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On the gonality of curves in Pn

E. Ballico

Abstract. Here we study the gonality of several projective curves which arise in a natural
way (e.g. curves with maximal genus in Pn, curves with given degree d and genus g for
all possible d, g if n = 3 and with large g for arbitrary (d, g, n)).

Keywords: space curve, algebraic curve, projective curve, gonality, algebraic surface

Classification: 14H50, 14H45, 14N05

0. Introduction

Consider the following classical theorem of M. Noether (see [7] or [3] for refer-
ences to modern complete proofs). A smooth complex degree d ≥ 5 plane curve
C ⊂ P2 has no g1x with x < d − 2, every g1d−1 is induced by the pencil of lines

through a point P ∈ C and the hyperplane line bundle OC(1) is the unique g2d
on C. This result was generalized in several directions (e.g. to singular plane
curves ([7], [3]), to complete intersection curves, to 0-loci of sections of vector
bundles, and so on). But it is still a very challenging problem to relate the Brill-
Noether theory of special divisors on a curve C to the existence of a suitable
embedding of C into Pn. Here we consider this problem (essentially the existence
and non existence of pencils) for very large classes of curves in Pn. For the ele-
mentary background on special divisors, rational surfaces and projective curves,
see [2], [10] and [11]. We just recall the notion of Clifford index Cliff (C) of a
smooth complete curve C of genus ≥ 3; if L ∈ Pic(C), the Clifford index Cliff (L)
of L is Cliff (L) := deg(L) − 2(h0(C, L)) + 2; set Cliff (C) := min{Cliff (L), with
L ∈ Pic(C), h0(C, L) ≥ 2, h1(C, L) ≥ 2}. Here we will use two methods of proofs.
One method is applied only once to prove Theorem 3.1. It is based on reducible
curves and the study of limits of linear systems. Here the difficulty is that the
reducible curve is not of “compact type”. Here we obtain only lower bounds for
Cliff (C), not the exact value. The other method will be used to prove all other
results of this paper. This method is just the use of Bogomolov-Reider technique
on a surface S to give conditions for the existence of linear series on a curve C ⊂ S
(see 1.2 and [3]). For all our results we will use several constructions of projective
curves considered in the literature ([5], [10, Chapter III], [9], [12], [13], [14], [15]).
In a few key points we will use also the proofs of the corresponding results in the
literature (giving detailed explanations and quotations). Hence this paper is not
self contained. For instance, one of the main results here is the following theorem.

The author was partially supported by MURST and GNSAGA of CNR (Italy)
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Theorem 0.1. Fix integers k ≥ 2, h = 0, 1 or 2 and set n := 3k + h. Let
d0(n), φ(d, n), πk(d, n) be the functions defined in [C2, § 1]; fix integers d, g with
d > max(d0(n), 8k + 17) and φ(d, n) < g ≤ πk(d, n). Then there are integers
b and b(i), 1 ≤ i ≤ 6 − h, with b(i) ≥ b(j) for i ≥ j, b(6 − h) ≥ 0, b > b(1)
and b ≥ b(1) + b(2) + b(3), a smooth degree 4k − 1 + h surface Sk ⊂ Pn, Sk

blowing up of P2 at 6 − h general points P (1), . . . , P (6 − h) and a smooth non
degenerate curve C ⊂ Sk with degree d := (k+2)b−kb(1)−

∑
2≤j≤6−h b(j), genus

g := 1 + [b2 −
∑
1≤j≤6−h b(j)2 − d+ (k − 1)(b − b(1))]/2 and such that C has no

pencil of degree < b−b(1) and the only degree b−b(1) pencils on C are induced by
the pencil of lines of P2 through one of the points P (j) with b(j) = b(1). Hence
Cliff (C) = b − b(1)− 2. In particular we have (n+ 6− h) · (Cliff (C) + 2) ≤ 3d.

