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Periodic solutions for nonlinear Volterra

integrodifferential equations in Banach spaces

Dimitrios A. Kandilakis, Nikolaos S. Papageorgiou

Abstract. In this paper we examine periodic integrodifferential equations in Banach
spaces. When the cone is regular, we prove two existence theorems for the extremal
solutions in the order interval determined by an upper and a lower solution. Both
theorems use only the order structure of the problem and no compactness condition
is assumed. In the last section we ask the cone to be only normal but we impose a
compactness condition using the ball measure of noncompactness. We obtain the ex-
tremal solutions for both the Cauchy and periodic problems in a constructive way, using
a monotone iterative technique.

Keywords: extremal solutions, monotone map, regular cone, normal cone, quasi-mo-
notone map, reproducing cone, dual cone, differential inequality, monotone iterative
technique

Classification: 45J05

1. Introduction

In [5] Chen-Zhuang studied integrodifferential equations of the Volterra type
in a Banach space. They established the existence of solutions for the initial
value problem using a continuous vector field (continuous in all three variables),
a compactness condition involving the Hausdorff measure of noncompactness and
the method of upper and lower solutions. In this paper we extend the work of
Chen-Zhuang [5] in several ways. By strengthening the condition on the cone
of the underlying Banach space (from normal to regular), we are able to drop
the compactness condition and allow the vector field to have discontinuities in all
variables, in sharp contrast to the situation assumed in [5]. It seems to us, that our
setting is more natural, since after all one of the goals of the method of upper and
lower solutions, is to exploit the monotonicity structure of the problem in order
to relax the restrictive and often difficult to verify compactness conditions, stated
in terms of some measure of noncompactness. Of course our approach requires
an order structure on the underlying Banach space, which is also assumed in
Chen-Zhuang [5]. When the cone of the space has a nonempty interior, we are
able to weaken further our hypotheses on the vector field and assume only quasi-
monotonicity in the x-variable of the function f(t, x, y). Finally at the end of the
paper, we return to the case of the normal cone (considered by Chen-Zhuang [5])
and using a compactness condition, which is less restrictive than the one employed



284 D.A.Kandilakis, N.S. Papageorgiou

in [5] and a monotone iterative procedure, we are able to establish in a constructive
way the existence of extremal solutions and periodic solutions in the order interval
determined by an upper and a lower solution. At the same time, our work extends
the earlier results of Lakshmikantham [12], where X = R and the vector field
is continuous in all variables and satisfies an one sided Lipschitz condition. In
addition we extend corresponding results for ordinary differential equations in
Rn of Lakshmikantham-Leela [14]. Finally we should point out that multivalued
integrodifferential equations were recently considered by Papageorgiou [16] and
Avgerinos-Papageorgiou [2].

2. Preliminaries

Let X be a Banach space. By a “cone” on X we understand a closed, convex
set K ⊆ X such that λK ⊆ K for all λ ≥ 0 and K ∩ (−K) = {0}. To avoid
trivialities we will always assume that K 6= {∅}. Given a cone K, we define a
partial ordering ≤ with respect to K, by x ≤ y iff y − x ∈ K. A cone K is
said to be “normal” if there exists M > 0 such that for all 0 ≤ x ≤ y we have
‖x‖ ≤M‖y‖ (i.e. the norm of X is semimonotone). A cone K is said to be regular
if every increasing and order bounded sequence has a limit; i.e. if {xn}n≥1 ⊆ X

and y ∈ X satisfy x1 ≤ x2 ≤ · · · ≤ xn ≤ · · · ≤ y, then there exists x ∈ X

such that ‖xn − x‖ → 0 as n → ∞. A regular cone K is always normal, but
the converse is not in general true. For example let X = C[0, 1]. Then the
usual positive cone K = {x ∈ C[0, 1] : x(t) ≥ 0 for all t ∈ [0, 1]} has nonempty
interior, is normal but clearly is not regular. The dual cone K∗ ⊆ X∗ is defined
by K∗ = {x∗ ∈ X∗ : (x, x∗) ≥ 0 for all x ∈ K}, where by (., .) we denote the
duality brackets for the pair (X,X∗). Note that we call K∗ a cone although the
condition K∗ ∩ (−K∗) = {0} may not be satisfied. However if X = K −K (i.e.
K is generating), then K∗ ∩ (−K∗) = {0}. For details we refer to the book of
Guo-Lakshmikantham [8].
Let T = [0, b] and X a Banach space partially ordered by a normal cone K.

We consider the following Volterra integrodifferential periodic problem defined on
T ×X :

(1)

{
x′(t) = f(t, x(t), V (x)(t)) a.e. on T

x(0) = x(b).

