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Landesman Lazer type results

for first order periodic problems

Donal O’Regan

Abstract. Existence of nonnegative solutions are established for the periodic problem
y′ = f(t, y) a.e. on [0, T ], y(0) = y(T ). Here the nonlinearity f satisfies a Landesman
Lazer type condition.

Keywords: periodic, existence, Landesman Lazer

Classification: 34A05, 34A12

1. Introduction

This paper discusses the nonlinear first order differential equation

(1.1)

{

y′ = f(t, y) a.e. on [0, T ],

y(0) = y(T ),

where f : [0, T ]×R → R is a L1-Carathéodory function. By placing a Landes-
man Lazer type inequality on our nonlinearity f we will establish the existence of
nonnegative solutions to (1.1). Of course analogue results could be obtained for
nonpositive solutions. The periodic problem (1.1) has been studied by many au-
thors; see [2]–[4, [6], [7] and their references. In [6] the method of upper and lower
solutions to (1.1) was discussed. Landesman Lazer type results were obtained in
[4], [7]; for example in [7] it is shown that if

(H1)

{

lim infx→∞ f(t, x) ≥ 0 a.e. with strict inequality on a subset

of [0, T ] of positive measure

and

(H2)











there exist α ∈ L2[0, T ], β ∈ L1[0, T ], α ≥ 0 a.e. with α > 0

on a subset of [0, T ] of positive measure such that

β(t) ≤ f(t, y) ≤ α(t)y for a.e. t ∈ [0, T ] and all y ≥ 0

are satisfied then (1.1) has a nonnegative solution. In this paper by placing less
restrictive conditions on the nonlinearity f we are able to obtain a new existence
result for (1.1). The proof is based on a technique initiated by Mawhin and
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Ward [5] in the early 1980’s for resonant second order periodic problems. We first
prove a result (Theorem 2.1) which can be established from previous results in
the literature [4, Chapter 6, p. 71]. However here we provide a new and different
proof (our proof also avoids the technicalities associated with guiding functions);
the main reason for giving a new proof is that a major part of the reasoning
used in the proof of Theorem 2.1 can be used to prove Theorem 2.2 (our new
existence result). Our proof of Theorem 2.1 avoids the technicalities associated
with guiding functions [4].
To conclude this introduction we state a well known existence principle [2].

First however recall a function f : [0, T ]×R→ R is said to be a L1-Carathéodory
function if

(a) the map u→ f(t, u) is continuous for almost all t ∈ [0, T ],

(b) the map t→ f(t, u) is measurable for all u ∈ R,

(c) for a given r > 0 there exists hr ∈ L1[0, T ] such that |u| ≤ r implies
|f(t, u)| ≤ hr(t) for almost all t ∈ [0, T ].

Theorem 1.1. Let f : [0, T ]×R → R be a L1-Carathéodory function and let

q ∈ L1[0, T ] be such that e
R T

0
q(s) ds 6= 1. Assume that there exists a constantM0,

independent of λ, with |y|0 = sup[0,T ] |y(t)| ≤M0, for any solution y to

(1.1)λ

{

y′ − q(t)y = λ[f(t, y)− q(t)y] a.e. on [0, T ],

y(0) = y(T )

for 0 < λ < 1. Then (1.1) has a solution y ∈ C[0, T ].

Remark. By a solution to (1.1)λ we mean a function y ∈ C[0, T ]∩AC[0, T ] which
satisfies the differential equation in (1.1)λ a.e. on [0, T ] and y(0) = y(T ).

2. Existence theory

Various existence results are established for the periodic problem (1.1) in this
section. We restrict our discussion to the existence of nonnegative solutions.

