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On simple recognizing of bounded sets

Jan Hejcman

Abstract. We characterize those uniform spaces and commutative topological groups
the bounded subsets of which can be recognized by using only one uniformly continuous
pseudometric.

Keywords: uniform space, commutative topological group, bounded set, B-conservative
space, uniform partition

Classification: 54E15, 22A05

The usual concept of boundedness of subsets of general metric space is not of
great importance. It is neither an invariant of uniformly homeomorphic mappings,
every metric space can be easily remetrized to become bounded without changing
its uniform structure. Therefore other, more useful definitions of boundedness
were introduced. We will work with the concept of boundedness (see Definition 1
below) studied in [1], [2] and by other authors (see [4] for references). This defini-
tion is meaningful in every uniform space, coincides with the usual boundedness
in Euclidean spaces and in locally convex topological linear spaces, and every
totally bounded set, hence every compact or finite set is bounded.
Let d be a pseudometric on a set X , A ⊂ X . If the function d is bounded on

A × A, we say that A is bounded for d. There are two important properties of
the bounded subsets (see Theorems 1.12, 1.14 in [2]): If X is a uniform space,
then A ⊂ X is bounded in X iff (1) A is bounded for every pseudometric uni-
formly continuous on X , or iff (2) every uniformly continuous real-valued function
f : X → R is bounded on A (i.e. the set f [A] is bounded in the usual sense).
Thus to recognize whether a subset is bounded it “suffices” to consider all

uniformly continuous pseudometrics, real-valued functions respectively. The aim
of this paper is to characterize those uniform spaces, commutative topological
groups, topological linear spaces in which one pseudometric suffices for recognizing
bounded sets. Let us agree on terminology.
For uniform spaces, the basic terminology from [5] will be used. Thus a unifor-

mity U on a set X is a certain collection of entourages. If V ∈ U , we put V 1 := V ,
V n+1 := V ◦ V n for any n ∈ N, where N denotes the set of all positive integers.
We say that a collection C of subsets of X is V -discrete provided V [A]∩B = ∅ for
any A, B in C. A collection which is V -discrete for some V in U is called uniformly
discrete. A uniformly discrete decomposition of X is called a uniform partition
of X . If d is a pseudometric on X , r > 0, we put Bd(r) := {(x, y); d(x, y) < r}.
The symbols d-diam A, d-dist(x, A) are certainly clear.
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As usual, any commutative topological group G will be considered as a uniform
space with the base of the uniformity consisting of all U ′ := {(x, y) ∈ G × G;
y − x ∈ U} where U is a neighbourhood of the neutral element, which will be
always denoted by o. Then U ′[A] = A+ U := {z + u; z ∈ A, u ∈ U}.
Let us recall some definitions.

Definition 1 ([2]). Let (X,U) be a uniform space. A set A ⊂ X is bounded in
(X,U) (shortly “bounded”) if for each U in U there exist a finite set K ⊂ X and
n ∈ N such that A ⊂ Un[K]. A set will be called σ-bounded if it is the union of
countably many bounded sets.

A subset, the union of two bounded sets are bounded. A set bounded in a
space need not be bounded in a subspace.

Definition 2 ([3]). Let (X,U) be a uniform space. An entourage U ∈ U is
B-conserving if for each bounded subset A of X the set U [A] is bounded too. If
there exists a B-conserving entourage we say that (X,U) is B-conservative.

A uniform space (X,U) is called uniformly locally bounded if there is U in U
such that U [x] is bounded for each x ∈ X . Clearly, every B-conservative uniform
space is uniformly locally bounded. The converse is not true, in general (see
Example in [3]). However, we have

Proposition 1. Every locally bounded commutative topological group is

B-conservative.

Proof: Let U be a bounded neighbourhood of o in a group G. Let us show that
U ′ is B-conserving. If A ⊂ G is bounded, then U ′[A] = A+U is bounded by 2.11
in [2]. �

Before stating the basic definition let us present, without proof, the following
simple proposition, which shows that it is no matter whether the boundedness is
recognized by pseudometric or by functions. The trivial case of the void space,
which is bounded, may be omitted.

