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Relative multiplication and distributive modules

José Escoriza, Blas Torrecillas

Abstract. We study the construction of new multiplication modules relative to a torsion
theory τ . As a consequence, τ -finitely generated modules over a Dedekind domain are
completely determined. We relate the relative multiplication modules to the distributive
ones.

Keywords: torsion theory, semicentered torsion theory, multiplication module, distribu-
tive module

Classification: 13A15, 13G13

1. Introduction

Multiplications rings constitute an important class of rings and they have been
studied by many authors (cf. [7], [8], [10], [18], [19], and [20]). They are generali-
zations of Dedekind domains. Two concepts of multiplication module have been
given. The first one was due to Singh and Mehdi (cf. [11]) and the second one, the
most spread, was introduced by Barnard (cf. [2]). Multiplication modules have
been recently considered by many authors, either over a commutative ring ([5],
[9], [14] and their references) or over a noncommutative ring (cf. [13], [18], [19]
and [20]). Multiplication modules relative to a torsion theory have been defined
and studied in [6] as a natural generalization of the absolute case.
The aim of this paper is to study the operations of relative multiplication

modules in the commutative case. It is a work which will serve to research into
the noncommutative case, which will be exposed in a subsequent paper. Section 2
is devoted to preliminaries and notation. We also include some results on relative
multiplication ring and ideals. In [6], it was observed that every Krull domain
with the canonical torsion theory is a τ -multiplicaton ring. Now, some examples of
τ -multiplication rings which are not Krull domains are given. In Section 3, firstly,
some properties for any hereditary torsion theory are found and are applied to
find out if a module is or not relative multiplication. Then, operations such as
intersection, sum, direct sum, multiplication, etc, between multiplication modules
relative to a torsion theory have been studied. Finally, these results are applied to
find out what modules over a Dedekind domain are τ -multiplication. In Section 4,
relative distributive modules are introduced. Distributive modules have been
studied in [1], [2], [4] and [17]. Relative distributive rings have been researched by
Nǎstǎsescu (cf. [12]). Some elemental properties of relative distributive modules
are shown. It is found the relationship between relative distributive modules
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and relative multiplication modules in the main theorem. In the case of perfect
torsion theories the distributive property of a module is characterized in terms
of distributive property for its module of quotients with respect to the torsion
theory.

2. Preliminaries and general notation

Throughout this paper, τ is a hereditary torsion theory on a commutative ring
R and M ∈ R-Mod. The Gabriel filter associated to τ is denoted by F and the
set Spec(R)− F is denoted by K(τ). A torsion theory τ is semicentered (cf. [3],
[16]) if for each I /∈ F there exists a prime ideal P such that P /∈ F and I ⊆ P .
The ring R has enough τ-criticals if for every ideal I /∈ F of R there exists an
ideal P such that I ⊆ P and P is maximal with this condition. The set of such
ideals is denoted by MaxF (R).
We shall give some easy properties of closure operations that will be useful

for future results. If S is a multiplicatively closed subset of R, then S−1τ is the
induced torsion theory by τ on the ring of quotients S−1R, whose Gabriel filter
is {S−1I; I ≤ R}. If P ∈ Spec(R), then τP is the induced torsion theory in RP

with Gabriel filter FP = {IP ; I ∈ F}.
Let M , N be two R-modules. We denote by (M : N) = {r ∈ R; r.N ⊆ M}

and by (MP : NP ) = {x ∈ RP ;x.NP ⊆ MP } where P is any prime ideal of R.
Rτ and Mτ represent the ring and the module of quotients with respect to τ

respectively (cf. [16]).
The following lemma recollects some useful technical results. They are well-

known and the proof is omitted.

Lemma 2.1. Let S be a multiplicatively closed subset of R. Let τ be a semi-
centered torsion theory in R-Mod. Let P ∈ K(τ). Let M , N be two R-modules.
Let L ≤ M . Then

1. S−1ClMτ (L) = ClS
−1M

S−1τ
(S−1L);

2. ClMP
τP
(LP ) = LP ;

3. if N is τ -finitely generated, then (M : N)P = (MP : NP ) for all P ∈ K(τ);
4. if M is τ -finitely generated, then, for every P ∈ K(τ), (ann(M))P =
ann(MP ).

Recall that an R-module M is called τ-multiplication if for every τ -closed
submodule N of M there exists an ideal I of R such that N = ClMτ (I.M).
The definition of strongly τ -multiplication module is a generalization of Singh

and Mehdi’s definition (cf. [11]) for multiplication modules.

Definition 2.2. An R-module M is called strongly τ -multiplication if for all τ -
closed submodules N ⊆ L, there exists an ideal I of R such that N= ClMτ (I.L).

A ring R is called τ-multiplication if given A, B τ -closed ideals of R such that
B ⊆ A, then there exists an ideal I of R verifying B = ClRτ (I.A).
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Obviously, every ring R is τ -multiplication as an R-module and it is strongly
τ -multiplication as an R-module if and only if it is a τ -multiplication ring.

Example 2.3. Consider M = Zp∞ as a Z-module. Let τ be such that (p) ∈ F .
Since M is τ -simple, it is strongly τ -multiplication, but it is not multiplication
according to Singh and Mehdi’s definition (cf. [11]).

Let R be an integral domain and let K be its field of quotients. Let τ be a
torsion theory in R-Mod. A is a fractional ideal of R if there exists d ∈ R such
that d.A ⊆ R and it is an R-module.

Definition 2.4. A fractional ideal A of R is called τ -invertible if there exists a
fractional ideal B such that ClKτ (A.B) = R.

Proposition 2.5. Every τ -invertible ideal is τ -multiplication.

Proof: Let A be a τ -invertible ideal and B ⊆ A another ideal of R such that
ClAτ (B) = B. Then, there exists a fractional ideal C such that ClKτ (A.C) = R.

Therefore, we haveB = ClAτ (B.R) = ClKτ (B.ClKτ (A.C))∩A = ClKτ (B.C.A)∩A =

ClAτ ((B.C).A). Moreover, since B.C ⊆ A.C, B.C is an ideal of R. �

IfA is an integral ideal and ClRτ (A.B) = R for some fractional idealB, then A is
a τ -multiplication ideal, i.e., it is τ -multiplication as an R-module. In particular,
every ideal belonging to the Gabriel filter is τ -multiplication.
It follows immediately that the product of two τ -invertible ideals is τ -invertible

and therefore, it is τ -multiplication.
In [6] it is proved that a Krull domain with the canonical torsion theory is a

τ -multiplication ring. The following example is a ring which is not multiplication
but is τ -multiplication and is not a Krull domain.

