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Antiproximinal sets in the Banach space c(X)

S. Cobzaş

Abstract. If X is a Banach space then the Banach space c(X) of all X-valued convergent
sequences contains a nonvoid bounded closed convex body V such that no point in
C(X) \ V has a nearest point in V .

Keywords: antiproximinal sets, best approximation

Classification: 41A65

The distance from an element x of a normed space X to a nonvoid subset M
of X is defined by d(x, M) = inf{‖x − y‖ : y ∈ M}. An element y ∈ M such
that ‖x − y‖ = d(x, M) is called a nearest point to x in M and the set of all
nearest points to x in M is denoted by PM (x). The set M is called proximinal
if PM (x) 6= ∅ for all x ∈ X , and antiproximinal if PM (x) = ∅ for all x ∈ X \ M .
(Observe that PM (y) = {y} for all y ∈ M .)
Let X∗ be the conjugate space to X and let M be a nonvoid convex subset

of X . A functional f ∈ X∗ is said to support M (at x) if there exists x ∈ M
such that f(x) = inf f(M) or f(x) = sup f(M). Obviously f ∈ X∗ supports the
closed unit ball BX of X if and only if there exists x ∈ BX such that f(x) = ‖f‖.
If f 6= 0 then every x ∈ BX verifying this equality must be of norm one, i.e.
‖x‖ = 1. We shall denote by S(M) the set of all support functionals of the setM .
V. Klee [13] called a Banach space X of type N1 if it contains a nonvoid closed

convex antiproximinal set and of type N2 if it contains a nonvoid bounded closed
convex antiproximinal set. A hyperplane {x ∈ X : f(x) = a} with f ∈ X∗, f 6= 0,
and a ∈ R, is proximinal if f ∈ S(BX ) and antiproximinal if f /∈ S(BX ). Since,
by James theorem, a Banach space X is reflexive if and only if S(BX ) = X∗, it
follows that a Banach space is of type N1 if and only if it is non-reflexive.
The first example of a Banach space of type N2 was exhibited by M. Edelstein

and A.C. Thompson [9] — the Banach space c0 contains a bounded symmetric
closed antiproximinal convex body. By a convex body we mean a convex set with
nonvoid interior. A bounded symmetric closed convex body is called a convex cell.
In [4] it was shown that the space c also contains an antiproximinal convex cell and
this property is shared by any Banach space of continuous functions isomorphic
to c ([5]). The existence of antiproximinal convex cells in more general spaces of
continuous functions was proved by V.P. Fonf [10] (see also [11]).
The aim of the present note is to prove the existence of an antiproximinal convex

cell in the Banach space c(X) of all X-valued convergent sequences, where X is a
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non-trivial Banach space. The proof is simpler than the proof in the scalar case
given in [4]. The case of the space c0(X) was considered in [6]. The notation is
standard and all spaces will be considered over R.
Let ω be the first infinite ordinal. Then N = [1, ω[ and [1, ω] is a com-

pact Hausdorff space with respect to the interval topology (called also ordi-
nal topology). If X 6= {0} is a Banach space then c(X) can be identified
with the Banach space C([1, ω], X) of all continuous functions from [1, ω] to X ,
equipped with the usual sup-norm. An element x ∈ c(X) will be denoted by
x = (x(i) : 1 ≤ i ≤ ω) and sometimes by (x(ω)|x(1), x(2), . . . ). The conjugate of
c(X) is the space l1(X∗) = l1([1, ω], X∗) of all sequences f = (fi : 1 ≤ i ≤ ω)
such that ‖f‖ :=

∑
1≤i≤ω ‖fi‖ < ∞, the duality between c(X) and l1(X∗) being

given by the formula

(1) f(x) =
∑

1≤i≤ω

fi(x(i))

for f ∈ l1(X∗) and x ∈ c(X). Again the alternate notation (fω |f1, f2, . . . ) will be
used to designate an element of l1(X∗).
The main result of this paper is:

Theorem 1. The Banach space c(X) contains a bounded closed antiproximinal
convex body.