Theorem 2.1. Assume f : [0, T ] ×R → R is a L1-Carathéodory function. In
addition suppose the following conditions are satisfied:

(2.1) f(t, 0) ≤ 0 for a.e. t ∈ [0, T ],

(2.2) f(t, y) = g(t, y)y + h(t, y) + r(t) for a.e. t ∈ [0, T ] and all y ≥ 0,

(2.3)
|h(t, y)| ≤ φ1(t)y

α + φ2(t) for a.e. t ∈ [0, T ] and y ≥ 0 ;

here 0 ≤ α < 1,
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(2.4) φ1, φ2, r ∈ L2[0, T ],

(2.5)











there exist β, τ ∈ L2[0, T ] with β(t) ≤ g(t, y)y ≤ τ(t)y for

a.e. t ∈ [0, T ] and all y ≥ 0 ; here τ ≥ 0 a.e. on [0, T ] and τ > 0

on a subset of [0, T ] of positive measure,

there exists ρ ∈ L1[0, T ] with h(t, y) ≥ ρ(t)(2.6)

for a.e. t ∈ [0, T ] and y ≥ 0

and

(2.7)

∫ T

0
[−r(t)] dt <

∫ T

0
lim inf
x→∞

[g(t, x)x] dt +

∫ T

0
lim inf
x→∞

[h(t, x)] dt.

Then (1.1) has a nonnegative solution in C[0, T ] ∩AC[0, T ].

Proof: Consider the family of problems

(2.8)λ

{

y′ − τ y = λ[f⋆(t, y)− τ y] a.e. on [0, T ],

y(0) = y(T ),

where 0 < λ < 1, τ is as in (2.5) and

f⋆(t, y) =

{

f(t, 0) + y, y < 0

f(t, y), y ≥ 0.

We will show that any solution y of (2.8)λ satisfies

(2.9) y(t) ≥ 0 for t ∈ [0, T ].

Let y be a solution of (2.8)λ. Suppose y has a negative global minimum at
t0 ∈ [0, T ]. Because of the periodicity we may assume t0 ∈ [0, T ). Now there
exists t1 > t0 with y(t) < 0 on [t0, t1] and y(t) ≥ y(t0) for t ∈ [t0, t1]. Then

0 ≤ y(t1)− y(t0) =

∫ t1

t0

[λf⋆(t, y) + (1− λ)τ y] dt

=

∫ t1

t0

[λf(t, 0) + (1− λ)τ y + λ y] dt < 0,

a contradiction. Thus (2.9) is true.

Remark. The above argument also shows that any solution to (2.8)1 is nonnega-
tive.
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Next we claim that there exists a constant M0 with

(2.10) |y|0 = sup
[0,T ]

y(t) ≤M0

for any solution y to (2.8)λ. If this is not true then there exists a sequence (λn)
in (0, 1) and a sequence (yn) (here yn ∈ C[0, T ] ∩ AC[0, T ] and yn(0) = yn(T ))
with

(2.11) y′n − τ yn = λn[f(t, yn)− τ yn] a.e. on [0, T ]

and

(2.12) |yn|0 → ∞.

From (2.11) we have

y′n − (1 − λn)τ yn = λn[g(t, yn)yn + h(t, yn) + r(t)] a.e. on [0, T ].

Integrate from 0 to T to obtain

∫ T

0
[g(t, yn)yn + h(t, yn) + r(t)] dt = −

(1− λn)

λn

∫ T

0
τ(t) yn dt ≤ 0

and so
∫ T

0
[−r(t)] dt ≥

∫ T

0
[g(t, yn)yn + h(t, yn)] dt.

This together with the fact that lim inf(sn + tn) ≥ lim inf(sn) + lim inf(tn) for
sequences sn and tn yields

(2.13)

∫ T

0
[−r(t)] dt ≥ lim inf

n→∞

∫ T

0
g(t, yn)yn dt+ lim inf

n→∞

∫ T

0
h(t, yn) dt.