Example 2.6. Let R = Πi∈NRi where Ri = Z4. According to [8, Example 3],
R is not a multiplication ring. Set S = ⊕i∈NRi. Obviously, S2 = S and it is
possible to consider the Gabriel filter F = {A ≤ R;S ⊆ A}. If B is an ideal

of R, then ClRτ (B) = (B : S) clearly. Denote by ei the element of R which has
the i-th coordinate equal to 1 and the others are 0. If x ∈ B and B is τ -closed,
then each component xi of x has to verify xi.ei ∈ B. Let x = (xi)i∈N verifying
the preceding condition. If s ∈ S, the product y.s can be seen as a finite sum of
elements of B and therefore, it belongs to B. This means that B = Πi∈N(B∩Ri).
Thus τ -closed ideals are ideals of the form B = Πi∈NBi with Bi ≤ Z4. Let A, B
be τ -closed ideals of R such that A ⊆ B. Since Z4 is a multiplication ring (it is
uniserial), for every i ∈ N, there exists an ideal Ci of Z4 such that Ai = Ci.Bi.

Consequently, A = ClRτ (C.B), where C = Πi∈NCi.

Remark 2.7. Notice that the ring of quotients with respect to τ is

Rτ = HomR(S, R) = Πi∈NHomR(Ri, R) = Πi∈NRi = R.

Since Rτ is not a multiplication ring but R is a τ -multiplication ring, it is proved
that Proposition 4.14 in [6] is not necessarily true if τ is not perfect.
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Example 2.8. If R is a τ -multiplication ring and F is the corresponding Gabriel
filter, then R⊕R is multiplication with respect to the torsion theory whose Gabriel
filter is {(I, J); I, J ∈ F}. Therefore, if D is a Krull domain and τ is the canonical
torsion theory, then D ⊕ D is a relative multiplication ring and obviously, it is
not a Krull domain.

In the relative noetherian case, the following characterization is immediate
from [6, Theorem 4.18].

Proposition 2.9. If R is τ -noetherian and τ is semicentered, then R is a τ -
multiplication ring if and only if RP is a multiplication ring for each P ∈ K(τ).

Some examples of relative multiplication rings appear in [6] and other examples
are obtained in forecoming sections.

3. Operations with τ-multiplication modules

If P ∈ Spec(R), then the set {x ∈ M ; c.m = 0 for some c ∈ R − P} is denoted
by TP (M). An R-module M is called P -torsion if M = TP (M).
The starting point is the following result, which appears in [6].

Proposition 3.1. Let τ be a semicentered torsion theory on R. M is a τ -
multiplication module if and only if for all P ∈ K(τ), M is P -torsion or c.M ⊆
ClMτ (R.m) for some m ∈ M and c ∈ R − P .

Proposition 3.2. If R is τ -noetherian (τ -artinian) and M is a τ -multiplication
module, then M is τ -noetherian (τ -artinian).

Proof: Show that M has A.C.C. on τ -closed submodules. In fact, we consider
N1 ≤ N2 ≤ . . . with Ni ≤ M τ -closed (i ∈ I). Then Ni = ClMτ ((Ni :M).M) by

[6, Lemma 3.11]. But ClMτ (Ni : M) = (ClMτ (Ni) : M) from [6, Proposition 2.7]
and therefore (Ni : M) is a τ -closed ideal for every i ∈ I. Moreover, (N1 : M) ≤
(N2 : M) ≤ . . . . By hypothesis, there exists i such that (Ni : M) = (Ni+1 :
M) = (Ni+2 :M) = . . . and hence

Ni = ClMτ ((Ni :M).M) = ClMτ ((Ni+1 :M).M) = Ni+1 = . . .

and therefore M is τ -noetherian. For the artinian case the proof is analogous.
�

The converse result is false. In fact, consider the ring Z which is τ -noetherian
for any τ . Let M = Z ⊕ Z. M is τ -noetherian but it is not τ -multiplication for
any torsion theory τ different from the trivial one (cf. [6, Lemma 3.13]).

Example 3.3. Let M = Z[x1, x2, · · · ] be the Z-module consisting of all polyno-
mials in infinite indeterminates x1, x2, · · · By [16, Corollary VI.6.15], every torsion
theory on Z is semicentered. If τ is different from the trivial one, then M is not
τ -noetherian, obviously. By applying Proposition 3.2, M is not τ -multiplication.
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Definition 3.4. Let τ ,σ be torsion theories on R with Gabriel filters Fτ and Fσ

respectively. Then τ ∧ σ is the torsion theory whose Gabriel filter is Fτ ∩ Fσ.

Proposition3.5. Let τ and σ be two hereditary torsion theories on R. If M ∈
Mod-R is τ and σ-multiplication, then M is a τ ∧ σ-multiplication module.

Proof: Let N be τ ∧ σ-closed. Then N is τ -closed and σ-closed. By hypothesis
and by [6, Lemma 3.11], N = ClMτ ((N : M).M) = ClMσ ((N : M).M). So, for
every n ∈ N there exist In ∈ Fτ and Jn ∈ Fσ such that In.n ⊆ (N : M).M and
Jn.n ⊆ (N :M).M . Then In ∩ Jn ∈ Fτ ∩Fσ verifying (In ∩ Jn).n ⊆ (N :M).M .
Hence N = ClMτ∧σ((N :M).M). �

Compare the next result with [14, Lemma 7].

Proposition 3.6. If M is a τ -multiplication R-module andM =
∑

i∈I Mi, then

N = ClMτ (
∑

i∈I(N ∩ Mi)) for each N τ -closed submodule of M .

Proof: Since M is τ -multiplication module we have

N = ClMτ ((N :M).M) = ClMτ ((N :M).(
∑

i∈I

Mi)) ⊆ ClMτ ((N :M)
∑

i∈I

Mi).

Thus N ⊆ ClMτ (
∑

i∈I(Mi ∩ N)). Therefore N = ClMτ (
∑

i∈I(N ∩ Mi)). �

Proposition 3.7. Let τ be a semicentered torsion theory on R and let M =∑
i∈I ClMτ (R.mi) for some elements mi ∈ M (i ∈ I). M is a τ -multiplication

module if and only if there exists an ideal Ji (i ∈ I) such that ClMτ (R.mi) =

ClMτ (Ji.M) for each i ∈ I.