We will work always over an algebraically closed field of characteristic 0. For
the positive characteristic case, see Remark 2.5.

l. Clifford index of general Castelnuovo curves

First we give a general remark on the Clifford index (see 1.1). Then we will
explain Bogomolov-Reider technique (see 1.2). Then we will compute the Clifford
index of general Castelnuovo curves, i.e. of curves C ⊂ Pn with maximal genus
for fixed degree. Such curves are contained in a minimal degree surface S ⊂ Pn

(see [10, Chapter III], or [2, Chapter II], or [5]). We study the gonality and the
Clifford index of such curves (see 1.3 for the case with S a Veronese surface, 1.4
for the case n odd and S smooth, 1.7 for the case n even and S smooth, 1.10
for the case S singular). In 1.6 and 1.9 we will consider the case of nodal curves,
because if one allows nodal curves in this way one recovers all possible geometric
genera below the maximal arithmetic genus (see the introduction of [5]). We
will use both the additive and the multiplicative conventions for line bundles and
divisors on a smooth surface S and set O := OS and IA := IA,S for every closed
subscheme A of S. Unless otherwise stated, cohomology groups will be computed
on S. Every time we compute or bound the Clifford index of a curve we will use
without further mention the following remark.

Remark 1.1. By [8, Theorem 2.3], if Cliff (C) is not computed by a pencil, then
C has infinitely many pencils of degree Cliff (C) + 3. Hence if there is an integer
a > 0 such that C has only finitely many pencils of degree a and C has a pencil
of degree a, then Cliff (C) = a − 2.

From now on in this section we will consider the case of curves with few nodes
on a rational minimal degree surface scroll S.

1.2. (Reider-Bogomolov construction (see [4, § 1])). Let S be a smooth projective
surface, L ∈ Pic(S) and T ⊂ X finite, T 6= ∅; set j := card(T ). Assume
h1(S, L⊗IT ) > h1(S, L⊗IT ′) for every T ′ ⊂ T with card(T ′) = card(T )−1 and
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L ·L > 4j. Then there is a rank 2 vector bundle E on S and two exact sequences

0→ O → E → L ⊗ IT → 0(1)

0→ L − D → E → D ⊗ IW → 0(2)

with D effective, W 0-dimensional or empty, a multiple of L − 2D effective and
(L − 2D) · H > 0 for every ample line bundle H and hence

(3) (L − 2D) · M ≥ 0 for every nef line bundle M

and j = (L − D)D + length(W ) and in particular

(4) Φ := (L − D) · D ≤ j.

Furthermore, if W 6= ∅ we have

(5) L · D − j ≤ D · D < (L · D)/2 < j.

Assume that C ⊂ S is an integral nodal curve; set A := Sing(T ). Let Z be the 0-
locus of a general section of a base point free line bundle on C. Set L := O(C). By
adjunction theory there is A′ ⊂ A such that, setting T := A′∪Z and t := card(T )
then we are in the previous situation; hence if L · L > 4(card(A) + card(Z)), the
inequalities (3), (4) and (5) are satisfied.

Remark 1.3. Let S ∼= P2 be the Veronese surface in P5. Let C ⊂ S be a smooth
curve of degree d (hence of degree d/2 as smooth plane curve). Then the Clifford
index of C is −3+(d/2) and it is computed exactly by the pencil of lines through
a point of C. If C is nodal and there are not too many nodes (see [7], or for
nodes in general position [3]), then Cliff (C) = −4 + (d/2) and the Clifford index
is computed by the pencil of lines through a node.

Now we will consider the case n = 2m + 1 with m integer and with S ∼= Fe

smooth. Since we are just interested in showing that the Clifford index is as small
as possible for curves with that degree, arithmetic genus and number of nodes on
any such smooth S, we will assume e = 0. First we will consider the case of a
smooth curve.

Proposition 1.4. Assume that C is smooth of type (a, b) with 2 ≤ a ≤ b and
b ≤ 3. Then C has no pencil of degree < a; if a < b, then the only pencil on C
of degree a is induced by the family of lines of type (0, 1); if a = b, then the only
pencils on C of degree a are induced by one of the family of lines of S. Hence
Cliff (C) = a − 2.

Proof: Let z ≤ a be the degree of base point free pencil. By 1.2 there are
nonnegative integers (u, v) with D := (u, v), L := (a, b) with 0 ≤ 2u ≤ a, 0 ≤
2v ≤ b and satisfying

(6) Φ := u(b − v) + v(a − u) ≤ z ≤ a.