}

Here V (.) is the usual Volterra integral operator defined by

V (x)(t) =
∫ t
0 G(t, s)x(s) ds for all t ∈ T . In what follows by AC1,1(T,X) we will

denote the space of all absolutely continuous functions x : T → X , whose deriv-
ative exists a.e. and is an L1(T,X) function. Recall (see Barbu [4, Theorem 2.2,
p. 19]) that AC1,1(T,X) = W 1,1(T,X) and if X has the Radon-Nikodym prop-
erty (RNP), then every absolutely continuous function is differentiable a.e. and

x(t) = x(t0) +
∫ t
t0
x′(s) ds for all 0 ≤ t0 ≤ t ≤ b (see Diestel-Uhl [7, p. 217]).
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Definition 2.1. A function ϕ ∈ AC1,1(T,X) is said to be an “upper solution”
of (1) if

ϕ′(t) ≥ f(t, ϕ(t), V (ϕ)(t)) a.e. on T, ϕ(0) ≥ ϕ(b).

A function ψ ∈ AC1,1(T,X) is said to be a “lower solution” of (1) if

ψ′(t) ≤ f(t, ψ(t), V (ψ)(t)) a.e. on T, ψ(0) ≤ ψ(b).

Now let us introduce our hypotheses on the data of (1).

H0: There exists an upper solution ϕ(.) and a lower solution ψ(.) of (1) such that
ψ(t) ≤ ϕ(t) for all t ∈ T .

H(f)1: f : T ×X ×X → X is a function s.t.

(i) for every x, y ∈ C(T,X) t→ f(t, x(t), y(t)) is strongly measurable;
(ii) there existM,N ∈ L1(T ) such that for almost all t ∈ T (x, y)→ f(t, x, y)+

M(t)x+N(t)y is nondecreasing on [ψ(t), ϕ(t)]×
[V (ψ)(t), V (ϕ)(t)]; and

(iii) f(., ψ(.), V (ψ)(.)), f(., ϕ(.), V (ϕ)(.)) ∈ L1(T,X).

Remark 2.1. Concerning hypothesis H(f)1(i) which is somewhat implicit, let us
indicate some classical situations for which it holds. If f(t, x, y) is a Caratheodory
function (i.e. is strongly measurable in t and continuous in (x, y) ∈ X ×X), then
H(f)1(i) is satisfied. The validity of H(f)1(i) is also guaranteed if X is separable
and f(t, x, y) is (L×B(X)×B(X)) measurable, with L being the Lebesgue σ-field
of T and B(X) the Borel σ-field of X .

H(G): G ∈ C(∆, R+) with ∆ = {(t, s) ∈ T × T : 0 ≤ s ≤ t ≤ b}.

Our existence results in Section 3, will be based on the following fixed point
theorem, essentially due to Amann [1]; see also Heikkila-Lakshmikantham-Sun
[10, Theorem 3.1].

Theorem 2.1. If V is a subset of an ordered Banach space Y , [ψ, ϕ] is a
nonempty order interval in V (i.e. [ψ, ϕ] = {y ∈ V : ψ ≤ y ≤ ϕ}) and
L(.) : [ψ, ϕ] → [ψ, ϕ] is a nondecreasing map such that for every nondecreas-
ing sequence {yn}n≥1 the sequence {L(yn)}n≥1 converges in V , then L(.) has the
least fixed point x∗ and the greatest fixed point x

∗ in [ψ, ϕ].

Remark 2.2. The fixed points x∗ and x
∗ are called “extremal fixed points” of

L in [ψ, ϕ].

3. Existence theorems for regular cones

In this section we present two existence theorems for problem (1), under the
hypothesis that the ordering cone K of the Banach space X is regular.
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Theorem 3.1. If K is regular and hypotheses H0, H(f)1 and H(G) hold, then
problem (1) has the extremal solutions x∗ and x

∗ in the order interval [ψ, ϕ] =
{y ∈ C(T,X) : ψ(t) ≤ y(t) ≤ ϕ(t) for all t ∈ T }; i.e. (1) has the greatest solution
x∗ and the smallest solution x∗ in [ψ, ϕ], in the sense that if x ∈ AC1,1(T,X) is
any solution of (1) in [ψ, ϕ], then x∗(t) ≤ x(t) ≤ x∗(t) for all t ∈ T .

Proof: Consider the ordered Banach space C(T,X) × X with positive cone
K1 = C(T,K) × K (here C(T,K) = {x ∈ C(T,X) : x(t) ∈ K for all t ∈ T }).
In C(T,X)×X we consider the order interval V × V0, where V = [ψ, ϕ] = {y ∈
C(T,X) : ψ(t) ≤ y(t) ≤ ϕ(t) for all t∈ T } and V0 = [ψ(0), ϕ(0)] = {u ∈ X :
ψ(0) ≤ u ≤ ϕ(0)}. Given (y, y0) ∈ V × V0, consider the following initial value
problem:

(2)






x′(t) +M(t)x(t) +N(t)V (x)(t) = f(t, y(t), V (y)(t))+

+M(t)y(t) +N(t)V (y)(t) a.e. on T

x(0) = y0.