The proof will be based on the following characterization of antiproximinal
sets.

Lemma 2 ([9]). A nonvoid closed convex subset M of a Banach space X is

antiproximinal if and only if

(2) S(M) ∩ S(BX ) = {0},

where BX denotes the closed unit ball of X .

The following lemma gives some information about the support functionals of
the unit ball of c(X). The characterization of support functionals of the unit
ball of C(T ), for a compact Hausdorff space T , was given by S.I. Zukhovickij
[19] in the scalar case and by V.L. Chakalov [1] for vector-valued functions. For
characterization of support functionals of the unit balls in other concrete Banach
spaces, see [7], [14] and [15].

Lemma 3. Let Bc be the closed unit ball of c(X) and let f = (fi : 1 ≤ i ≤ ω),
f 6= 0, be an element in l1(X∗).

(a) If f = (fi : 1 ≤ i ≤ ω) ∈ S(Bc) \ {0} and x = (x(i); 1 ≤ i ≤ ω) ∈ Bc is

such that f(x) = ‖f‖, then fi(x(i)) = ‖fi‖ for all i ∈ [1, ω] and ‖x(i)‖ = 1 for all
i ∈ [1, ω] such that fi 6= 0.

(b) Let N = [1, ω[ and let σi : N → N, i = 1, 2, be two strictly increasing
functions such that σ1(N)∩σ2(N) = ∅. Let h ∈ X∗, h 6= 0, and αj , βj > 0, j ∈ N.
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If f = (fi : 1 ≤ i ≤ ω) ∈ l1(X∗) is such that fσ1(j) = αjh and fσ2(j) = −βjh for

all j ∈ N, then f /∈ S(Bc).

Proof: (a) Let f ∈ S(Bc) \ {0} and let x ∈ Bc be such that f(x) = ‖f‖. Since
fi(x(i)) ≤ ‖fi‖ · ‖x(i)‖, for all i ∈ [1, ω], it follows that

∑

1≤i≤ω

‖fi‖ = ‖f‖ = f(x) =

=
∑

1≤i≤ω

fi(x(i)) ≤
∑

1≤i≤ω

‖fi‖ · ‖x(i)‖ ≤
∑

1≤i≤ω

‖fi‖,

implying fi(x(i)) = ‖fi‖, for all i ∈ [1, ω], and ‖x(i)‖ = 1 for all i ∈ [1, ω] such
that fi 6= 0.

(b) Let h ∈ X∗, h 6= 0, αj , βj , σ1, σ2 and f ∈ l1(X∗) fulfill the hypotheses of
the lemma and suppose, on the contrary, that there exists an element x = (x(i) :
1 ≤ i ≤ ω) ∈ Bc such that f(x) = ‖f‖. Taking into account the first point of the
lemma it follows that

αj‖h‖ = ‖fσ1(j)‖ = αjh(x(σ1(j)))

and
βj‖h‖ = ‖fσ2(j)‖ = −βjh(x(σ2(j)))

implying h(x(σ1(j))) = ‖h‖ and h(x(σ2(j))) = −‖h‖, for all j ∈ N. Since
σk(j) → ω for j → ω, k = 1, 2, and the functions x and h are continuous, the
above equalities yield, for j → ω, the contradiction h(x(ω)) = ‖h‖ > 0 and
h(x(ω)) = −‖h‖ < 0. �

Other result we need for the proof of the Theorem 1 is the following one,
emphasizing the behaviour of support functionals under linear isomorphisms. If
X , Y are Banach spaces and A : X → Y is an isomorphism then its conjugate
A∗ : Y ∗ → X∗ is an isomorphism too and (A∗)−1 = (A−1)∗ ([8, Lemma VI 3.7]).
The support functionals of a set M ⊆ X and of the set A(M) ⊂ Y are related as
follows:

Lemma 4 ([9, Lemma 1]). Let X , Y be Banach spaces, M a nonvoid closed

convex subset of X and A : X → Y an isomorphism. Then

(3) S(M) = A∗(S(A(M))).