Note that if u > 0 we have Φ ≥ b − v + va/2 > a. Hence u = 0. Thus v = 1, as
wanted. �

Now we will consider the case of a nodal curve. We will use the following
lemma.



180 E.Ballico

Lemma 1.5. Fix integers a, b, j with j ≥ 0, 5 ≤ a ≤ b and 3j < (a+ 1)(b + 1).
Fix J ⊂ S with card(J) = j and J general. Then for every A ⊂ S with z :=
card(A) ≤ a we have h1(IJ∪A(a − 2, b − 2)) 6= 0 if and only if A is contained in
a line of type (0, 1) or (if b = a) in a line of type (1, 0).

Proof: By adjunction theory and 1.2 the case j = 0 is proved as Proposition 1.4.
Hence we may assume j > 0 and take j and z minimal for which the thesis fails.
Thus we may assume h1(IJ∪A(a − 2, b − 2)) = 1 and h1(IJ ′∪A(a − 2, b − 2)) = 0
for every J ′ ⊂ J , J ′ 6= J . Thus again we may apply 1.2 and obtain the following
inequality:

(7) Φ := u(b − v) + v(a − u) ≤ j + z ≤ j + a.

Since J is general and the effective divisor D given by 1.2 contains J ∪A, we have
uv + u + v ≥ j. Assume by contradiction u > 0 and if v = 0, b > a. The reader
may check easily first the case b ≥ 2v + 2, v ≥ 2, then the case b ≥ 5, v = 1 and
then the case b = 2v + 1. Now assume b = 2v. By (7) we find a contradiction if
2j < a(b − 2). Since 3j < (a+ 1)(b+ 1) and b ≥ a ≥ 5, we conclude. �

Proposition 1.6. Fix integers a, b, t with t ≥ 0, 5 ≤ a ≤ b and 3t < (a+1)(b+1).
Let C′ be an integral nodal curve with Sing(C′) formed by t general points of S.
Let C be the normalization of C′. Then C has no pencil of degree < a; if a < b,
then the only pencil on C of degree a is induced by the family of lines of type
(0, 1); if a = b, then the only pencils on C of degree a are induced by one of the
family of lines of S. Hence Cliff (C) = a − 2.

Proof: Note that since 3t < (a+1)(b+1) and b ≥ a ≥ 5 there is such an integral
curve C′ ([1, Proposition 4.1]). Then apply Lemma 1.5. �

Now we will consider the case n = 2m with m ≥ 2 integer and with S ∼= Fe

smooth. Since we are just interested in showing that the Clifford index is as small
as possible for curves with that degree, arithmetic genus and number of nodes on
any such smooth S, we will assume e = 1. Take as base of Pic(S) the effective
divisors h, f with h2 = −1, h · f = 1, f2 = 0. First we consider the case of a
smooth C.

Proposition 1.7. Let C be a smooth curve of type ah+ bf (or (a, b) for short)
on S with 2 ≤ a ≤ b and b ≥ 3. Then C has no pencil of degree < a and the only
pencil of degree a is induced by the ruling of S. In particular Cliff (C) = a − 2.

Proof: By 1.7 we have integers (u, v) with D := (u, v), L := (a, b) with 0 ≤
2u ≤ a, 0 ≤ 2v ≤ b, u ≤ v, either b = 2v or a − 2u ≤ b − 2v and such that:

(8) Φ := u(b − v) + v(a − u)− u(a − u) ≤ z ≤ a.

Assume by contradiction u > 0. Since v ≥ u we have Φ ≥ a − u + ub/2. Hence
u = 0. Thus v = 1, as wanted. �

Now we will consider the case of a nodal curve.



On the gonality of curves in Pn 181

Lemma 1.8. Fix integers a, b, j with j ≥ 0, 5 ≤ a ≤ b and 3j < (a + 1)(2b +
2 − a)/2. Fix J ⊂ S with card(J) = j and J general. Then for every A ⊂ S
with z := card(A) ≤ a we have h1( J ∪ A(a − 2, b − 3)) 6= 0 if and only if A is
contained in a line of the ruling of S.