Problem (2) has a solution (see for example Papageorgiou [15]) and the solution
is clearly unique. Denote this solution by L(y, y0) ∈ C(T,X).

Claim #1: L(V × V0) ⊆ V .

To this end, let (y, y0) ∈ V × V0 and x = L(y, y0). We have:

(3)






−x′(t)−M(t)x(t)−N(t)V (x)(t) = −f(t, y(t), V (y)(t))−

−M(t)y(t)−N(t)V (y)(t) a.e. on T

x(0) = y0.






Also since ψ(.) is by hypothesis a lower solution, we have:

(4)

{
ψ′(t) ≤ f(t, ψ(t), V (ψ)(t)) a.e. on T

ψ(0) ≤ ψ(b).

}

Adding (3) and (4) above and letting u = ψ − x ∈ AC1,1(T,X) we obtain:

(3.1)






u′(t) ≤ f(t, ψ(t), V (ψ)(t)) − f(t, y(t), V (y)(t))−

−M(t)y(t)−N(t)V (y)(t) +M(t)x(t) +N(t)V (x)(t) a.e. on T

u(0) ≤ 0.






hence

(3.2)






u′(t) ≤ f(t, ψ(t), V (ψ)(t)) +M(t)ψ(t) +N(t)V (ψ)(t)

−f(t, y(t), V (y)(t)) −M(t)y(t)−N(t)V (y)(t)

−M(t)u(t)−N(t)V (u)(t) a.e. on T

u(0) ≤ 0.
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From hypothesis H(f)1(ii), it follows that





u′(t) ≤ −M(t)u(t)−N(t)

∫ t

0
G(t, s)u(s) ds a.e. on T

u(0) ≤ 0.






Given x∗ ∈ K∗, let u(x∗)(t) = (x∗, u(t)). Then we have:





u′(x∗)(t) ≤ −M(t)u(x∗)(t)−N(t)

∫ t

0
G(t, s)u(x∗)(s) ds a.e. on T

u(x∗)(0) ≤ 0.






Using a classical differential inequality (see for example Hale [9, Theorem 6.1.
p. 31]), we deduce that u(x∗)(t) ≤ 0 for all t ∈ T . Since x∗ ∈ K∗ was arbitrary,
it follows that u(t) ≤ 0 in X (i.e. u(t) ∈ −K for all t ∈ T ). So ψ(t) ≤ x(t) for
all t ∈ T . In a similar way, we can show that x(t) ≤ ϕ(t) for all t ∈ T . Therefore
L(V × V0) ⊆ V as claimed.

Claim #2: L(., .) is increasing on V × V0.

Let (y1, y
1
0), (y2, y

2
0) ∈ V × V0 and assume that y1 ≤ y2 in C(T,X) (for the

cone C(T,K)) and y10 ≤ y20 in K (i.e. (y1, y
1
0) ≤ (y2, y

2
0) in C(T,X)×X for the

cone K1 = C(T,K)×K). Set x1 = L(y1, y
1
0) and x2 = L(y2, y

2
0). We have:

(5)

{
x′1(t) +M(t)x1(t) +N(t)V (x1)(t) =

f(t, y1(t), V (y1)(t)) +M(t)y1(t) +N(t)V (y1)(t) a.e. on T.

}

and

(6)

{
−x′2(t)−M(t)x2(t)−N(t)V (x2)(t) =

−f(t, y2(t), V (y2)(t)) −M(t)y2(t)−N(t)V (y2)(t) a.e. on T.

}

Adding (5) and (6) above and setting w = x1 − x2 we obtain:

w′(t) +M(t)w(t) +N(t)V (w)(t) = f(t, y1(t), V (y1)(t)) +M(t)y1(t)

+N(t)V (y1)(t)− f(t, y2(t), V (y2)(t))−M(t)y2(t)−N(t)V (y2)(t) a.e. on T.

Using hypothesis H(f)1(ii) (recall that y1 ≤ y2 in C(T,X) and y
1
0 ≤ y20 in X),

we have

(7) w′(t) ≤ −M(t)w(t)−N(t)V (w)(t) a.e. on T, w(0) ≤ 0.