Notice g(t, yn)yn ≥ β(t) a.e. and h(t, yn) ≥ ρ(t) a.e. so we may apply Fatou’s
lemma to obtain

(2.14)

∫ T

0
[−r(t)] dt ≥

∫ T

0
lim inf
n→∞

[g(t, yn)yn] dt+

∫ T

0
lim inf
n→∞

[h(t, yn)] dt.

Let
vn =

yn

|yn|0
.

Notice |vn|0 = 1 and vn(0) = vn(T ). From (2.8)λn
we have

v′n = [(1− λn)τ vn + λng(t, yn)vn] +
λn[h(t, yn) + r(t)]

|yn|0
a.e. on [0, T ]
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and so

(2.15)

‖v′n‖
2
L2 ≤ 2

∫ T

0
[(1− λn)τ vn + λng(t, yn)vn]

2 dt

+
2

|yn|20

∫ T

0
|h(t, yn) + r(t)|

2 dt.

Notice

∫ T

0
|h(t, yn) + r(t)|

2 dt ≤ 2

∫ T

0
|h(t, yn)|

2 dt+ 2

∫ T

0
|r(t)|2 dt

≤ 4

∫ T

0
φ21|yn|

2α dt+ 4

∫ T

0
φ22 dt+ 2

∫ T

0
r2 dt

≤ 4|yn|
2α
0

∫ T

0
φ21 dt+ 4

∫ T

0
φ22 dt+ 2

∫ T

0
r2 dt

and this together with (2.12) and (2.15) implies that there exists an integer n0
with

(2.16) ‖v′n‖
2
L2 ≤ 2

∫ T

0
[(1 − λn)τ vn + λng(t, yn)vn]

2 dt+ 1 for n ≥ n0.

Next notice since

(1− λn)τ(t) vn(t) + λng(t, yn(t))vn(t) ≥
λnβ(t)

|yn|0
a.e. on [0, T ]

and

(1 − λn)τ(t) vn(t) + λng(t, yn(t))vn(t)

=
1

|yn|0
(τ(t) yn(t) + λn[g(t, yn(t))yn(t)− τ(t) yn])

≤ τ(t) vn(t) a.e. on [0, T ]

that

(2.17)

|(1− λn)τ(t) vn(t) + λng(t, yn(t))vn(t)|

≤ max

{

τ(t) vn(t),
|β(t)|

|yn|0

}

a.e. on [0, T ].

Thus there exists an integer n1 with for n ≥ n1,

|(1−λn)τ(t) vn(t) +λng(t, yn(t))vn(t)| ≤ max {τ(t) vn(t), |β(t)|} a.e. on [0, T ].
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This together with (2.16) implies for n ≥ max{n0, n1} ≡ n2 that

‖v′n‖
2
L2 ≤ 2

∫ T

0
[max {τ(t) vn(t), |β(t)|}]

2 dt+ 1.

Since |vn|0 = 1 there exists a constant M1 with

(2.18) ‖v′n‖L2 ≤M1 for n ≥ n2.

Summarizing we have for n ≥ n2 that

(2.19) |vn|0 = 1 and ‖v′n‖L2 ≤M1.

The Arzela-Ascoli theorem (notice the uniform bound on ‖v′n‖L2 implies the
equicontinuity of {vn} since if x, t ∈ [0, T ] we have |vn(t) − vn(x)| ≤ ‖v′n‖L2 |t −

x|
1

2 ) with a standard result in functional analysis (if E is a reflexive Banach space
then any norm bounded sequence in E has a weakly convergent subsequence)
implies that there is a subsequence S of {n2, n2 + 1, . . . } with

(2.20) vn → v in C[0, T ] and v′n ⇀ v′ in L2[0, T ]

and λn → λ as n→ ∞ in S ;

here ⇀ denotes weak convergence.

Remark. Notice v ≥ 0 on [0, T ] since vn ≥ 0 on [0, T ] for all n.