Proposition 2. Let X be a set, a ∈ X , A ⊂ X . If d is a pseudometric on X ,
then A is bounded for d if and only if the function gd := x 7→ d(a, x) is bounded
on A. If f : X → R is a function on X , then f is bounded on A if and only if A
is bounded for the pseudometric ef := (x, y) 7→ |f(x) − f(y)|. Moreover, if X is
a uniform space, then gd, ef are uniformly continuous provided d, f respectively
are uniformly continuous.

Definition 3. Let X be a uniform space. Let d be a uniformly continuous
pseudometric on X with the following property: a set A ⊂ X is bounded if and
only if A is bounded for d. Then we will say that d is a B-recognizing pseudometric
on X . We will say that X is B-simple provided there exists a B-recognizing
pseudometric on X .

Clearly, R, any normed linear space, any bounded uniform space are B-simple.
Notice we can also work with B-recognizing functions, see Proposition 2.
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Proposition 3. Every B-simple uniform space is B-conservative and σ-bounded.

Proof: Let d be a B-recognizing pseudometric on a uniform space X . We may
suppose X 6= ∅, choose a ∈ X . Put, for n ∈ N, Xn := {x ∈ X ; d(a, x) ≤ n}. Then
Xn are bounded,

⋃
{Xn;n ∈ N} = X , hence X is σ-bounded. Let us prove that

V := Bd(1) is a B-conserving entourage. IfA ⊂ X is bounded, then d-diamA < ∞
and clearly d-diamV [A] ≤ d-diamA+ 2 < ∞, hence V [A] is bounded. �

Proposition 4. If a uniform space (X,U) is σ-bounded, then every uniform
partition of X is countable.

Proof: There are bounded sets Xn such that X =
⋃
{Xn;n ∈ N}. Let P be an

infinite uniform partition of X . Let U ∈ U be such that P is U -discrete. Then

for each n there exist m(n) ∈ N and a finite set Kn such that Xn ⊂ Um(n)[Kn].

If x ∈ P ∈ P , k ∈ N, then Uk[x] ⊂ P , hence each Xn meets only finitely many
sets from P , therefore P is countable. �

Remark 1. If a uniform space X is connected, more generally chained — see [2],
then every uniform partition of X consists of one set X only, thus it is countable.
Let us present a simple example of a connected non-σ-bounded space. Denote
by R

N the cartesian product of ℵ0 copies of R. Suppose R
N =

⋃
{Xn;n ∈ N}

where Xn are bounded. Each j-th projection prj [Xn] of any Xn is bounded in R.

Choose, for each n, an ∈ R \ prn[Xn]. The sequence (an) belongs to R
N but to

no Xn. Thus the converse of Proposition 4 is far from being true.

Theorem 1. Let (X,U) be a uniform space. Then the following properties are
equivalent:

(a) (X,U) is B-simple,
(b) (X,U) is B-conservative and σ-bounded,
(c) (X,U) is B-conservative and every uniform partition of X is countable.

Proof: (a) ⇒ (b) follows from Proposition 3, (b) ⇒ (c) follows from Proposi-
tion 4. To prove (c)⇒ (b), suppose U ∈ U is a symmetric B-conserving entourage.
Define an equivalence ∼ on X : x ∼ y means y ∈ Un[x] for some n ∈ N. Let D be
the decomposition of X defined by ∼. Clearly, D is a uniform partition, hence D
is countable. If D ∈ D, c ∈ D, then D =

⋃
{Un[c];n ∈ N}, hence D is σ-bounded.

Therefore (X,U) is σ-bounded and (b) holds.
It remains to prove (b) ⇒ (a). Suppose that X =

⋃
{Xn;n ∈ N}, where Xn

are bounded, X1 6= ∅ and U ∈ U is a B-conserving entourage, d is a uniformly
continuous pseudometric on X such that Bd(1) ⊂ U . Put Y0 := X1, Yn :=
U [Yn−1 ∪ Xn] for each n ∈ N. Put

fn(x) := min{1, d-dist(x, Yn−1)} for n ∈ N,

f(x) :=
∑
(fn(x);n ∈ N).