From (7), arguing as in Claim #1, we deduce that w(t) ≤ 0 for all t ∈ T and
so x1(t) ≤ x2(t) for all t ∈ T . Thus L(., .) is increasing on V × V0 as claimed.
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Now let {(yn, yn
0 )}n≥1 ⊆ V × V0 be an increasing sequence and set xn =

L(yn, y
n
0 ). From Claims #1 and #2 it follows that {xn}n≥1 is an increasing

sequence in V . Since by hypothesis K is regular, it follows that for every t ∈ T ,
there exists x(t) ∈ [ψ(t), ϕ(t)] such that xn(t) → x(t) in X as n → ∞. Also
because of hypothesis H(f)1(ii) and since xn ∈ V , n ≥ 1, we have for a.a. t ∈ T

x′n(t) = f(t, yn(t), V (yn)(t)) +M(t)yn(t) +N(t)V (yn)(t)

−M(t)xn(t)−N(t)V (xn)(t)

≤ f(t, ϕ(t), V (ϕ)(t)) +M(t)ϕ(t) +N(t)V (ϕ)(t)

−M(t)ψ(t)−N(t)V (ψ)(t) = h(t)

and

x′n(t) ≥ f(t, ψ(t), V (ψ)(t)) +M(t)ψ(t) +N(t)V (ψ)(t)

−M(t)ϕ(t)−N(t)V (ϕ)(t) = ĥ(t).

Therefore for every n ≥ 1, ĥ(t) ≤ x′n(t) ≤ h(t) a.e. on T and by virtue of

hypothesis H(f)(iii) we know that ĥ, h ∈ L1(T,X). Then 0 ≤ x′n(t) − ĥ(t) ≤

h(t)− ĥ(t) a.e. on T and since K is regular, thus normal in particular, there exists
γ > 0 such that

‖x′n(t)− ĥ(t)‖ ≤ γ‖h(t)− ĥ(t)‖ a.e. on T

and so
‖x′n(t)‖ ≤ ‖ĥ(t)‖ + γ‖h(t)− ĥ(t)‖ = ξ(t) a.e. on T

with ξ ∈ L1(T ). Thus for every n ≥ 1 and every 0 ≤ s ≤ t ≤ b, we have

‖xn(t)− xn(s)‖ ≤

∫ t

s

‖x′n(τ)‖dτ ≤

∫ t

s

ξ(τ) dτ,

from which it follows that {xn}n≥1 ⊆ C(T,X) is equicontinuous. Since we already
know that xn(t)→ x(t) in X as n→ ∞, from the Arzela-Ascoli theorem it follows
that xn → x in C(T,X) as n→ ∞, x ∈ [ψ, ϕ] = V . Now let R : V ×V0 → V ×V0
be defined by R = êb◦L, where êb : V → V×V0 is given by êb(x) = (x, x(b)). Using
Theorem 1, we infer that R has the extremal fixed points in V × V0. Evidently
these are the extremal solutions of (1) in the order interval V = [ψ, ϕ]. �

Remark 3.1. Note that if K is normal and the Banach space X is weakly
complete, then K is regular. Indeed, let {yn}n≥1 be an increasing and order
bounded sequence in X . Then for every x∗ ∈ K∗ {(x∗, yn)}n≥1 is an increasing
and bounded sequence in R, thus a Cauchy sequence in R. But from Krein’s
theorem we know that the normality of K implies that K∗ is generating (i.e.
X∗ = K∗ − K∗). So for all x∗ ∈ X∗ {(x∗, yn)}n≥1 is a Cauchy sequence in
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R and so {yn}n≥1 is weakly Cauchy in X . Because X is by hypothesis weakly

complete, we have that yn
w
→ y in X as n → ∞. By Mazur’s lemma we can find

{λk
n}

mn

k=0 ⊆ [0, 1],
mn∑

k=0
λk

n = 1 such that if zn =
mn∑

k=0
λk

nyn+k, then zn → y in X as

n→ ∞. Therefore for i ≥ n+mn we have zn ≤ yi ≤ y and so 0 ≤ y−yi ≤ y−zn.
Using the normality of K we can find γ > 0 such that ‖y − yi‖ ≤ γ‖y − zn‖ and
so we conclude that yn → y in X as n→ ∞.

We can weaken further our hypotheses on f(t, x, y), if we assume that intK 6= ∅
(i.e. K is a solid cone). First a definition:

Definition 3.1. A map g : X → X is said to be “quasi-monotone with respect
to K” if “x ≤ y, x∗ ∈ K∗ and (x∗, y − x) = 0 imply (x∗, g(x)− g(y)) ≤ 0”.

Remark 3.2. If X = RN , then Coppel [6] calls a quasi-monotone map “func-
tion of type K” (after Kamke who was the first to introduce and use this class
of functions). Note that any scalar function is trivially quasi-monotone. A vec-
tor function g = (g1, g2) of two variables (x, y) is quasi-monotone iff g1 is an
increasing function of x2 and g2 is an increasing function of x1.

