sets of cardinality m (n ∈ N0, m ∈ N) all
of them being disjoint with X , then χ ≤ (1 − 2−m)n, and this tends to zero as
n → ∞. �

Corollary. Let A be a boolean algebra of sets, P a mapping from A into an
additive group such that P (∅) = 0 and P (A ∪ B) = P (A) + P (B) for all disjoint
pairs A, B ∈ A, S a finite poset, {As}s∈S ⊆ A, X ⊆ S and C a set of non-
empty subsets of S such that each C ∈ C is bounded from below by an element
C ∈ S \ (C ∪ X) and

⋂

c∈C Ac ⊆ AC . Then

P





⋂

x∈X

Ax ∩
⋂

s∈S\X

∁As



 =
∑

Y ∈ [X,S]∩Y0

(−1)|Y \X| P





⋂

y∈Y

Ay



 ,

where Y0 is defined as in (3) and ∁As denotes the complement of As in A.

Proof: For Y ⊆ S define f(Y ) := P (
⋂

y∈Y Ay ∩
⋂

s∈S\Y ∁As), g(Y ) :=

P (
⋂

y∈Y Ay). For Y including C and not containing C there is some B ∈ A

such that f(Y ) = P (
⋂

c∈C Ac ∩ ∁AC ∩ B), and hence f(Y ) = 0. Therefore, the
theorem can be applied. �

Remark. Let X be empty and Smin resp. Smax denote the set of minimal resp.
maximal elements of S. If the mapping s 7→ As is antitone, then it can be achieved
that Y0 is the power set of Smin (Proof: Set C := {{s} | s ∈ S \ Smin}, and for
each C ∈ C choose a lower bound C ∈ S \C.). By the duality principle for posets,
‘below’ can be replaced by ‘above’ both in the theorem and in the corollary. By
this, if s 7→ As is isotone, then it can be achieved that Y0 becomes the power set
of Smax. �

Example 1. In (4), C can be replaced by the set of its minimal elements with
respect to set inclusion. This is an immediate consequence of the corollary and
the preceding remark since C 7→ [C, S] is an antitone mapping. �

Example 2. A hypergraph is a set S of non-empty sets whose union
⋃

S is finite.
The elements of S resp.

⋃

S are the edges resp. vertices of the hypergraph; their
number is denoted by m(S) resp. n(S). Define m∗(S) :=

∑

s∈S(|s| − 1). For

k ∈ N, let S(k) consist of all k-element edges of S. The edges of S(1) are called
loops. The subsets of S are called partial hypergraphs of S. A cycle in S is
a sequence (v1, s1, . . . , vk, sk) where k > 1 and v1, . . . , vk resp. s1, . . . , sk are
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distinct vertices resp. edges, vi, vi+1 ∈ si for i = 1, . . . , k − 1 and vk, v1 ∈ sk.
With respect to a linear ordering relation on S, a broken circuit of S is obtained
from the edge-set of a cycle in S by removing the smallest edge. For any λ ∈ N,
a λ-colouring of S is a mapping f :

⋃

S −→ {1, . . . , λ} (the set of colours). For
X ⊆ S, PS,X(λ) stands for the number of λ-colourings of S such that X is the
set of monochromatic edges. We now establish the following statement:

Let S be a loop-free, linearly ordered hypergraph, and let X be a partial

hypergraph of S such that S(2) \ X is an initial segment of S and each cycle in

S has an edge of S(2) \ X . Then PS,X(λ) =
∑

i,j ρijλ
n(S)−i where ρij equals

(−1)j−|X| times the number of partial hypergraphs Y of S including X but no
broken circuits of S and satisfying m∗(Y ) = i and m(Y ) = j.

Proof: For s ∈ S define As as the set of λ-colourings of S such that s is
monochromatic. For any broken circuit C of S let C be the unique edge such that

C ∪ {C} is the edge-set of a cycle in S. The assertions force C ∈ S(2) \ (C ∪ X).

Obviously, C ∈ S(2) entrains
⋂

c∈C Ac ⊆ AC . By the corollary, PS,X(λ) =
∑

Y (−1)
|Y \X||

⋂

y∈Y Ay| where the summation is extended over all partial hy-

pergraphs Y of S including X but no broken circuits of S. By [1, Proposition],

|
⋂

y∈Y Ay | = λn(S)−m∗(Y ). The result now follows. �

Note. A particular case of the previous example, namely where X is empty, is
published in [2]. For simple graphs and empty X , the above statement is due to
Whitney (see [4]) and called Whitney’s Broken-Circuits-Theorem. �
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