Proof: The necessity is clear.
Conversely, suppose the existence of such ideals Ji and let P /∈ F . If there

exists i ∈ I such that Ji 6⊆ P , then, by hypothesis, Ji.M ⊆ ClMτ (R.mi). Hence,

there exists c ∈ Ji − P ⊆ R − P such that c.M ⊆ ClMτ (R.mi). If not, we have

Ji ⊆ P for all i ∈ I. So ClMτ (R.mi) = ClMτ (Ji.M) ⊆ ClMτ (P.M) for all mi ∈ M

and M = ClMτ (P.M) by the hypothesis. Therefore, there exists an ideal Ji of R

such that ClMτ (R.mi) = ClMτ (Ji.M) = ClMτ (Ji.ClMτ (P.M)) = ClMτ (P.Ji.M) =

ClMτ (P.ClMτ (Ji.M)) = ClMτ (P.mi). Thus mi ∈ ClMτ (P.mi). So, there exists
Hi ∈ F such that Hi.mi ⊆ P.mi and moreover Hi 6⊆ P . Thus there exists h−p ∈
R − P such that (h − p).mi = 0 and hence mi ∈ TP (M). Then R.mi ⊆ TP (M).

Obviously, ClMτ (TP (M)) = TP (M). Thus ClMτ (R.mi) ⊆ TP (M) and therefore
M = TP (M). By Proposition 3.1, M is τ -multiplication. �

It is straightforward from Proposition 3.7 that every τ -cyclic module is a τ -
multiplication module.

Example 3.8. Consider the Z-module M = Zp∞ = { 1
pi + Z; i ∈ Z∗} ⊂ Q/Z

where p is a prime. If (p) ∈ F , thenM = ClMτ (Z.(1p +Z)) and by Proposition 3.7,

M is a τ -multiplication module.
If (p) /∈ F , then M is not τ -noetherian. By Proposition 3.2, it is not τ -

multiplication.
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Proposition 3.9. Let τ be a semicentered torsion theory on R. If I is a τ -
multiplication ideal of R and M is a τ -multiplication R-module, then I.M is a

τ -multiplication R-module.

Proof: Consider P ∈ K(τ). It is clear that if I = TP (I) or M = TP (M),
then TP (I.M) = I.M . If I 6= TP (I) and M 6= TP (M), then there exist c, d ∈
R − P such that c.I ⊆ ClRτ (R.a) and d.M ⊆ ClMτ (R.m) for some a ∈ R and

m ∈ M . Therefore c.d.I.M ⊆ ClRτ (R.a).ClMτ (R.m) ⊆ ClMτ (R.a.m). Hence by
Proposition 3.1, I.M is a τ -multiplication module. �

The next result answers the question of when the sum of τ -multiplication mo-
dules is τ -multiplication. It is the analogous one to [14, Theorem 2].

Theorem 3.10. Let τ be a semicentered torsion theory on R. Let Mi (i ∈ I)
be a family of τ -multiplication τ -closed submodules of an R-module M such that

M =
∑

i∈I Mi. Let A =
∑

i∈I(Mi : M). Then the following conditions are
equivalent:

1. M is a τ -multiplication module;
2. Mi = ClMτ ((Mi :M).M) for all i ∈ I;
3. ann(m) +A ∈ F for all m ∈ M ;
4. for every P ∈ K(τ) either M = TP (M) or there exist z ∈ ∪i∈IMi and

c ∈ R − P such that c.M ⊆ ClMτ (R.z).

Proof: 1 ⇒ 2 is clear. Now suppose 2 holds. Suppose that m ∈ M and
ann(m) + A /∈ F . Since τ is semicentered, there exists P ∈ K(τ) such that
ann(m) + A ⊆ P . So, (Mi : M) ⊆ P for all i ∈ I. Hence (Mi : M).M ⊆ P.M

and we have Mi = ClMτ ((Mi :M).M) ⊆ ClMτ (P.M). Thus M = ClMτ (P.M). As
m ∈ M , then m = x1 + x2 + · · · + xn with xi ∈ Mi for i ∈ {1, 2, . . . , n}. Since
Mi is a τ -multiplication module, we have ClMτ (R.xi) = ClMτ (Bi.Mi) for some
ideal Bi of R. Then, by the same argument as in the proof of Proposition 3.7,
ClMτ (R.xi) = ClMτ (P.xi). Therefore there exists Ki ∈ F such that Ki.xi ⊆ P.xi

for each i ∈ {1, 2, . . . , n}. Hence there exists ci ∈ R − P such that ci.xi = 0 for
each i ∈ {1, 2, . . . , n}. Therefore there exists c ∈ R − P such that c.m = 0. But
then, c ∈ ann(m) which contradicts ann(m) ⊆ P . Thus 3 is satisfied.
3 ⇒ 4. Let P ∈ K(τ) and suppose that TP (M) 6= M . Then there exists

m ∈ M such that ann(m) ⊆ P . By condition 3, A 6⊆ P . Therefore, there exists
i ∈ I such that (Mi :M) 6⊆ P . Hence there exists c ∈ R−P such that c.M ⊆ Mi.
Moreover, Mi 6= TP (Mi) because if not, then c.M ⊆ TP (Mi) and M would be
P -torsion. By Proposition 3.1, there exist c′ ∈ R − P and y ∈ Mi such that
c′.Mi ⊆ ClMτ (R.y). Therefore c.c′.M ⊆ c′.Mi ⊆ ClMτ (R.y) and c.c′ ∈ R − P .

4⇒ 1 by Proposition 3.1. �

Remark 3.11. The result is still true if M = ClMτ (
∑

i∈I Mi).
Corollary 3.12. Let τ be a semicentered torsion theory on R. Let Mi (i ∈
I) be a family of τ -multiplication τ -closed submodules of an R-module M . If∑

i∈I(Mi :M) ∈ F , then M is a τ -multiplication module.
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Proof: We have M = ClMτ ((
∑

i∈I(Mi : M)).M) ⊆ ClMτ (
∑

i∈I(Mi : M).M)

⊆ ClMτ (
∑

i∈I Mi). Since ann(m) +
∑

i∈I(Mi : M) ∈ F , it suffices to apply
Theorem 3.10 and Remark 3.11. �

In these conditions we denote by A =
∑

i∈I(Mi :M).

Corollary 3.13. Let τ be a semicentered torsion theory on R. Let Mi (i ∈ I)
be a family of τ -closed τ -multiplication finitely generated submodules of M . If
M =

∑
i∈I Mi, thenM is a τ -multiplication module if and only if ann(Mi)+A ∈

F .