The new hypotheses on the vector field f(t, x, y) are the following:

H(f)2: f : T ×X ×X → X is a function such that

(i) for every y ∈ C(T,X) such that V (ψ)(t) ≤ y(t) ≤ V (ϕ)(t) for all t ∈ T ,
t→ f(t, x, V (y)(t)) is strongly measurable;

(ii) for almost all t ∈ T and all x, y ∈ X , f(t, ., y) is quasi-monotone and
increasing and f(t, x, .) is increasing;

(iii) ‖f(t, x, y) − f(t, x′, y)‖ ≤ k(t)‖x − x′‖ for almost all t ∈ T , all y ∈
[V (ψ)(t), V (ϕ)(t)], with k ∈ L1(T ); and

(iv) f(., 0, V (ψ)(.)), f(., 0, V (ϕ)(.)) ∈ L1(T,X).

In the proof of our second existence theorem we will need the following com-
parison principle due to Redheffer-Walter [17, Theorem 6].

Proposition 3.2. If intK 6= ∅ and g : T ×X → X is a function such that

(i) ‖g(t, x) − g(t, y)‖ ≤ k(t)‖x − y‖ for almost all t ∈ T , all x, y in X with
k ∈ L1(T ); and

(ii) for almost all t ∈ T g(t, .) is quasi-monotone increasing,

then if x, y ∈ AC1,1(T,X) satisfy x′(t) − g(t, x(t)) ≤ y′(t) − g(t, y(t)) a.e. on T
and x(0) ≤ y(0), we have x(t) ≤ y(t) for all t ∈ T .

Using the above comparison principle, we can prove the following existence
theorem for problem (1):

Theorem 3.3. If K is regular, intK 6= ∅ and hypotheses H0, H(f)2 and H(G)
hold, then problem (1) has its extremal solutions in the order interval [ψ, ϕ].

Proof: Let V = [ψ, ϕ] = {y ∈ C(T,X) : ψ(t) ≤ ϕ(t) for all t ∈ T } and
V0 = [ψ(0), ϕ(0)] = {y ∈ X : ψ(0) ≤ y ≤ ϕ(0)}. Given (y, y0) ∈ V × V0, consider
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the following initial value problem:

(8)

{
x′(t) = f(t, x(t), V (y)(t)) a.e. on T

x(0) = y0.

}

Because of hypothesis H(f)2, problem (8) has a unique solution x = L(y, y0) (see
for example Lakshmikantham-Leela [14]).

Claim #1: L(V × V0) ⊆ V .

Indeed let (y, y0) ∈ V × V0 and let x = L(y, y0). We have

(9) −x′(t) = −f(t, x(t), V (y)(t)) a.e. on T, x(0) = y0 ≥ ψ(0)

and

(10) ψ′(t) ≤ f(t, ψ(t), V (ψ)(t)) a.e. on T, ψ(0) ≤ ψ(b)

Adding (9) and (10) we obtain that

(11)

ψ′(t)− x′(t) ≤ f(t, ψ(t), V (ψ)(t)) − f(t, x(t), V (y)(t))

= f(t, ψ(t), V (ψ)(t)) − f(t, x(t), V (ψ)(t))

+ f(t, x(t), V (ψ)(t)) − f(t, x(t), V (y)(t))

≤ f(t, ψ(t), V (ψ)(t)) − f(t, x(t), V (ψ)(t)) a.e. on T

(see hypothesis H(f)2(ii)). Let g(t, z) = f(t, z, V (ψ)(t)). By virtue of hypoth-
esis H(f)2(i) t → g(t, z) is strongly measurable, while from hypothesis H(f)2(ii)
and (iii) it follows that z → g(t, z) is Lipschitz continuous and quasi-monotone
nondecreasing. Moreover from (11) we have that

ψ′(t)− g(t, ψ(t)) ≤ x′(t)− g(t, x(t)) a.e. on T, ψ(0) ≤ x(0).

Applying Proposition 3.2 we obtain that ψ(t) ≤ x(t) for all t ∈ T . In a similar
manner, we can also show that x(t) ≤ ϕ(t) for all t ∈ T . Therefore L(V ×V0) ⊆ V

as claimed.

Claim #2: L(., .) is increasing on V × V0.

Let (y1, y
1
0), (y2, y

2
0) ∈ V × V0 and assume that y1 ≤ y2 and y

1
0 ≤ y20. Let

x1 = L(y1, y
1
0) and x2 = L(y2, y

2
0). We have:

x′1(t) = f(t, x1(t), V (y1)(t)) a.e. on T, x1(0) = y
1
0,(12)

−x′2(t) = −f(t, x2(t), V (y2)(t)) a.e. on T, x2(0) = y
2
0.(13)

Adding (12) and (13) and after some simple algebra as before, we obtain:

(14)

{
x′1(t)− x′2(t) ≤ f(t, x1(t), V (y1)(t))− f(t, x1(t), V (y2)(t)) a.e. on T

x1(0) ≤ x2(0).