Proof: By 1.2 the case j = 0 is proved as Proposition 1.7. Hence we may assume
j > 0 and take j and z minimal for which the thesis fails. Thus we may assume
h1(IJ∪A(a − 2, b − 3)) = 1 and h1l(IJ ′∪A(a − 2, b − 3)) = 0 for every J ′ ⊂ J ,
J ′ 6= J . Thus again we may apply 1.2 and obtain the following inequality:

(9) Φ := u(b − v) + v(a − u)− u(a − u) ≤ j + z ≤ j + a.

Since J is general and the effective divisor D given by 1.2 contains J ∪A, we have
(u+1)(2v+2− u)/2 > j. Thus it is sufficient to check that if v ≥ u > 0 we have

(10) 2u(b − v) + 2v(a − u)− 2u(a − u) ≥ (u+ 1)(2v + 2− u)− 1 + a

with the constraint that (a − 2u, b − 2v) is effective. To check (10) we may take
b as small as possible with this constraint and the inequality a ≤ b. First assume
b = a. Hence (10) is

(11) 2va − 4uv + 3u2 ≥ 2v + u+ 1 + a

and for v ≥ 2 to check (11) with a ≥ 2u we reduce to the case a = 2u, u = v
which is true because a ≥ 4. Now assume b > a. Hence by the minimality of b we
have either a− 2u = b − 2v or a− 2u = b − 2v − 1. First assume b = a+ 2v − 2u
(hence v > u). Thus (10) is equivalent to

(12) 2av − u2 − 2uv ≥ 2v − u+ 1 + a.

To check (12) we reduce to the case v = u + 1 and then conclude. Now assume
a − 2u = b − 2v − 1. Now it is sufficient to check that

(13) 2av − u2 − 2uv + 2u ≥ 2v − u+ 1 + a.

To check (13) we reduce to the case u = v and then we conclude. �

Proposition 1.9. Fix integers a, b, t with t ≥ 0, 3t < (a+1)(2b+2− a)/2. Let
T ⊂ S with card(T ) = t and T general. Let C′ be an integral nodal curve with

Sing(C′) = T . Let C be the normalization of C′. Then C has no pencil of degree
< a and the only degree a pencil on C is induced by the ruling of S.

Proof: Note that since 3t < (a + 1)(2b + 2 − a)/2 and b ≥ a ≥ 5 there is such
an integral curve C′ ([1, Proposition 4.1]). Then apply Lemma 1.8.
Now we consider the case of a smooth curve C’ on a minimal degree cone surface

S′ ⊂ Pn, n ≥ 3. Hence S′ is a cone over a smooth rational normal curve of Pn−1
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and it has as minimal resolution S → S′ with S ∼= Fn−1, with h as exceptional
divisor and with |h+ (n − 1)f | inducing the morphism S → Pn. Let C ∼= C′ be
the strict transform in S of C′. Since C′ is smooth and not a line, there is an
integer a > 0 and an integer q = 0 or 1 with C′ ∈ |ah+(a(n− 1)+ q)f |. We want
to prove that Cliff (C) = a−2 and that C has a unique pencil of degree a, the one
induced by the ruling of S and S′. Now the function Φ is Φ = u(a−u)(n− 1)+u
if q = 0, Φ = u(a−u)(n−1)+a−u if q = 1, with 0 ≤ 2u ≤ a. Hence we conclude.

�

2. Proof of Theorem 0.1

In this section we will prove Theorem 0.1, and Propositions 2.2, 2.3 and 2.4
below. We stress that [9] was the key paper in which the authors introduced the
ideas and methods for the construction of curves with invariants (d, g) used in
[12], [14] and [6]. In this section we will fix the following notations. Let S = S(h)
be a smooth rational surface which is the blowing up of P2 at 6−h general points
P (i), 1 ≤ i ≤ 6 − h. We will take as basis of Pic(S) ∼= Z7−h the total transform
of a line of the plane and the opposite of the exceptional divisors E(i). Thus
every curve or line bundle will be given as (b; b(1), . . . , b(6 − h)) with b and b(i)
integers. We may even assume b(i) ≥ b(j) if i ≥ j. We know ([11, V.4.12]) the
ample cone of S. We know the class of the rigid divisors corresponding to the
27 lines of the cubic S(0) and that if h ≤ 1, (u;u(1), . . . , u(6 − h)) is effective
but not in this class with u(i) ≥ u(j) for i ≥ j, then u(6 − h) ≥ 0, u ≥ u(1) and
2u ≥ u(1)+u(2)+u(3)+u(4)+u(5) (see also [11, Example V.4.8]). However, in [6]
and [14] for the existence of smooth integral curves in the class (b; b(1), . . . , b(6−h))
with b(i) ≥ b(j) for i ≥ j it was used the stronger sufficient condition