Proof: Suppose thatM is τ -multiplication andMi = 〈x1, . . . , xn〉 (n depending
on i). From Theorem 3.21, ann(xj) +A ∈ F (1 ≤ j ≤ n). Hence

[ann(x1) ∩ · · · ∩ ann(xn)] +A ⊇ Πn
j=1(ann(xj) +A) ∈ F .

Therefore ann(Mi) +A = [∩n
j=1ann(xj)] +A ∈ F for all i ∈ I.

Now, suppose that ann(Mi) + A ∈ F for all i ∈ I. Let m ∈ M . Since
M =

∑
i∈I Mi, m = m1 + · · · + mr with mj ∈ Mj (1 ≤ j ≤ r). Since

ann(mj) ⊇ ann(Mj), ann(mi) +A ∈ F for 1 ≤ j ≤ n. Moreover, ann(m) +A =
[∩n

j=1ann(mj)] + A ⊇ Πn
j=1(ann(mj) + A) ∈ F . Therefore ann(m) + A ∈ F for

all m ∈ M . By Theorem 3.10, M is a τ -multiplication module. �

Example 3.14. Let M = ⊕∞
n=1Cpn where Cpn is the cyclic group of order pn

and p a prime integer. M is a Z-module. Every Cpi is cyclic and therefore it is
τ -multiplication.
If (p) /∈ F , then every Cpi is τ -closed. Moreover, (Cpi : M) = 0. Thus A = 0.

It holds ann(Cpi) + A = (pi) /∈ F for all i ≥ 0. By Corollary 3.13, M is not
τ -multiplication.
Suppose that (p) ∈ F . Let x = xi1 ⊕ · · · ⊕ xin ∈ M where each xij ∈ Cpj . We

have (pin).x = 0. Hence M is τ -torsion. Therefore M is τ -multiplication in this
case.
Corollary 3.15. Let τ be a semicentered torsion theory on R. Let M =∑

i∈I Mi, Mi being a τ -closed τ -multiplication finitely generated submodule of
M for all i ∈ I. M is τ -finitely generated if and only if there exists a finite subset
J ⊆ I such that

∑
i∈J (Mi :M) ∈ F .

Proof: Since M is τ -finitely generated, there exists a finitely generated sub-
module F of M such that M = ClMτ (F ). Therefore there exists a finite subset

J of I such that M = ClMτ (
∑

i∈J Mi). By Theorem 3.10 and Remark 4.12,
ann(m) +

∑
i∈J (Mi : M) ∈ F for all m ∈ M , in particular for all m ∈ F . As

F is finitely generated, it holds that ann(F ) +
∑

i∈J (Mi : M) ∈ F . However,
ann(F ) ⊆ (Mi :M) for all i ∈ J . Hence

∑
i∈J (Mi :M) ∈ F .

Conversely, suppose that
∑

i∈J (Mi : M) ∈ F for some finite subset J of I.

By Theorem 3.10, M is τ -multiplication. Moreover, M = ClMτ ((
∑

i∈J (Mi :

M)).M) = ClMτ (
∑

i∈J (Mi :M).M) = ClMτ (
∑

i∈J Mi). Therefore M is τ -finitely
generated. �



212 J. Escoriza, B.Torrecillas

Corollary 3.16. Let τ be a semicentered torsion theory on R. Let K, L1, . . . , Ln

be τ -closed submodules of M . If K, K + Li (1 ≤ i ≤ n), L1 ∩ · · · ∩ Ln are τ -
multiplication modules, then K + (L1 ∩ · · · ∩ Ln) is a τ -multiplication module.

Proof: Let P ∈ K(τ). Call L = L1 ∩ · · · ∩ Ln. Clearly, L is τ -closed. Suppose
that TP (K + L) 6= K + L. Then TP (K + Li) 6= K + Li for each 1 ≤ i ≤ n.
Consider A = (K : (K + Li)) + (Li : (K + Li)). By applying Theorem 3.10 to
K +Li, we obtain A 6⊆ P as there exists m ∈ K +Li such that ann(m) +A ⊆ P .
However, A = (K : Li) + (Li : K). Since (K : Li) ⊆ (K : L), we deduce that
(K : L) + (Li : K) 6⊆ P for 1 ≤ i ≤ n. Hence (K : L) + (L : K) = (K :
L) + [(L1 : K) ∩ · · · ∩ (Ln : K)] 6⊆ P . Therefore there exists c′ ∈ R− P such that
c′ = a1 + a2 with a1 ∈ (K : L) and a2 ∈ (L : K). Thus there exists c ∈ R − P
(a1 or a2) such that c ∈ (K : L) or c ∈ (L : K). Hence c.L ⊆ K or c.K ⊆ L and
therefore c.(K + L) ⊆ K or c.(K + L) ⊆ L. By [6, Corollary 4.24], K + L is a
τ -multiplication module. �

Corollary 3.17. Let τ be a semicentered torsion theory on R. If K, L are τ -
closed submodules of an R-module M such that (K : L) + (L : K) ∈ F , then
K + L is a τ -multiplication module.

Lemma 3.18. Let τ be a semicentered torsion theory on R. Let N1 and N2
be τ -closed submodules of an R-module M . If N1, N2 and N1 + N2 are τ -
multiplication, then N1 ∩ N2 is a τ -multiplication module.

Proof: Let P ∈ K(τ). If TP (N1∩N2) 6= N1∩N2, then it is clear that TP (N1) 6=
N1, TP (N2) 6= N2 and TP (N1 + N2) 6= N1 +N2. By Theorem 3.10, there exist

x ∈ N1, y ∈ N2, z ∈ N1 ∪ N2, c1, c2, c ∈ N such that c1.N1 ⊆ ClN1τ (R.x),

c2.N2 ⊆ ClN2τ (R.y) and c.(N1 +N2) ⊆ ClN1+N2
τ (R.z).

Suppose z ∈ N1 (similarly if z ∈ N2). Then ClN1τ (R.z) ⊆ ClN1+N2
τ (N1) = N1.

Moreover, c.y ∈ N2 because y ∈ N2, and c.y ∈ N1 because c.y ∈ c.(N1+N2) ⊆ N1.