Let us return to the differential equation
{

v′n = [(1− λn)τ vn + λng(t, yn)vn] +
λn[h(t,yn)+r(t)]

|yn|0
a.e. on [0, T ]

vn(0) = vn(T )

for n ∈ S. For n ∈ S and ψ ∈ L2[0, T ] we have

(2.21)

∫ T

0
v′nψ dt =

∫ T

0
[(1− λn)τ vn + λng(t, yn)vn]ψ dt

+ λn

∫ T

0

[h(t, yn) + r(t)]

|yn|0
ψ dt.

Notice since

|[h(t, yn(t)) + r(t)]ψ(t)|

|yn|0
≤
φ1(t)|ψ(t)| y

α
n (t) + [φ2(t) + |r(t)|]|ψ(t)|

|yn|0
a.e.

and |yn|0 → ∞ as n→ ∞ we have

(2.22) lim
n→∞

λn

∫ T

0

[h(t, yn(t)) + r(t)]

|yn|0
ψ(t) dt = 0 ; here n→ ∞ in S.
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Also (2.20) yields

(2.23) lim
n→∞

∫ T

0
v′nψ dt =

∫ T

0
v′ψ dt ; here n→ ∞ in S.

Now assumption (2.5) implies (as before)

(2.24)
β(t)

|yn|0
≤ [λng(t, yn) + (1− λn)τ ] vn ≡ µn(t) ≤ τ(t)vn(t) a.e. on [0, T ].

Thus, since vn → v in C[0, T ] as n → ∞ in S and |yn|0 → ∞, there exists an
integer n3 with

(2.25) |µn(t)| ≤ max{τ(t)[v(t) + 1], |β(t)|} for n ≥ n3 and n ∈ S.

Consequently there exists a constant M2 with

(2.26) ‖µn‖L2 ≤M2 for n ≥ n3 and n ∈ S.

Let S1 denote those n ∈ S with n ≥ n3. Notice (2.26) implies that µn has a
weakly convergent subsequence in L2[0, T ] i.e. there exists a subsequence S2 of
S1 with

(2.27) µn ⇀ µ in L2[0, T ] as n→ ∞ in S2 ;

here µ is the weak limit (as n → ∞ in S2) in L
2[0, T ] of µn. Now let n → ∞ in

S2 in (2.21), using (2.22), (2.23) and (2.27), to obtain

(2.28)

∫ T

0
v′ψ dt =

∫ T

0
µψ dt.

Also

(2.29) v(0) = v(T ).

Next we claim that

(2.30) µ(t) ≥ 0 for a.e. t ∈ [0, T ].

Let m be an integer. Fix m and let ǫ = 1
m . Then from (2.24) there exists n4 ∈ S2

with

(2.31) −ǫ ≤ µn(t) ≤ τ(t)[v(t) + ǫ] for n ≥ n4 and n ∈ S2.

Let

K =
{

u ∈ L2[0, T ] : −ǫ ≤ u(t) ≤ τ(t)[v(t) + ǫ] for a.e. t ∈ [0, T ]
}

.
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Notice K is convex and strongly closed. Hence K is weakly closed [9]. Now since
µ is the weak limit (as n → ∞ in S2) in L

2[0, T ] of µn and µn ∈ K for n ≥ n4,
n ∈ S2 then µ ∈ K. Hence

(2.32) −ǫ ≤ µ(t) ≤ τ(t)[v(t) + ǫ] for a.e. t ∈ [0, T ].

We can do this for each ǫ = 1
m , m ∈ {1, 2 . . .}. Thus

(2.33) 0 ≤ µ(t) ≤ τ(t) v(t) for a.e. t ∈ [0, T ]

and so (2.30) is true.
Now (2.30) together with (2.28) implies that v is nondecreasing on [0, T ]. Con-

sequently, since v(0) = v(T ),

(2.34) v ≡ c ≥ 0, c a constant.

Now if c = 0 we have a contradiction since |v|0 = 1. Thus

(2.35) v ≡ c > 0.