(14) b ≥ b(1) + b(2) + b(3)

(see [12, p. 303], [6, eq. (1.4), i.e. the inequality α3 ≥ α2 in the first line of

eq. (1.8)]). S is embedded as a degree 4k − 1 + h surface Sk of P
3k+h by the

complete linear system associated to (k + 2; k, 1, . . . , 1). As in [B] we will use
Reider-Lazarsfeld method explained in 1.2. Fix (b; b(1), . . . , b(6− h)) normalized
(i.e. ordered with b(i) ≥ b(j) for i ≥ j) and corresponding to the complete fam-
ily V of smooth integral curves of degree d and genus g (hence satisfying also
(14)). Fix a general pairs (C, Z) with C ∈ V , Z ⊂ C, y := card(Z) ≤ b − b(1),
Z moving in a g1y on C. By 1.2 there are integers x, x(j), 1 ≤ j ≤ 6 − h, with

x > 0, x(j) ≥ 0 for all j, x ≥ x(i) + x(j) for all pairs {i, j} and such that
both (x;x(1), . . . , x(6 − h)) and (b − 2x; b(1) − 2x(1), . . . , b(6 − h) − 2x(6 − h))
are effective, with (x;x(1), . . . , x(6 − h)) corresponding to an effective divisor D
containing Z. Now the inequality (4) is

Φ := x(b − x)−
∑

1≤j≤6−h

x(j)(b(j) − x(j)) ≤ y ≤ b − b(1)(15)

with 0 ≤ 2x ≤ b and x ≥ x(i) + x(j) for all i 6= j.(16)
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Set Φ′′ : Φ− (b− b(1)). If x = 0, we find that D is rigid, while Z ⊂ D moves cov-
ering C and C moves in S. If x = 1 we conclude easily. Assume by contradiction
x ≥ 2. Φ and Φ′′ do not change if we substitute x(i) with b(i) − x(i). However,
making this substitution all other constraints are satisfied if x(i) > b(i) − x(i).
Hence we will assume 2x(i) ≤ b(i) for all i. Now note that for fixed x the func-
tions Φ and Φ′′ may only decrease if we permute the integers x(u) in such a way
that x(i) ≥ x(j) if i ≥ j. Note that when x(2) > 0 if instead of x(1), x(2) we
take x(1) + 1, x(2)− 1 and then normalize the new 6− h integers, Φ and Φ′′ may
only decrease. Hence we may assume x(1) as large as possible with the restric-
tion 2x(1) ≤ b(1). Then note that after this normalization Φ and Φ′′ may only
decrease if we decrease x; hence we may assume x = x(1)+x(2). Thus we reduce
to the following 3 cases.

First case: x = x(1) and x(j) = 0 for j > 1. Hence Φ = x(b− b(1)) ≥ 2(b− b(1)),
a contradiction.

Second case: x(j) = 0 for j > 2, x(1) = [b(1)/2] and x = x(1) + x(2). Hence
Φ = [b(1)/2](b − b(1)) + x(2)(b − b(2)) > b − b(1), a contradiction.