If x ∈ Ym, then fn(x) = 0 for all n > m, hence f(x) ≤ m. Thus f is a real-
valued function. If x ∈ X \ Ym, then fn(x) = 1 for all n ≤ m hence f(x) ≥ m.
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Let us prove that f is uniformly continuous. Let x, y ∈ X , d(x, y) < 1. We are
going to show that |f(x) − f(y)| ≤ 2d(x, y). If y ∈ Y0 = X1, then f(y) = 0
and x ∈ U [X ] = Y1, thus 0 ≤ f(x) = f1(x) ≤ d-dist(x, X1) ≤ d(x, y), hence
|f(x) − f(y)| ≤ d(x, y). Let x ∈ Ym \ Ym−1, y ∈ Yn \ Yn−1. Then d(x, y) < 1
implies |m−n| ≤ 1. If n = m, we have |f(x)− f(y)| = |fm(x)− fm(y)| ≤ d(x, y).
If n = m+1, then 0 ≤ f(y)−f(x) = fm+1(y)+fm(y)−fm(x); further fm(y) = 1,
d-dist(y, Ym) ≤ d(y, x) < 1, hence fm+1(y) = d-dist(y, Ym). If fm(x) = 1, then
f(y) − f(x) = d-dist(y, Ym) + 1 − 1 ≤ d(x, y). If fm(x) = d-dist(x, Ym−1), then
fm+1(y) ≤ d(x, y), 1 ≤ d-dist(y, Ym−1) ≤ d(y, x) + d-dist(x, Ym−1) = d(x, y) +
fm(x), hence fm+1(y) + 1− fm(x) ≤ 2d(y, x), i.e. |f(x)− f(y)| ≤ 2d(x, y).
Of course, if A ⊂ X is bounded, then f is bounded on A. If A ⊂ X is not

bounded, then A \ Yn holds for no n. Thus, for arbitrary n, there is an an in
A \ Yn. But f(an) ≥ n, therefore f is not bounded on A. The pseudometric ef

from Proposition 2 is just the required B-recognizing pseudometric. �

If a uniform space is chained (see 1.1 in [2]), specially connected, or separable,
then every uniform partition of this space is countable. Thus we obtain

Corollary. Let a uniform space be chained or separable. Then it is B-simple if

and only if it is B-conservative.

Remark 2. Let X be an uncountable set endowed with the uniformity generated
by the metric d(x, y) := 1 whenever x 6= y. Then the bounded subsets of X are
exactly the finite subsets, X is B-conservative and is not σ-bounded. Example
in [3] exhibits a uniformly locally bounded space S which is not B-conservative
but is σ-bounded. Hence the both conditions in Theorem 1 (b) are independent.
Notice there are examples of countable spaces which are not uniformly locally
bounded or which are uniformly locally bounded but are not B-conservative.

Theorem 2. A (pseudo)metrizable uniform space is B-simple if and only if it is
(pseudo)metrizable by a B-recognizing (pseudo)metric.

Proof: Let (X, e) be (pseudo)metric space. Let d be a B-recognizing pseudomet-
ric on (X, e), d is uniformly continuous. Then e+d is again uniformly continuous.
Now, e ≤ e+d implies that e+d generates the same uniformity as e and d ≤ e+d
implies that e+ d is B-recognizing. �

Proposition 1 and Theorem 1 just imply

Theorem 3. Let G be a commutative topological group. Then the following
properties are equivalent:

(a) G is B-simple,
(b) G is locally bounded and σ-bounded,
(c) G is locally bounded and every uniform partition of G is countable.

Corollary 1. Let G be a chained or separable commutative topological group.
Then G is B-simple if and only if it is locally bounded.
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Corollary 2. Let E be a topological linear space. Then E is B-simple if and
only if it is locally bounded.

Corollary 3. Let E be a separated locally convex topological linear space. Then
E is B-simple if and only if E is normable.

Proof: Locally bounded locally convex spaces are normable by an old result of
Kolgomorov (see the beginning of the Section 3 in [2] for details and references).

�

Remark 3. Local convexity is essential in Corollary 3. Example: Let P be the
space of measurable functions on the interval [0, 1] metrized by

d(x, y) :=

∫ 1
0

|x(t)− y(t)|

1 + |x(t) − y(t)|
dt.

Then P is bounded (see Example 1 in [4]) and any uncountable product PM is
bounded (hence B-simple) and non-metrizable.

Let us formulate the result for frequently used locally compact groups.

Proposition 3. A locally compact commutative topological group G is B-simple
if and only if it is σ-compact.