Thus there exists n5 ∈ S with

yn(t)

|yn|0
= vn(t) ≥

c

2
for each t ∈ [0, T ] and n ≥ n5, n ∈ S.

Hence

(2.36) yn(t)→ ∞ for each t ∈ [0, T ] as n→ ∞ through S.

Now (2.36) together with (2.14) implies

∫ T

0
[−r(t)] dt ≥

∫ T

0
lim inf
x→∞

[g(t, x)x] dt+

∫ T

0
lim inf
x→∞

[h(t, x)] dt.

This contradicts (2.7) and so (2.10) is true. Existence of a solution to (1.1) is now
guaranteed from Theorem 1.1. �

Remarks. (i) If β, φ1, φ2, r, τ ∈ Lp[0, T ], 1 < p < 2 then the result of Theorem 2.1
is again true; in this case use ‖v′n‖Lp instead of ‖v′n‖L2 in the proof.

(ii) We now state a more general version of Theorem 2.1. Suppose (2.1)–(2.5) hold
and also that there exists θ ∈ (−∞, 1) with the following conditions satisfied:

(2.6)⋆ there exists ρ ∈ L1[0, T ] with f(t, y) ≥ ρ(t) yθ

for a.e. t ∈ [0, T ] and y ≥ 0
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and

(2.7)⋆ 0 <

∫ T

0
lim inf
x→∞

[f(t, x)x−θ ] dt.

Then (1.1) has a solution.
The proof follows the reasoning in Theorem 2.1. The only change occurs from

equation (2.12) to (2.14). In this case multiply (2.11) by y−θ
n and integrate from

0 to T to obtain

∫ T

0
[f(t, yn) y

−θ
n ] dt = −

(1− λn)

λn

∫ T

0
τ(t) y1−θ

n dt ≤ 0

and so

0 ≥ lim inf
n→∞

∫ T

0
[f(t, yn) y

−θ
n ] dt.

We may apply Fatou’s lemma (because of (2.6)⋆) to obtain

0 ≥

∫ T

0
lim inf
n→∞

[f(t, yn) y
−θ
n ] dt.

Essentially the same reasoning as in Theorem 2.1 establishes the result.

It is of interest to establish another type of result when (2.6) may not be true.
Our next theorem gives such a result.

Theorem 2.2. Assume f : [0, T ]×R → R is a L1-Carathéodory function and
suppose (2.1)–(2.5) are satisfied. In addition suppose

(2.37)



















there exists a constant M > 0 such that
∫ T
0 [g(t, y(t))y(t) + h(t, y(t)) + r(t)] dt ≥ 0

for all y ∈ C[0, T ] ∩AC[0, T ] with

y(0) = y(T ) and min[0,T ] y(t) ≥M

is satisfied. Then (1.1) has a nonnegative solution.

Proof: Let y be a solution to (2.8)λ. Assume (2.10) does not hold. Then there
is a sequence (λn) in (0, 1) and a sequence (yn) such that (2.11) and (2.12) hold.
As in Theorem 2.1 we have

(2.38)

∫ T

0
[g(t, yn)yn + h(t, yn) + r(t)] dt = −

(1− λn)

λn

∫ T

0
τ(t) yn dt.

Also we know (Theorem 2.1) that there exists a subsequence S of integers with

vn → v in C[0, T ] as n→ ∞ in S and v ≡ c > 0 ;
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here vn =
yn

|yn|0
. Thus there exists n6 ∈ S with

(2.39) vn(t) ≥
c

2
i.e yn(t) ≥

c

2
|yn|0 for each t ∈ [0, T ] and n ≥ n6, n ∈ S.