}

Setting g(t, z) = f(t, z, V (y1)(t)) and using Proposition 3.2, from (14) we infer
that x1(t) ≤ x2(t) for all t ∈ T . So L(., .) is increasing on V × V0.
The rest of the proof is almost identical with that of Theorem 3.1, with only

some trivial changes. �
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Remark 3.3. (a) If f(t, x, y) satisfies the one sided Lipschitz condition

f(t, x, y)− f(t, x′, y′) ≥ −M(t)(x− x′)−N(t)(y − y′)

for almost all t ∈ T , all ψ(t) ≤ x′ ≤ x ≤ ϕ(t), all V (ψ)(t) ≤ y′ ≤ y ≤ V (ϕ)(t)
and with M,N ∈ L1(T ), then hypothesis H(f)1(ii) is satisfied. This is the situa-
tion assumed in Chen-Zhuang [5], where moreover M,N are taken to be positive
constants. Recall that in [5], f ∈ C(T ×X ×X,X).

(b) A careful reading of the proofs of Theorems 3.1 and 3.3, reveals that
our approach can also handle the case of a nonlinear Volterra integral operator

V (x)(t) =
∫ t
0 G(t, s, x(s)) ds, provided we assume the following about G(t, s, x):

“G ∈ C(∆×X,X) and for every (t, s) ∈ ∆ = {(t, s) : 0 ≤ s ≤ t ≤ b}
G(t, s, .) is nondecreasing”.

This way we generalize the work of Pachpatte [15], where X = RN , f(t, x, .)
is nondecreasing and in the x-variable satisfies the one sided Lipschitz condition
f(t, x, y) − f(t, x′, y) ≥ −M(t)(x − x′) for all ψ(t) ≤ x′ ≤ x ≤ ϕ(t) and with
M > 0. Pachpatte also assumes that f ∈ C(T ×X ×X,X).

4. Monotone iterative techniques

In this section we drop the regularity hypothesis on the cone K, at the expense
of introducing a compactness condition involving the Hausdorff (ball) measure
of noncompactness and we develop a monotone iterative method generating the
extremal solutions in [ψ, ϕ] for both the Cauchy and the periodic problems.
So let T = [0, b] and let X be an ordered Banach space with a normal ordering

cone K. We start with the Cauchy (initial value) problem:

(15)

{
x′(t) = f(t, x(t), V (x)(t)) a.e. on T

x(0) = x0.

}

The hypotheses on the vector field f(t, x, y) are the following:

H(f)3: f : T ×X ×X → X is a function such that

(i) for all x, y ∈ C(T,X), t → f(t, x(t), y(t)) is strongly measurable and
(x, y)→ f(t, x, y) is continuous;

(ii) there exist functions M,N ∈ L1(T ) such that for almost all t ∈ T

the function (x, y) → f(t, x, y) + M(t)x + N(t)y is nondecreasing on
[ψ(t), ϕ(t)] × [V (ψ)(t), V (ϕ)(t)];

(iii) β(f(t, B1, B2)) ≤ k(t)(β(B1) + β(B2)) a.e. on T for all B1, B2 ⊆ X

nonempty and bounded, with k ∈ L1(T ) (here β(.) is the ball measure
of noncompactness); and

(iv) f(., ψ(.), V (ψ)(.)), f(., ϕ(.), V (ϕ)(.)) ∈ L1(T,X).
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Remark 4.1. Recall that for every B ⊆ X nonempty and bounded, β(B) =
inf[r > 0;B can be covered by finitely many balls of radius r]. For the properties
of β(.) see Banas-Goebel [3].

Theorem 4.1. If hypotheses H0, H(f)3 and H(G) hold, then problem (15) has its
extremal solutions in the order interval [ψ, ϕ] and these solutions can be obtained
by a monotone iterative process.

Proof: As in the proof of Theorem 3.1, given y ∈ V = [ψ, ϕ], we consider the
Cauchy problem:

(16)






x′(t) = f(t, y(t), V (y)(t))−M(t)(x(t) − y(t))

−N(t)(V (x− y)(t)) a.e. on T

x(0) = x0.