Third case: x(i) = [b(i)/2], x(2) = [b(2)/2], x(j) = min{x(3), [b(j)/2]} if j > 3
and x = x(1) + x(2). Taking the derivatives, we see that Φ′′ may only decrease
if we decrease b taking fixed the other integers. Hence by (14) we reduce to the
case b = b(1) + b(2) + b(3) and find Φ′′ > 0 (hence a contradiction) if b(1) ≥ 5 or
b(2) ≥ 4. Assume b(1) = 4 and b(2) = 3. We may assume x(1) = 2, x(i) = 1 for
i > 1, x = x(1) + x(2) = 3, b = b(1) + b(2) + b(3) and b(j) = b(3) for j > 3. If
b(3) = 3, we have Φ′′ = 1 + 2h, a contradiction. If b(3) = 2 we have Φ′′ = 3 + h.
Now assume b(1) = 4 and b(2) ≤ 2. We reduce to the case b(j) = 2 for all j ≥ 2,
x(1) = 2, x(j) = 1 for j > 1, x = 3, b = 8 and find Φ′′ = 6 + h, a contradiction.
Now assume b(1) ≤ 3 (hence b ≤ 9). Note that d < (k + 2)b − kb(1). Hence if we
are forced to reduce to a case with b ≤ 9 to find a positive lower bound for Φ′′,
then d < 8k + 17, a contradiction. �

Remark 2.1. The same proof for k = 1 and h = 0, 1, 2 (using respectively [12,
Theorem 0.2] (or [9]), [14, Theorem 1.0.1], and [14, Theorem 2.1.2] instead of [7])
gives respectively the following results 2.2, 2.3 and 2.4.

Proposition 2.2. For all integers d, g with d ≥ 20 and

(1/3)1/2 · d3/2 − d+ 1 ≤ g ≤ d(d − 3)/6 + 1,

there are integers b, b(j), 1 ≤ j ≤ 6, with b(i) ≥ b(j) if i ≥ j, b(6) ≥ 0,
b ≥ b(1)+ b(2)+ b(3), and a smooth connected curve C on a smooth cubic surface
S ⊂ P3, S blowing up of P2 at 6 general points P (j) (1 ≤ j ≤ 5) with degree
d := 3b −

∑
1≤j≤6 b(j), genus g := 1 + [b2 −

∑
1≤j≤6 b(j)2 − d]/2 and such that

C has no pencil of degree < b − b(1) and the only degree b − b(1) pencils on C
are induced by the pencil of lines of P2 through one of the points P (j) with
b(j) = b(1). Hence Cliff (C) = b − b(1)− 2.
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Proposition 2.3. For all integers d, g with d ≥ 25 and

(d+ 12)(d+ 9)1/2 − (11/2)d− 35 ≤ g ≤ (1/8)d2 − d/2 + 1,

there are integers b, b(j), 1 ≤ j ≤ 5, with b(i) ≥ b(j) if i ≥ j, b(5) ≥ 0,
b ≥ b(1) + b(2) + b(3), and a smooth connected curve C on a smooth Del Pezzo
surface S ⊂ P4, S blowing up of P2 at 5 general points P (j) (1 ≤ j ≤ 6) with
degree d := 3b−

∑
1≤j≤5 b(j), genus g := 1+ [b2−

∑
1≤j≤5 b(j)2− d]/2 and such

that C has no pencil of degree < b − b(1) and the only degree b − b(1) pencils on
C are induced by the pencil of lines of P2 through one of the points P (j) with
b(j) = b(1). Hence Cliff (C) = b − b(1)− 2.

Proposition 2.4. For all integers d, g with d ≥ 35 and

(d+ 30)(2d+ 40)1/2 − (23/2)d− 189 ≤ g ≤ (1/10)d2 − d/2 + 1,

there are integers b, b(j), 1 ≤ j ≤ 5, with b(i) ≥ b(j) if i ≥ j, b(5) ≥ 0,
b ≥ b(1) + b(2) + b(3), and a smooth connected curve C on a smooth Del Pezzo
surface S ⊂ P5, S blowing up of P2 at 4 general points P (j), (1 ≤ j ≤ 4) with
deg = d := 3b−

∑
1≤j≤4 b(j), genus g := 1 + [b2 −

∑
1≤j≤4 b(j)2 − d]/2 and such

that C has no pencil of degree < b − b(1) and the only degree b − b(1) pencils on
C are induced by the pencil of lines of P2 through one of the points P (j) with
b(j) = b(1). Hence Cliff (C) = b − b(1)− 2.