More exactly

(4) g ∈ S(A(M)) ⇔ A∗g ∈ S(M).

Now we are in position to pass to:
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Proof of Theorem 1: First we construct an isomorphism A : c(X) → c(X)
in the following way. For an element x = (x(i) : 1 ≤ i ≤ ω) ∈ c(X) define
Ax : [1, ω]→ X by

(5) Ax(ω) = x(ω) +
∑

1≤j<ω

(−1)j2−j−2x(2j − 1)

and

(6)

Ax(i) = x(i) +
∑

1≤j≤2i

(−1)j2−j−2x(2j − 1)+

+2−i−1
∑

1≤j<ω

(−1)j2−jx(2i(2j − 1))

for 1 ≤ i < ω. Since the series in the right hand sides of the equalities (5) and
(6) are norm convergent and X is a Banach space, it follows that the definition
of Ax makes sense. Since

‖Ax(ω)− Ax(i)‖ ≤ ‖x(ω)− x(i)‖+ 2−i−1
∑

1≤j<ω

2−j‖x‖ =

= ‖x(ω)− x(i)‖ + 2−i−1‖x‖,

and limi→ω x(i) = x(ω), it follows that limi→ω Ax(i) = Ax(ω), i.e. Ax is an
element of c(X). Obviously the operator A : c(X)→ c(X) is linear. By (5) and
(6) we have

‖Ax(ω)‖ ≤ ‖x‖+ 2−2‖x‖ = (5/4)‖x‖

and, respectively,

‖Ax(i)‖ ≤ ‖x‖+ 2−2‖x‖+ 2−i−1‖x‖ ≤ (3/2)‖x‖

for 1 ≤ i < ω, implying

(7) ‖Ax‖ ≤ (3/2)‖x‖,

for all x ∈ c(X), which is equivalent to the continuity of the operator A.
Now let x ∈ c(X), x 6= 0, and let i0 ∈ [1, ω] be such that ‖x(i0)‖ = ‖x‖ :=

sup{‖x(i)‖ : 1 ≤ i ≤ ω}. If i0 = ω, then, by (5), ‖Ax‖ ≥ ‖Ax(ω)‖ ≥ ‖x(ω)‖ −
2−2‖x‖ = (3/4)‖x‖.
If 1 ≤ i0 < ω, then by (6)

‖Ax‖ ≥ ‖Ax(i0)‖ ≥ ‖x(i0)‖ − (2
−2 + 2−i−1)‖x‖ ≥ (1/2)‖x‖.

It follows that

(8) ‖Ax‖ ≥ (1/2)‖x‖,
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for all x ∈ c(X). The inequalities (7) and (8) show that A is an isomorphism of
c(X) onto c(X). Its conjugate A∗ will be an isomorphism of l1(X∗) onto l1(X∗)
acting by the formula

(9) A∗f(x) = f(Ax) =
∑

1≤i≤ω

fi(Ax(i)),

for f ∈ l1(X∗) and x ∈ c(X). Taking into account the formulae (5) and (6),
defining the operator A, one obtains

(10) fω(Ax(ω)) = fω(x(ω)) +
∑

1≤j<ω

(−1)j2−j−2fω(x(2j − 1))

and

(11)

fi(Ax(i)) = fi(x(i)) +
∑

1≤j≤2i

(−1)j2−j−2fi(x(2j − 1))+

+2−i−1
∑

1≤j<ω

(−1)j2−jfi(x(2
i(2j − 1))).