Let S3 denote those n ∈ S with n ≥ n6. Since |yn|0 → ∞ as n→ ∞ there exists
a subsequence S4 of S3 with

(2.40) yn(t) ≥M for each t ∈ [0, T ] and n ∈ S4 ;

here M is as in (2.37). Now (2.38) and (2.40) imply that

∫ T

0
[g(t, yn)yn + h(t, yn) + r(t)] dt < 0 for n ∈ S4 ;

notice also min[0,T ] yn(t) ≥M . This contradicts (2.37). �

The above results have “dual versions”. We will just give the dual version of
Theorem 2.1.

Theorem 2.3. Assume f : [0, T ]×R → R is a L1-Carathéodory function and
suppose (2.1)–(2.4) hold. In addition assume the following conditions are satisfied:

(2.41)











there exist β, τ ∈ L2[0, T ] with − τ(t) y ≤ g(t, y)y ≤ β(t) for

a.e. t ∈ [0, T ] and all y ≥ 0 ; here τ ≥ 0 a.e. on [0, T ] and τ > 0

on a subset of [0, T ] of positive measure,

(2.42)

there exists ρ ∈ L1[0, T ] with h(t, y) ≤ ρ(t) for a.e. t ∈ [0, T ] and y ≥ 0,

and

(2.43)

∫ T

0
[−r(t)] dt >

∫ T

0
lim sup
x→∞

[g(t, x)x] dt +

∫ T

0
lim sup
x→∞

[h(t, x)] dt.

Then (1.1) has a nonnegative solution.

Proof: Consider the family of problems

(2.44)λ

{

y′ + τ y = λ[f⋆(t, y) + τ y] a.e. on [0, T ],

y(0) = y(T ),

where 0 < λ < 1 and f⋆ is as in Theorem 2.1. Let y be a solution to (2.44)λ. We
show

(2.45) y(t) ≥ 0 for t ∈ [0, T ].
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Suppose y has a negative global minimum at t0 ∈ [0, T ). Then there exists t1 > t0
with y(t) < 0 on [t0, t1] and y(t) ≥ y(t0) for t ∈ [t0, t1]. Now the differential
equation yields

d

dt

(

e
R t

0
τ(x) dx y(t)

)

= e
R t

0
τ(x) dx [λf⋆(t, y(t)) + λτ(t) y(t)] a.e. on [t0, t1].

Consequently

e
R t1
0

τ(x) dxy(t1)− e
R t0
0

τ(x) dxy(t0)

=

∫ t1

t0

e
R s

0
τ(x) dx [λf⋆(s, 0) + λτ(s) y(s) + λy(s)] ds < 0

and so

y(t1) < e
−

R t1
t0

τ(x) dx
y(t0) ≤ y(t0),

a contradiction. Thus (2.45) is true.
Next we claim that there exists a constantM0 with |y|0 ≤M0 for any solution

y to (2.44)λ. If not there exists a sequence (λn) in (0, 1) and a sequence (yn) with

y′n + τ yn = λn[f(t, yn) + τ yn] a.e. on [0, T ]

and
|yn|0 → ∞.

Of course

∫ T

0
[g(t, yn)yn + h(t, yn) + r(t)] dt =

(1− λn)

λn

∫ T

0
τ(t) yn dt ≥ 0

and essentially the same reasoning as in Theorem 2.1 (except we use lim sup
instead of lim inf) establishes the result. �

Examples are easy to construct so that Theorems 2.1–2.3 may be applied. For
completeness we supply one such example.

Example. Suppose our nonlinearity f : [0, T ]×R→ R is given by

f(t, y) = t2 |y|
1

2 − t−γ , 0 ≤ γ <
1

2
.

Then (1.1) has a nonnegative solution.

To see this we apply Theorem 2.1. For a.e. t ∈ [0, T ] and y ≥ 0 let h(t, y) =

t2 y
1

2 , g(t, y) = 0 and r(t) = −t−γ . Notice (2.1), (2.2), (2.3) (with φ1 = t2, φ2 =

t−γ and α = 12 ), (2.4), (2.5), (2.6) and (2.7) are satisfied.
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