Therefore we have c2.c.(N1 ∩ N2) ⊆ c.ClN2τ (R.y) ⊆ ClN2τ (R.c.y).
On the other hand, it is obvious that c2.c.(N1 ∩ N2) ⊆ N1. So, there exists

c2.c ∈ R − P with c2.c.(N1 ∩ N2) ⊆ ClN2τ (R.c.y) ∩ N1 = ClN1∩N2
τ (R.c.y) and by

Proposition 3.1, N1 ∩ N2 is a τ -multiplication module. �

Theorem 3.19. Let τ be a semicentered torsion theory on R. Let N1, . . . , Nk be

τ -closed submodules of an R-module M such that Ni + Nj is a τ -multiplication
module for all i, j, such that 1 ≤ i < j ≤ k. Then

1. N1 + · · ·+Nk is a τ -multiplication module;
2. N1, . . . , Nk are τ -multiplication modules if and only if N1 ∩ · · · ∩ Nk is a

τ -multiplication module.

Proof: To prove the first part, it suffices to follow the proof of [14, Theorem 8]
with slight modifications. Proposition 3.1 and Theorem 3.10 are needed.
For the second part, we use induction on k. Suppose N1, . . . , Nk are τ -

multiplication modules. Consider the τ -multiplication module X = N2∩· · ·∩Nk.
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By Corollary 3.16, N1 + X is a τ -multiplication module and by Lemma 3.18,
N1 ∩ X is a τ -multiplication module.
Let P ∈ K(τ). If TP (N1 +Ni) = N1 +Ni, then TP (N1) = N1. Suppose that

N1∩· · ·∩Nk is a τ -multiplication module. Let P ∈ K(τ). Suppose TP (N1+Ni) 6=
N1 + Ni for all i ∈ {2, 3, . . . n}. By Theorem 3.10, there exist ui ∈ N1 ∪ Ni and

ci ∈ R−P such that ci.(Ni+N1) ⊆ ClN1+Ni
τ (R.ui). If for some i, ui ∈ N1, then

ci.N1 ⊆ ClN1τ (R.ui) and by Proposition 3.1, N1 is τ -multiplication. If ui ∈ Ni

for every 2 ≤ i ≤ k, then we have c2 . . . ck.N1 ⊆ N1 ∩ · · · ∩ Nk as ci.N1 ⊆
ci.(N1 + Ni) ⊆ Ni (2 ≤ i ≤ k). By [6, Corollary 4.24], N1 is a τ -multiplication
module. �

Corollary 3.20. Let τ a semicentered torsion theory on R. Let Ki (1 ≤ i ≤ n)
be a family of τ -closed submodules of an R-module M which are τ -multiplication
modules and such that Ki + Kj is τ -multiplication for 1 ≤ i < j ≤ n. Then
(K1 ∩ · · · ∩ Km) + (Km+1 ∩ · · · ∩ Kn) is a τ -multiplication module for every
positive integer m < n.

Proof: Consider L = Km+1∩· · ·∩Kn. By Theorem 3.19, L is a τ -multiplication
module. By Corollary 3.16, Ki + L is a τ -multiplication module (1 ≤ i ≤ n) and
by Corollary 3.16 again, L+ (K1 ∩ · · · ∩ Kn) is a τ -multiplication module. �

Denote M̂i = ⊕j 6=iMj . Compare the next result with [5, Theorem 2.2].

Theorem 3.21. Let τ be a semicentered torsion theory on R. Let M an R-
module such that M = ⊕i∈IMi where M ′

is are τ -closed submodules of M . Then
M is a τ -multiplication module if and only if the two following conditions are
satisfied:

1. Mi is a τ -multiplication module for each i ∈ I;
2. for each i ∈ I there exists an ideal Ai of R, such that

Mi = ClMτ (Ai.Mi) and Ai.M̂i = 0.

Proof: Suppose that M is a τ -multiplication module. Then Mi
∼= M/M̂i

and therefore it is a quotient of a τ -multiplication module. Thus Mi is a τ -
multiplication module.
On the other hand, sinceMi is τ -closed, there exists an ideal Ai of R such that

Mi = ClMτ (Ai.M) = ClMi
τ (Ai.M). So Ai.M ⊆ Mi. But Ai.M = (⊕j∈IAi.Mj) =

⊕j∈I(Ai.Mj) ⊆ Mi. Therefore Ai.Mj = 0 for all j 6= i and hence Ai.M̂j = 0.

Moreover, Ai.M = Ai.Mi and Mi = ClMτ (Ai.Mi).
Suppose that P ∈ K(τ). If Mi = TP (Mi) for all i ∈ I, then for each m ∈ Mi

there exists c ∈ R − P such that c.m = 0. Hence, for each x ∈ M there exists
c ∈ R − P such that c.x = 0. Thus TP (M) =M .
Suppose that there exists j ∈ I such that Mj 6= TP (Mj). Then by Propo-

sition 3.1, there exist c ∈ R − P and m ∈ Mj such that c.Mj ⊆ ClMτ (R.m).

By condition 2, there exists an ideal Aj ≤ R such that ClMτ (Aj .Mj) = Mj

and Aj .M̂j = 0. We have c.Aj .Mj ⊆ c.ClMτ (Aj .Mj) = Mj .c ⊆ ClMτ (R.m). If
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Aj ⊆ P , then Mj = ClMτ (Aj .Mj) ⊆ Cl
Mj
τ (P.Mj) and hence Mj = Cl

Mj
τ (P.Mj).

Therefore Mj = TP (Mj), a contradiction. Thus there exists d ∈ (R − P ) ∩ Aj

such that c.d.M ⊆ c.d.(⊕j∈IMj) ⊆ c.d.Mj ⊆ ClMτ (R.m) and by Proposition 3.1,
M is a τ -multiplication module. �

Corollary 3.22. Let τ be a semicentered torsion theory on R. Let Mi (i ∈ I)
be a family of finitely generated τ -closed modules such that M = ⊕i∈IMi. Then,

M is a τ -multiplication module if and only if Mi is a τ -multiplication module
and ann(Mi) + ann(M̂i) ∈ F for each i ∈ I.

Proof: Suppose that M is τ -multiplication module. By Theorem 3.21, the first
condition, Mi is a τ -multiplication module for each i ∈ I, is true. Suppose that
there exists i ∈ I such that ann(Mi) + ann(M̂i) /∈ F . Since τ is semicentered,

there exists P ∈ K(τ) such that ann(Mi) + ann(M̂i) ⊆ P . From Theorem 3.21,

there exists Ai ≤ R verifying Mi = ClMτ (Ai.Mi) and Ai.M̂i = 0. Therefore

Ai ⊆ ann(M̂i). Thus Ai ⊆ P . Hence Mi = ClMτ (P.Mi). Since Mi is finitely
generated, there exists c ∈ R − P such that c.Mi = 0, a contradiction because
c ∈ ann(Mi) ∩ (R − P ) = ∅.
Conversely, it suffices to apply Corollary 3.13. �

Corollary 3.23. Let τ be semicentered. Let M = M1 ⊕ · · · ⊕ Mn where Mi is

a τ -closed τ -multiplication finitely generated module for 1 ≤ i ≤ n. Then M is

τ -multiplication if and only if ann(Mi) + ann(Mj) ∈ F for all 1 ≤ i 6= j ≤ n.