Proof: The condition is sufficient by Theorem 3 (b). Let V be a compact sym-
metric neighbourhood of o in G. Put V1 := V , Vn+1 := V + Vn for n ∈ N. Then
all Vn are compact (see e.g. 2.11 in [2]), hence G0 :=

⋃
{Vn;n ∈ N} is σ-compact.

Further, G0 is an open subgroup, G/G0 is a uniform partition. If G is B-simple,
this partition is countable by Theorem 3, hence G is σ-compact. �

When considering topological groups, one often desires to use invariant pseudo-
metrics. Let us recall briefly some well-known facts (see e.g. [2, 2.1–2.4]). Let G be
a commutative topological group. If d is an invariant (i.e. d(x+z, y+z) = d(x, y)
for any x, y, z) pseudometric on G, then the function r := x 7→ d(x, o) is (1)
R-valued, non-negative, r(o) = 0, (2) even: r(−x) = r(x) and (3) subaddi-
tive: r(x + y) ≤ r(x) + r(y), all for any x, y. We will call such a function r a
pseudonorm on G. On the other hand, given a pseudonorm r on G, the function
d := (x, y) 7→ r(x−y) is an invariant pseudometric on G. Clearly, if r is generated
by d, then r generates the original d. The pseudometric d is uniformly continuous
iff the corresponding pseudonorm r is uniformly continuous or iff r is continuous
or iff r is continuous at o. For any neighbourhood U of o, there is a continuous
pseudonorm r such that {x ∈ G; r(x) < 1} ⊂ U . Every (pseudo)metrizable group
can be (pseudo)metrized by an invariant (pseudo)metric.

Now we are ready to prove the following important

Theorem 4. A commutative topological group G is B-simple if and only if there
exists an invariant B-recognizing pseudometric on G.

Proof: Suppose G is B-simple. Using the above mentioned facts, we will con-
struct a continuous B-recognizing pseudonorm on G. Use Theorem 3 and choose
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a symmetric bounded neighbourhood U of o in G. Put U1 := U , Un+1 := Un+U
for n ∈ N. Then all Un are bounded (see [2, 2.11]) and G0 :=

⋃
{Un;n ∈ N}

is the subgroup of G generated by U . Let q be a continuous pseudonorm on G
such that {x; q(x) < 1} ⊂ U . First, we construct another pseudonorm on G0.

If x ∈ G0 put s(x) := inf
∑ℓ

i=1 q(xi) where the infimum is taken over all finite
sequences x1, . . . , xℓ such that xi ∈ U for each i and x1 + · · · + xℓ = x. In view
of subadditivity of q, we may consider only such sequences that xi + xj ∈ U for
no i 6= j. It is easy to prove that s is a pseudonorm on G0. As s(x) = q(x) for
x ∈ U , s is continuous at o. Let us show that, if x ∈ G0, s(x) < k ∈ N, then
x ∈ U2k+1. In fact, there are ℓ ∈ N and x1, . . . , xℓ in U such that x = x1+· · ·+xℓ,
q(x1) + · · · + q(xℓ) < k and xi + xj ∈ U for no i 6= j. Thus q(xi) < 1/2 for one
indice i at most, hence (ℓ − 1)/2 ≤ k, ℓ ≤ 2k + 1, x ∈ U2k+1.
Now, we are going to extend the pseudonorm s onto the whole group G. First,

G/G0 is a U -discrete partition of G, by Theorem 3 it is countable. Choose a single
element in each coset of the subgroupG0 and arrange them into a countable (finite
or infinite) sequence a1, a2, . . . . Let, for any n ∈ N, Gn be the subgroup of G
generated by G0 and all ai with i < n. We will define by induction a pseudonorm
rn on Gn for each n such that r1 = s, rj(x) = rn(x) whenever j ≤ n and x ∈ Gj .
Put r1 := s and suppose that rn has been defined. If Gn+1 = Gn put rn+1 := rn.
Suppose an /∈ Gn. Then every element y of Gn+1 can be written in the form

(i) y = x+ pan

where x ∈ Gn, p is an integer. Two cases should be distinguished:

(1) pan /∈ Gn for any p 6= 0; then the expression (i) is unique and we denote
by Zn the set of all integers;

(2) there is a smallest integer mn > 1 such that mnan ∈ Gn; then the expres-
sion (i) is unique provided p ∈ Zn where Zn denotes the set {0, 1, . . . , mn − 1}.
We put

in the case (1): rn+1(x + pan) := rn(x) + |p| · n,

in the case (2): rn+1(x + pan) := rn(x) + max{n, rn(mnan)} for p > 0,
rn+1(x) := rn(x).