Let c0(X) denote the Banach space of all X-valued sequences converging to
zero. It follows that c0(X) = {x ∈ C([1, ω], X) : x(ω) = 0}. The spaces c(X)
and c0(X) are isomorphic, an isomorphism H : c(X)→ c0(X) being given by the
formula

(12) H(x) = (0|x(ω), x(1)− x(ω), x(2) − x(ω), . . . )

for x = (x(ω)|x(1), x(2), . . . ) ∈ c(X) (see [20, p. 55]). Its conjugate H∗ will be
an isomorphism of c0(X)

∗ onto c(X)∗. The conjugate c0(X)
∗ of c0(X) can be

identified with the space

W := {f ∈ l1([1, ω], X∗) : f = (fi : 1 ≤ i ≤ ω), fω = 0},

or equivalently

(13) W = {f ∈ l1([1, ω], X∗) : f = (0|f1, f2, . . . )},

normed by ‖f‖ =
∑
1≤i<ω ‖fi‖. The duality between c0(X) and W is given by

the formula

(14) f(y) =
∑

1≤i<ω

fi(y(i)),

for f = (0|f1, f2, . . . ) ∈ W and y = (0|y(1), y(2), . . . ) ∈ c0(X). Since for x =
(x(w)|x(1), x(2), . . . ) ∈ c(X) and f = (0|f1, f2, . . . ) ∈ W we have

H∗f(x) = f(Hx) = f((0|x(ω), x(1)− x(ω), x(2) − x(ω), . . . ))
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it follows that

(15) H∗f = (f1 −
∑

2≤j<ω

fj |f2, f3, . . . ).

Denote by Bc and Bc0 the closed unit balls of c(X) and c0(X) respectively,
and put

(16) V = (HA)−1(Bc0).

Since A and H are isomorphisms, it follows that V is a bounded symmetric
closed convex body in c(X). We shall show that the set V is antiproximinal in
c(X). To this end, by Lemma 2, it suffices to show that

(17) S(V ) ∩ S(Bc) = {0}.

Since, by (16), Bc0 = HA(V ) we have

(18) S(Bc0) = S(HA(V )).

By Lemma 4, S(V ) = {(HA)∗f : f ∈ S(HA(V ))} and therefore

(19) S(V ) = {(HA)∗f : f ∈ S(Bc0)}.

It follows that the relation (17) will be a consequence of the implication

(20) f ∈ S(Bc0) \ {0} ⇒ (HA)∗f /∈ S(Bc).

In order to prove (20) observe that f = (0|f1, f2, . . . ) ∈ c0(X)
∗, f 6= 0,

supports the unit ball Bc0 of c0(X) if and only if there exists n ∈ [1, ω[ such that
fi = 0 for i > n and fi ∈ S(BX ), for 1 ≤ i ≤ n, where BX denotes the closed
unit ball of the space X .
Now let f = (0|f1, . . . , fn, 0, . . . ), fn 6= 0, be a support functional of Bc0 and

let us show that (HA)∗f /∈ S(Bc).
First suppose n = 1, i.e. f = (0|f1, 0, . . . ) with f1 ∈ S(BX ), f1 6= 0. By (15),

H∗f = (f1|0, . . . ) so that, denoting g = A∗H∗f = (HA)∗f , formula (10) gives

g(x) = f1(x(ω)) +
∑

1≤j<ω

(−1)j2−j−2f1(x(2j − 1))

for all x ∈ c(X). For j = 2k and j = 2k − 1, 1 ≤ k < ω, one obtains g4k−1 =

2−2k−2f1 and g4k−3 = −22k−3f1, respectively, so that, by Lemma 3(b), g /∈
S(Bc).
If n ≥ 2 then

h := H∗f = (f1 −
∑

2≤i≤n

fi|f2, . . . , fn, 0, . . . ).

Taking into account formula (11) it follows that g = A∗h verifies

g2n−1(4k−3) = −2−2k+1−nfn and g2n−1(4k−1) = 2
−2k−nfn for all k ∈ [1, ω[ .

Appealing again to Lemma 3(b) it follows that g = A∗H∗f /∈ S(Bc).
Theorem 1 is completely proved. �
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[3] Cobzaş S., Antiproximinal sets in some Banach spaces, Math. Balkanica 4 (1974), 79–82.
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