Proof: Suppose that M is τ -multiplication. Clearly ann(M̂i) ⊆ ann(Mj), if

j 6= i. By Corollary 3.22, ann(Mi) + ann(M̂i) ∈ F for 1 ≤ i ≤ n. Thus
ann(Mi) + ann(Mj) contains an element of the Gabriel filter and therefore it
belongs to the filter.
Suppose that the second part of the equivalence is true. Since ann(M̂i) =

∩j 6=iann(Mj),

ann(Mi)+ann(M̂i) = ann(Mi)+∩j 6=iann(Mj) ⊇ Πj 6=i[ann(Mi)+ann(Mj)] ∈ F .

�

We can apply this corollary to find all finitely generated τ -multiplication mo-
dules over Dedekind domains.

Corollary 3.24. Finitely generated τ -multiplication modules over a Dedekind
domain are just modules of the form M = ClMτ (N) where N is isomorphic to an
ideal of R and τ -cyclic modules.

Proof: Let R be a Dedekind domain. A finitely generated R-module M is of
the form

M ∼= I1 ⊕ · · · ⊕ Ir ⊕ R/α1 ⊕ · · · ⊕ R/αn,

where αi ⊆ αi+1 (1 ≤ i ≤ n), Ij (1 ≤ j ≤ n) is an ideal of R and every R/αi is a
cyclic R-module.
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Since R is a commutative noetherian ring, by [16, Corollary VI.6.15], every
torsion theory is semicentered.
If τ is trivial, then every module is τ -torsion. Thus every module is τ -multi-

plication. Suppose that τ is not trivial. Consider three cases.

Case A: n = 0.
If r = 1, then M is a projective ideal. By [15, Theorem 1], it is multiplication.
If r ≥ 2, then Ij is τ -closed (1 ≤ j ≤ r) and τ -multiplication. Moreover,

ann(I1) + ann(I2) = 0 /∈ F . By Corollary 3.23, M is not τ -multiplication.

Case B: α1 ∈ F .
Assume r = 0. Then M is τ -torsion and hence it is τ -multiplication.
Suppose that r ≥ 1. For each x ∈ M we have x ∈ ClMτ (I1⊕· · ·⊕Ir⊕0⊕· · ·⊕0).

Let N = I1 ⊕ · · · ⊕ Ir . By [6, Theorem 3.7], M is τ -multiplication if and only if
N is τ -multiplication.
If r = 1, then N is a projective ideal and therefore it is τ -multiplication.

Consequently, M = ClMτ (N) where N is isomorphic to an ideal of R.
If r > 1, then ann(I1) + ann(I2) = 0 /∈ F . By Corollary 3.23, N is not a

τ -multiplication module.

Case C: α1 /∈ F .
Suppose that n = 1.
If r = 0, then M = R/α1 is a cyclic module and therefore it is a multiplication

module.
Now, assume r ≥ 1. We have ann(I1) + ann(R/α1) = α1 /∈ F . By Corol-

lary 3.23, M is not τ -multiplication.
Suppose n ≥ 2.
If there exists αk (2 ≤ k ≤ n) such that αk ∈ F , then αk.x ⊆ ClMτ (I1 ⊕ · · · ⊕

Ir ⊕ R/α1 ⊕ · · · ⊕ R/αk−1 ⊕ 0 ⊕ · · · 0). Let N = I1 ⊕ · · · ⊕ Ir ⊕ R/α1 ⊕ · · · ⊕
R/αk−1 ⊕ 0 ⊕ · · · 0. By [6, Theorem 3.7], M is τ -multiplication if and only if N
is τ -multiplication.
If r ≥ 2, then ann(I1) + ann(I2) = 0 /∈ F .
If r = 1, then ann(I1) + ann(R/α1) = α1 /∈ F .
If r = 0 and k − 1 = 1, then N is cyclic and therefore it is multiplication. In

this case M is τ -cyclic.
If r = 0 and k − 1 ≥ 2, then ann(R/α1) + ann(R/α2) = α2 /∈ F . By Corol-

lary 3.23, M is not τ -multiplication.
If none of αj ’s belongs to the Gabriel filter, the situation is absolutely similar

to the preceding one. �

Immediately it follows the next corollary.

Corollary 3.25. Finitely generated τ -multiplication modules over a P.I.D. are
just τ -cyclic modules.
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Proposition 3.26. Let R, S be rings such that R ⊆ S. If X , Y are τ -multipli-
cation R-modules inside S, then X.Y is a τ -multiplication R-module.

Proof: Let N = ClX.Y
τ (N). Since X and Y are τ -multiplication, ClXτ (N ∩X) =

ClXτ (I.X) and ClYτ (N ∩ Y ) = ClYτ (J.Y ) for some I, J ≤ R. By applying the

properties of the closure operation which appear in [6], we have ClX.Y
τ (N) =

ClX.Y
τ (N∩X.Y ) = ClX.Y

τ ((N∩X).(N∩Y )) = ClX.Y
τ (ClXτ (N∩X).ClYτ (N∩Y )) =

ClX.Y
τ (ClXτ (I.X).ClYτ (J.Y )) = ClX.=Y

τ (I.J.X.Y ). �

4. τ-distributive modules

An R-module M is called distributive if it has distributive property of the sum
with respect to the intersection or distributive property of the intersection with
respect to the sum, for the lattice of submodules.

Definition 4.1. A module M is called τ -distributive if the lattice of τ -closed
submodules, denoted by Cτ (M), is a distributive lattice.

The case M = R has been considered in [12]. Obviously, every distributive
module is a τ -distributive module for any τ . It is also immediate that every ring
is τ -distributive if and only if it is τ -distributive as an R-module. If F = {R}
and τ the corresponding torsion theory, then τ -distributive modules are just the
distributive modules. If τ is perfect, then the R-module M is τ -distributive if
and only if the Rτ -module Mτ is distributive. This is due to the isomorphism of
lattices which appears in [16, Proposition 3.7].
Recall that a τ -torsionfree module M is called τ-uniserial if its only τ -closed

submodules are M and a chain (finite or infinite) of the form

0 =M0 ⊂ M1 ⊂ · · · ⊂ Mn ⊂ . . .