We must prove that rn+1 is a pseudonorm on Gn+1 which has all required
properties. Let us verify only the subadditivity in the case (2). Let x1, x2 ∈ Gn,
p1, p2 ∈ Zn. If p1 > 0, p2 > 0, then

rn+1(x1 + x2 + (p1 + p2)an) ≤ rn(x1 + x2) + rn(mnan) + max{n, rn(mnan)}≤

≤rn(x1) + rn(x2) + 2max{n, rn(mnan)} = rn+1(x1 + p1an) + rn+1(x2 + p2an).

If p1 > 0, p2 = 0, then

rn+1(x1 + x2 + p1an) = rn(x1 + x2) + max{n, rn(mnan)}≤

≤ rn(x1) + rn(x2) + max{n, rn(mnan)} = rn+1(x1 + p1an) + rn+1(x2).
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Finally, if x ∈ G, choose n such that x ∈ Gn and put r(x) := rn(x). The function
r : G → R is defined correctly and r is a pseudonorm. It is continuous at o as
r(x) = s(x) for x ∈ G0 ⊃ U and hence continuous on G.
Let A ⊂ G and let r be bounded on A. Choose a positive c such that r(x) < c

for each x in A. The construction of rn’s just implies that A ⊂ Gk for some
k ≤ c. Consider G0 6= Gk. Let n1 < n2 < · · · < nh be the sequence of all
natural numbers n less than k and such that Gn+1 6= Gn. Then Gnj+1 = Gnj+1,

Gk = Gnh+1. From the expression (i), it follows by induction that every element
z of Gk can be uniquely expressed in the form

z = x+

h∑
j=1

pjanj

where x ∈ G0 and pj ∈ Znj for j = 1, . . . , h. Then

r(z) = r(x +
h−1∑
j=1

pjanj ) + r(phanh
) = · · · = r(x) +

h∑
j=1

r(pjanj ).

If z ∈ A, then r(z) < c and r(pjanj ) < c for each j. The definition of rnj+1

just implies that for each j there is only a finite number of possibilities for the
numbers pj . Suppose that A ∩ (an +G0) 6= ∅ for infinitely many indices n. Then
there must exist n′ 6= n′′, z′ ∈ A ∩ (an′ +G0), z

′′ ∈ A ∩ (an′′ +G0) such that

z′ = x′ +

h∑
j=1

pjanj , z′′ = x′′ +

h∑
j=1

pjanj ,

where x′, x′′ ∈ G0 (with the same integers pj). But then z′ − z′′ = x′ − x′′ ∈ G0,

hence z′, z′′ belong to the same coset. This contradiction proves that there exists
a finite K ⊂ N such that A = A∩Gk =

⋃
{A∩(an+G0);n ∈ K}. This is also true

in the case G0 = Gk, of course. Let us show that each set in the union is bounded.
If n ∈ K, x ∈ A∩(an+G0), then x−an ∈ G0 and s(x−an) = r(x−an) < c+r(an).
Choose k′ ∈ N such that c+ r(an) < k′ for each n ∈ K. Then, as proved above,
x − an ∈ U2k′+1, U2k′+1 is bounded, an + U2k′+1 are also bounded. Clearly,
A ⊂

⋃
{an + U2k′+1;n ∈ K}, hence A is bounded. �

Theorem 5. A (pseudo)metrizable commutative topological group is B-simple
if and only if it can be (pseudo)metrized by an invariant B-recognizing
(pseudo)metric.

Proof is quite analogous to the proof of Theorem 2. Use invariant pseudomet-
rics, or pseudonorms, and replace Theorem 1 by Theorem 4.

Open questions: (1) One may consider, instead of one B-recognizing pseudo-
metric, a B-recognizing system of pseudometrics. There are non-B-simple spaces
with a countable B-recognizing system. Is there a characterization of such spaces?

(2) Is it reasonable to consider B-recognizing by pseudometrics (or functions)
which are not uniformly continuous?
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