Remark 2.5. Assume that the base field has characteristic p > 0. Since we used
Reider-Bogomolov technique 1.2 on a smooth rational surface, this part works
by [15, Theorem 7]. In [12, § 5] it was proved that a certain construction due
to Gruson and Peskine of smooth curves on a smooth cubic surface or on a non
normal quartic surface works also in positive characteristic. The same proof (see
in particular [12, 5.1], to check that (k + 2; k, 1, . . . 1) is very ample) works for
the construction given in [7, § 1], of a smooth curve with invariants (d, g) on the
surface S considered in Theorem 0.1. The results in [14] were explicitly stated
and proved in positive characteristic. Hence Theorem 0.1 and Propositions 2.2,
2.3 and 2.4 are true also in positive characteristic.

3. Space curves on a smooth quartic surface

In this section (using heavily [13]) we will prove the following result.

Theorem 3.1. Assume characteristic 0. Fix integers d, g with d ≥ 6 and d−2 ≤
g < (d2/8). There is an integer s ≥ 1 and an integer g(0) with 0 ≤ g(0) ≤ d−4s−3
and such that g = g(0) + sd+ s(2s+ 3), a smooth quartic surface S ⊂ P3 and a
smooth connected curve C ⊂ S with deg(C) = d, pa(C) = g and Cliff (C) ≥ 3s.

Proof: The proof is divided into 5 steps.

Step 1. For this range of integers (d, g) S. Mori in [13] proved the existence of a
smooth quartic surface X and a smooth connected curve Y ⊂ X with deg(Y ) =
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d and pa(Y ) = g. Recall that the proof in [13] was by induction on d from
the case of a curve C′ ⊂ S, deg(S) = 4, with deg(C′) := d′ := d − 4 to a
curve of degree d which is a flat specialization of a reducible nodal curve C′′ =
C′ ∪ A with A := S ∩ M , M plane, and C′ ∩ A = C′ ∩ M . Hence card(C′ ∩
A) = d′ and g(C′′) = g(C′) + d′ − 1. To prove 3.1 we have to check that for a
general smoothing, C, of C′′ we have Cliff (C) ≥ Cliff (C′) + 3. We fix a general
1-parameter smoothing of C′′ inside a quartic surface and take a line bundle on
the complement of the special fiber C′′ and which computes the Clifford index
of the general smooth fiber. Since the total space of the deformation is smooth,
this line bundle extends (not uniquely) to a line bundle on the total space. Since
card(C′ ∩ A) = d′, this extension is uniquely determined if we impose that its
restriction, R, to C′′ has −d′ + 2 ≤ deg(R |A) ≤ 3. By semicontinuity we may
assume h0(C′′, R) ≥ 2.

Step 2. First assume h0(A, R |A) ≤ 1 and h0(C′, R |C′) ≥ 2. Thus we may find
a non trivial section of R |C′ vanishing on d′ points of C′. Varying the plane M
(or just using that d′ is at least the lower bound we want for the Clifford index
for (d, g)), we find a contradiction.

Step 3. By Step 2 we may assume h0(A, R |A) ≥ 2. Hence by the adjunction
formula we have deg(R |A) = 3 and there is P ∈ A with R |A ∼= OA(1)(−P ),
R |A induced by the pencil of lines in M through P .

Step 4. However (and this is a key point) to prove 3.1 we may assume the existence
of a line bundle R′ on C′ of degree deg(R |C′) on C′ with h0(C′, R′) = 2 and with
a non trivial section s vanishing at 3 non collinear points P (1), P (2) and P (3).
If we take as M the plane spanned by P (1), P (2) and P (3), we find easily that
in generalM ∩S′ will be smooth and intersecting transversally C′. Thus we may
assume R′ = R |C′. But now the condition that P (1), P (2), P (3) and P are not
collinear (which follows from the non collinearity of P (1), P (2) and P (3)) implies
that s does not satisfy the gluing condition at P (1), P (2) and P (3) needed to lift
it to a section of R |C′′. This implies h0(C′′, R |C′′) ≤ 1, a contradiction.

Step 5. The starting point of the induction in [13] was an integral curve of degree
d(0) and genus g(0) with 0 ≤ g(0) ≤ d(0) − 3. Hence if we arrive inductively at
the pair of invariants (d, s) in s steps, we have d = d(0) + 4s and by Step 4 we
have Cliff (C) ≥ 3s. �
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