Example 4.2. Every τ -uniserial module is τ -distributive.

Theorem 4.3. Let τ be a semicentered torsion theory overR-Mod. The following
sentences are equivalent:

1. M is a τ -distributive R-module;
2. if N , L, K are submodules of M , then ClMτ ((N + L) ∩ (N + K)) =

ClMτ (N + (L ∩ K));

3. if N , L, K are submodules of M , then ClMτ (N ∩ (L +N)) = ClMτ ((L +
N) ∩ (L +K));

4. MP is distributive as an RP -module for all P ∈ K(τ);
5. (Rm : Rn) + (Rn : Rm) ∈ F for all m, n ∈ M ;

6. ClMτ (R(m + n)) = ClMτ ((Rm ∩ R(m + n)) + (Rn ∩ R(m + n))) for all
m, n ∈ M ;

7. ClMτ (Rm+Rn) = ClMτ (R(m+ n) + (Rm ∩ Rn)) for all m, n ∈ M ;

8. ClRτ ((K + L) : N) = ClRτ ((K : N) + (L : N)) for all K, L, N ≤ M , N
being τ -finitely generated;
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9. ClRτ (K : (L ∩ N)) = ClRτ ((K : L) + (K : N)) for all K, L, N ≤ M , L, N
being τ -finitely generated;

10. HomRP
((N/(N ∩ L))P , (L/(N ∩ L))P ) = 0 for all L, N ≤ M and for all

P ∈ K(τ).

Proof: 1⇔ 2⇔ 3⇔ 4 it is similar to [12, Theorem 7.3].

1 ⇒ 5. Suppose that 1 is true. Let m, n ∈ M . By hypothesis, ClRτ ((Rm :

Rn) + (Rn : Rm)) = R. Let P ∈ K(τ). Then ClRP
τP
((RP

m
1 : RP

n
1 ) + (RP

n
1 :

RP
m
1 )) = RP . By Lemma 2.1, (RP

m
1 : RP

n
1 ) + (RP

n
1 : RP

m
1 ) = RP . Hence

(RP
m
s : RP

n
t ) + (RP

n
t : RP

m
s ) = RP for all

m
s , n

t ∈ MP . By [17, Theorem 1.6],
MP is a distributive RP -module for all P ∈ K(τ). By 4, M is τ -distributive.

5 ⇒ 1. Conversely, suppose that M is τ -distributive and (Rn : Rm) + (Rm :
Rn) /∈ F . Since τ is semicentered, there exists P ∈ K(τ) such that (Rn :
Rm) + (Rm : Rn) ⊆ P . Thus [(Rm : Rn) : (Rn : Rm)]P ⊆ PP ⊂ RP . Thus
MP is distributive as an RP -module by Lemma 4.3 and by [17, Theorem 1.6],
[(Rm : Rn) + (Rn : Rm)]P = RP , a contradiction.

6⇒ 5. By using [9, Lemma 3.1], we have

ClMτ (R(m+ n)) = ClMτ ((Rm : R(m+ n))(m+ n)+(Rn : R(m+ n))(m+ n))

= ClMτ ((Rm : R(m+ n))+(Rn : R(m+ n))(m+ n)).

Since ann(m+ n) ⊆ (Rm : Rn) + (Rn : Rm), (Rm : Rn) + (Rn : Rm) ∈ F .

1⇒ 6 is trivial.

7⇒ 5. By applying [9, Lemma 3.1], we have ClMτ (Rm) = ClMτ (Rm ∩ (Rm+

Rn)) = ClMτ (((Rm : Rn) + (Rn : Rm))m).
Since ann(m) ⊆ (Rn : Rm), 2 follows.

1⇒ 7. We have Rm ⊆ Rn+R(m+n). SinceM is τ -distributive, ClMτ (Rm) =

ClMτ ((Rn ∩ Rm) + (R(m + n) ∩ Rm)). Analogously, ClMτ (Rn) = ClMτ ((Rm ∩
Rn) + (R(m + n) ∩ Rn)). Easily, it can be checked that ClMτ (Rm + Rn) =

ClMτ ((Rm ∩ Rn) +R(m+ n)).

1 ⇒ 8. Let P ∈ K(τ). By 4, MP is distributive as an RP -module. By [1,
Theorem 1.9], ((KP +LP ) : NP ) = ((KP : NP )+(LP : NP )). Since NP is finitely
generated, we have ((K + L) : N)P = ((K : N) + (L : N))P for all P ∈ K(τ).
Since τ is semicentered, 2 follows.

8 ⇒ 1. We shall prove that MP is distributive as an RP -module for each
P ∈ K(τ). Let KP , LP , NP ≤ MP , NP being finitely generated. Since NP =

〈x1
1 , . . . , xr

1 〉, there exists N ′ = 〈x1, . . . , xn〉 ≤ N such that (ClMτ (N
′))P = N ′

P =

NP and obviously, ClMτ (N
′) is τ -finitely generated. From the hypothesis, by

using localization, we obtain ((K + L) : N ′)P = ((K : N) + (L : N))P . Hence
(KP + LP ) : NP = (KP : NP ) + (LP : NP ). By [1, Theorem 1.9], MP is
distributive.
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8⇔ 9. From [1, Theorem 1.9], it suffices to use localization.

1⇔ 10 is straightforward by applying [17, Proposition 1.1]. �

Corollary 4.4. Let τ be a semicentered torsion theory on R. Let M be a τ -
distributive R-module. Let L, N be submodules of M . Then

1. if N is finitely generated and N ∩ L = 0, then HomR(N, L) is τ -torsion;
2. if M/L is finitely generated and N +L =M , then HomR(M/L, M/N) is

τ -torsion.

Proof: We shall prove 1. Let P ∈ K(τ). By Theorem 4.3.10, HomRP
(NP , LP )

= 0. Since N is finitely generated, the canonical morphism (HomR(N, L))P →
HomRP

(NP , LP ) is injective. Thus (HomR(N, L))P = 0 for all P ∈ K(τ). Hence
1 follows.
Now, prove 2. Let P ∈ K(τ). By Theorem 4.3.10, we have

HomRP
((N/(N ∩ L))P , (L/(N ∩ L))P )

= 0 ∼= HomRP
(((N + L)/L)P , ((N + L)/N)P ).