Let L1(y) be the unique solution of (16). From the proof of Theorem 3.1 we know
that L1(V ) ⊆ V and L1(.) is nondecreasing on V . Now let x0 = ψ and define xn =
L1(xn−1) for n ≥ 1. Then {xn}n≥1 is a nondecreasing sequence in [ψ, ϕ] and from
the proof of Theorem 3.1 we also know that {xn}n≥1 ⊆ C(T,X) is equicontinuous.
So if u(t) = β({xn(t)}n≥1), t ∈ T , then u(.) ∈ C(T ). Also, by hypothesis H(f)3(i)
for every n ≥ 1 t → f(t, xn−1(t), V (xn−1)(t)) is strongly measurable. So by
the Pettis measurability theorem (see Diestel-Uhl [7, Theorem 2, p. 42]), we may
assume in what follows, without loss of generality, that X is separable. For every
n ≥ 1 and every t ∈ T we have:

xn(t) = x0 +

∫ t

0
f(s, xn−1(s), V (xn−1)(s)) ds

−

∫ t

0
M(s)(xn(s)− xn−1(s)) ds−

∫ t

0
N(s)

∫ t

0
G(s, τ)(xn(τ)− xn−1(τ)) dτ ds.

Using the properties of β(.) and Lemma 2.2 of Kisielewisz [11], we obtain:

u(t) ≤

∫ t

0
k(s)(u(s) + ξ

∫ s

0
u(τ) dτ) ds

+

∫ t

0
2M(s)u(s) ds+

∫ t

0
2ξN(s)

∫ s

0
u(τ) dτ ds

where ξ = sup[G(t, s) : (t, s) ∈ ∆]. Therefore

u(t) ≤

∫ t

0
(k(s) + 2M(s))u(s) ds+

∫ t

0
(ξk(s) + 2ξN(s))

∫ s

0
u(τ) dτ ds, t ∈ T.

Invoking Theorem 1 of Pachpatte [15] we conclude that u(t) = 0 for all t ∈ T .

So for every t ∈ T {xn(t)}n≥1 is compact in X . Thus from the Arzela-Ascoli
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theorem it follows that {xn}n≥1 ⊆ C(T,X) is relatively compact and since we
know that this sequence is monotone, we deduce that xn → x∗ in C(T,X) as
n→ ∞. Observe that by virtue of hypotheses H(f)3(i) and (iii) and the dominated
convergence theorem, in the limit as n→ ∞, we have

x∗(t) = x0 +

∫ t

0
f(s, x∗(s), V (x∗)(s)) ds for all t ∈ T

and so
x′∗(t) = f(s, x∗(s), V (x∗)(s)), x∗(0) = x0,

i.e. x∗ is a solution of (15). We claim that x∗ is the least solution in the order
interval [ψ, ϕ]. Indeed if x ∈ [ψ, ϕ] is another solution of (15), then L1(x) = x

and from the monotonicity of L1(.) we have that x1 = L1(ψ) ≤ L1(x) = x and
by a trivial induction xn ≤ L1(x) = x for all n ≥ 1. Hence in the limit as n→ ∞
x∗ ≤ x.
Similarly if z0 = ϕ and zn = L1(zn−1), n ≥ 1, we obtain a nonincreasing

sequence {zn}n≥1 ⊆ V = [ψ, ϕ]. Arguing as above we can show that zn → x∗ in
C(T,X) as n→ ∞ and x∗ is the greatest solution of (15) in [ψ, ϕ]. �

We will prove an analogous result for the periodic problem. We will need the
following stronger hypotheses:

H(f)4: f : T ×X ×X → X is a continuous function such that

(i) there exist M,N > 0 such that (x, y) → f(t, x, y) +Mx − Ny is nonde-
creasing on [ψ(t), ϕ(t)] × [V (ψ)(t), V (ϕ)(t)]; and

(ii) β(f(t, B1, B2)) ≤ k(t)(β(B1) + β(B2)) a.e. on T for all B1, B2 ⊆ X

nonempty and bounded and with k ∈ L1(T ).

H1: hypothesis H0 is satisfied with ψ, ϕ ∈ C1(T,X).

Remark 4.2. Because of hypotheses H(f)4, a solution x(.) of (1) belongs in
C1(T,X).

Theorem 4.2. If hypotheses H(f)4, H1, H(G) hold, [ψ(0), ϕ(0)] is weakly com-

pact in X and Nξb
M

< 1 where ξ = sup[G(t, s) : (t, s) ∈ ∆], then problem (1)
has its extremal solutions in the order interval [ψ, ϕ] and these solutions can be
obtained by a monotone iterative process.

Proof: Given y ∈ V = [ψ, ϕ] = {y ∈ C(T,X) : ψ(t) ≤ y(t) ≤ ϕ(t) for all t ∈ T }
consider the following periodic problem:

(17)






x′(t) +Mx(t)−NV (x)(t) = f(t, y(t), V (y)(t))

+My(t)−NV (y)(t) for all t ∈ T

x(0) = x(b).
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From Theorem 3.1 we know that problem (17) has at least one solution x ∈
C1(T,X), x ∈ V = [ψ, ϕ]. We claim that this solution is unique. To see this let
x1, x2 ∈ C1(T,X) be two solutions of (17) in [ψ, ϕ]. Then if u = x1−x2 we have:

{
u′(t) = −Mu(t) +NV (u)(t) for all t ∈ T

u(0) = u(b).