By hypothesis this module is HomRP
((M/L)P , (M/N)P ). Since M/L is finitely

generated, (HomR(M/L, M/N))P = 0 for all P ∈ K(τ). Therefore, the R-module
HomR(M/L, M/N) is τ -torsion. �

Example 4.5. Let τ be a semicentered torsion theory. By Theorem 4.3.4, every
Krull domain R is a τ -distributive ring, i.e., it is τ -distributive as an R-module.

Proposition 4.6. If τ is semicentered, then every submodule and every quotient
of a τ -distributive module is a τ -distributive module.

Proposition 4.7. Let τ be a semicentered torsion theory over R-Mod. If M =
ClMτ (N), then M is τ -distributive if and only if N is τ -distributive.

Proof: Suppose that M is τ -distributive. By Theorem 4.3.4, MP is a distribu-

tive RP -module for all P ∈ K(τ). Then MP = (ClMτ (N))P = ClMP
τP
(NP ) by

Lemma 2.1. Moreover, MP = NP . Thus NP is distributive as an RP -module.
By Theorem 4.3.4 again, N is τ -distributive. The converse can be proved in the
same way. �

Definition 4.8. A module is called τ -Bezout if every τ -finitely generated sub-
module is τ -cyclic.

Proposition 4.9. τ -distributive modules over a P.I.D. are just τ -Bezout modu-
les.

Proof: Straightforward from Corollary 3.25. �

The following results give different ways to obtain new relative distributive
modules from relative distributive modules .
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Proposition 4.10. Let τ be a semicentered torsion theory on R. Let M , N be
two τ -distributive R-modules. Then

1. M ⊗R N is a τ -distributive R-module;
2. ifM is finitely generated, then HomR(M, N) is a τ -distributive R-module.

Proof: By Theorem 4.3.4, 1 is trivial.
Since M , N are τ -distributive modules, MP , NP are distributive RP -modules

for all P ∈ K(τ). By [1, Lemma 4.1], HomRP
(MP , NP ) is distributive as

an RP -module. Since M is a finitely generated R-module, the canonical mor-
phism [HomR(M, N)]P → HomRP

(MP , NP ) is injective. By Proposition 4.6,
[HomR(M, N)]P is distributive for all P ∈ K(τ). By Theorem 4.3.4, HomR(M, N)
is a τ -distributive R-module. �

Remark 4.11. IfM is τ -finitely generated andN is τ -torsion free the same result
is obtained. It suffices to realize that with the above hypothesis if M = ClMτ (F ),
then two maps belonging to [HomR(M, N)]P which are equal over F are equal
over M .

For an R-module M , set τ − Supp(M) = {P ∈ K(τ);MP 6= 0}.

Proposition 4.12. Let Mi (i ∈ I) be a family of τ -distributives modules. Then
⊕i∈IMi is τ -distributive if and only if τ − Supp(Mi) ∩ τ − Supp(Mj) = ∅ for all
i, j ∈ I i 6= j.

Proof: Suppose that ⊕i∈IMi is τ -distributive and for some i 6= j, there exists
P ∈ K(τ) such that (Mi)P 6= 0 6= (Mj)P . The RP -module (⊕i∈I(Mi))P ∼=
⊕i∈I(Mi)P is distributive. By [1, Proposition 1.8], Supp(Mi) ∩ Supp(Mj) = ∅.
However P ∈ Supp(Mi) ∩ Supp(Mj) = ∅, a contradiction.
Conversely, let P ∈ K(τ). If there exists Q.RP ∈ Supp((Mi)P )∩Supp((Mj)P ),

then, since (Mi)PQ.RP

∼= MQ, (Mi)Q 6= 0 6= (Mj)Q for i 6= j. If Q ∈ F , then

P ∈ F as Q ⊆ P . Therefore, Q ∈ K(τ), a contradiction. �

The following theorem establishes a relationship between τ -distributive modu-
les and τ -multiplication modules. It is a generalization of [2, Proposition 7].

Theorem 4.13. Let τ be a semicentered torsion theory on R-Mod. Then M
is τ -distributive if and only if every τ -finitely generated submodule of M is τ -
multiplication.

Proof: Suppose that M is τ -distributive. Let N = ClNτ (F ) ≤ M , F being
finitely generated. By Theorem 4.3.4, MP is distributive for all P ∈ K(τ). Since
FP is finitely generated for all P ∈ K(τ) as an RP -module, by [2, Proposition 7],
the RP -module FP is multiplication for all P ∈ K(τ). By [6, Theorem 4.18], F
is a τ -multiplication R-module. By [6, Theorem 3.7], N is τ -multiplication as an
R-module.
Conversely, suppose that every τ -finitely generated submodule of M is τ -

multiplication. Let P ∈ K(τ). We shall prove that MP is distributive as an
RP -module. Let NP = 〈x1

1 , . . . , xr
1 〉 with xi ∈ N (1 ≤ i ≤ r). Let LP ≤ NP .
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Consider K = 〈x1, . . . , xr〉 ≤ N . Obviously, KP = NP . Since ClNτ (K) ≤ M is

τ -finitely generated, it is τ -multiplication. Hence ClNτ (L∩N) = ClNτ (I.ClNτ (K))
for some ideal I of R. By localization, LP = IP .NP . Thus NP is multiplication
as an RP -module. �

Corollary 4.14. Let τ be a semicentered torsion theory. Every τ -noetherian
τ -distributive module is a strongly τ -multiplication module.

Corollary 4.15. If τ is semicentered, then every τ -uniserial τ -noetherian module
M is strongly τ -multiplication.

Corollary 4.16. Let τ be a semicentered torsion theory. Every τ -noetherian
τ -distributive ring is a τ -multiplication ring.

In particular, if τ is the canonical torsion theory, then every Krull domain is a
τ -multiplication ring, by Corollary 4.16.
The following example shows that the τ -distributive modules class is strictly

wider than the distributive modules class.

Example 4.17. Let R = K[x, y], K being a field. Let τ be the canonical torsion
theory. Since R is a Krull domain, it is a τ -multiplication ring. Thus every
submodule of K is τ -multiplication. By Theorem 4.13, R is a τ -distributive R-
module.

R is a integral domain which is not a Dedekind domain. By [10, Proposition
9.13], there exists some ideal (which must be finitely generated as R is noetherian)
which is not multiplication as an R-module. By [2, Proposition 7], R is not
distributive as an R-module.
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