}

For every x∗ ∈ X∗ let u(x∗)(t) = (x∗, u(t)). Then we have:

{
u′(x∗)(t) = −Mu(x∗)(t) +NV (u(x∗))(t) for all t ∈ T

u(x∗)(0) = u(x∗)(b).

}

Let x∗ ∈ X∗ be fixed but arbitrary. Suppose that there exists t0 ∈ T and m > 0
such that

u(x∗)(t0) = m and u(x
∗)(t0) ≤ m for all t ∈ T.

If t ∈ (0, b], then u′(x∗)(t0) ≥ 0 so we have:

0 ≤ u′(x∗)(t0) = −Mm+N

∫ t0

0
G(t0, s)u(x

∗)(s) ds

≤ −Mm+Nξbm < 0,

since by hypothesis Nξb
M < 1. If t0 = 0, then u(x

∗)(0) = u(x∗)(b) = m so

0 ≤ u′(x∗)(b) = −Mm+N

∫ b

0
G(b, s)u(x∗)(s) ds

≤ −Mm+Nξbm < 0.

So in both cases we have a contradiction, which of course means that u(x∗)(t) ≤ 0
for all t ∈ T . Since x∗ ∈ X∗ was arbitrary, we conclude that x1(t) = x2(t), i.e.
the solution of (17) in V = [ψ, ϕ] is unique.
Let L : V → V be the map which to each y ∈ V = [ψ, ϕ] assigns the unique

solution L(y) ∈ V = [ψ, ϕ] of (17). We claim that L(.) is nondecreasing on V . To
this end let y1, y2 ∈ V , y1 ≤ y2 and let x1 = L(y1), x2 = L(y2). If u = x1 − x2,
using hypothesis H(f)4(i), we see that

{
u′(t) ≤ −Mu(t) +NV (u)(t) for all t ∈ T

u(0) = u(b).

}

If x∗ ∈ X∗ and u(x∗)(t) = (x∗, u(t)), then we have:

{
u′(x∗)(t) ≤ −Mu(x∗)(t) +NV (u(x∗))(t) for all t ∈ T

u(x∗)(0) = u(x∗)(b).

}
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With the same argument that we used above to establish the uniqueness of the
solution of (17), we get that u(x∗)(t) ≤ 0 for all t ∈ T . Since x∗ ∈ X∗ was
arbitrary, we conclude that u(t) ≤ 0, hence x1(t) ≤ x2(t) for all t ∈ T . This
proves that L(.) is nondecreasing as claimed.
Now let x0 = ψ and xn = L(xn−1), n ≥ 1. Then {xn}n≥1 ⊆ C1(T,X) is

nondecreasing. Also note that for every x∗ ∈ K∗, {(x∗, xn(0))}n≥1 is increasing
and bounded in R, hence it is Cauchy in R. Since K∗ is generating (K being
normal), we infer that {(x∗, xn(0))}n≥1 is Cauchy in R for all x

∗ ∈ X∗. Because

by hypothesis V0 = [ψ(0), ϕ(0)] is weakly compact in X , we deduce that xn(0)
w
→

v0 ∈ V0 as n → ∞. Arguing as in the remark 3.1 via Mazur’s lemma and the
normality of K, we have that xn(0)→ v0 in X as n→ ∞. So β({xn(0)}n≥1) = 0.
Also as in the proof of Theorem 3.1, we can check that {xn}n≥1 is equicontinuous
and so u(t) = β({xn(t)}n≥1) belongs in C(T,R). Then using Lemma 2.2 of
Kisielewisz [11] and standard properties of β(.), we obtain that

u(t) ≤M1

∫ t

0
u(s) ds+N1

∫ t

0

∫ s

0
u(τ) dτ ds

for some M1, N1 > 0. Invoking Pachpatte’s inequality [15], we conclude that
u(t) = 0 for all t ∈ T . So by the Arzela-Ascoli theorem {xn}n≥1 is relatively
compact in C(T,X). Since it is also monotone, we have that xn → x∗ in C(T,X)
as n → ∞. It is easy to see that x∗ solves problem (1) and as in the proof of
Theorem 4.1, we can check that x∗ is the least solution of (1) in V = [ψ, ϕ].
Similarly, if we consider the nonincreasing sequence z0 = ϕ and zn = L(zn−1),

n ≥ 1, we can show that zn → x∗ in C(T,X) as n → ∞ and x∗ is the greatest
solution of (1) in V = [ψ, ϕ]. �
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