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Full regularity of weak solutions to a class of nonlinear

fluids in two dimensions – stationary, periodic problem

Petr Kaplický, Josef Málek, Jana Stará

Abstract. We prove the existence of regular solution to a system of nonlinear equations
describing the steady motions of a certain class of non-Newtonian fluids in two dimen-
sions. The equations are completed by requirement that all functions are periodic.

Keywords: non-Newtonian fluids, shear dependent viscosity, regularity, Hölder continu-
ity of gradients

Classification: 76F10, 35Q35, 35J65

0. Introduction

Let Ω be a two-dimensional square (0, L)× (0, L), L ∈ (0,∞). We consider the
following problem in R2: to find v = (v1, v2) and π which are periodic with the
period L at each variable xi, i = 1, 2, and solve the equations

(0.1)

div v = 0

vk
∂v

∂xk
− div(T (D(v))) +∇π = f,

where f = (f1, f2) is a given periodic vector field in R2 with zero mean value.
Throughout the whole paper we use the summation convention; thus

vk
∂v

∂xk
=

2
∑

k=1

vk
∂v

∂xk

etc.
Let S be the set of symmetric matrices of the type 2× 2. Then D(v) belonging

to S denotes the symmetrized ∇v and has components Dij(v) =
1
2 (

∂vi
∂xj
+

∂vj

∂xi
),

i, j = 1, 2. Further we put the following assumptions on nonlinear tensor function
T : S → S:

(i) there exists F : R+0 → R
+
0 such that F ∈ C2

(

R
+
0

)

and for all i, j = 1, 2

(0.2) Tij(η) =
∂F (|η|2)

∂pij
= 2F ′(|η|2)ηij , ∀ η ∈ S, F (0) =

∂F (0)

∂pij
= 0;
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(ii) for a certain p ∈ (1,∞) there exist C1, C2 > 0 such that

(0.3)
∂2F (|η|2)
∂pij∂pkl

ξijξkl ≥ C1(1 + |η|2)
p−2
2 |ξ|2, ∀ η, ξ ∈ S;

and (for all i, j, k, l = 1, 2)

(0.4)

∣

∣

∣

∣

∂2F (|η|2)
∂pij∂pkl

∣

∣

∣

∣

≤ C2

(

1 + |η|2
)

p−2
2

, ∀ η ∈ S.

The purpose of this paper is to show that no matter whatever p ∈ (1,∞) is
given, a weak solution to (0.1) exists and in fact it is as regular as data (smoothness
of f and F ) allow starting from the assumption

f ∈ Lp′(Ω) if p ∈ (1, 2) or f ∈ Lr (Ω) , r > 2, if p ≥ 2.

We start with the notion of weak solution to (0.1). Let us denote1

Vp =

{

ϕ ∈ W
1,p
loc

(

R
2, R2

)

;ϕ periodic, divϕ = 0,

∫

Ω
ϕdx = 0

}

.

We say that v ∈ Vp is a weak solution to (0.1) if

(0.5)

∫

Ω
vk

∂vi

∂xk
ϕi dx+

∫

Ω
Tij(D(v))Dij(ϕ) dx =

∫

Ω
fiϕi dx

for all ϕ smooth, periodic and divergence-free. Let us remark that without any
additional information on v, the first integral is well-defined only for p ≥ 4

3 . The
method of the proof, however, provides directly better regularity of v. More

precisely, we obtain below v ∈ W
2,p
loc (R

2) ∩ Vp.
It is worth noticing that the nonlinearity T has some useful properties that

follows from (0.2)-(0.4). Namely: there exist Ci, i = 3, 4, 5, such that

T (η) · η ≥ C4 (|η|p − 1) , ∀ η ∈ S,(0.6)

|T (η)| ≤ C5

(

1 + |η|2
)

p−1
2

, ∀ η ∈ S,(0.7)

(T (η)− T (ξ)) · (η − ξ) ≥ C5 |η − ξ|2 , ∀ η, ξ ∈ S

with C5 = C5(η, ξ) ≡ C1

∫ 1

0

(

1 + |ξ − s(η − ξ)|2
)

p−2
2
ds.

(0.8)

(If A, B ∈ S, then A · B ≡ AijBij .)

1We use the standard notation for Lebesgue spaces Lp (Ω) and Sobolev spaces W k,p (Ω),
and their norms ‖.‖p and ‖.‖k,p respectively.
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In particular, the last condition means that the corresponding elliptic operator
is strictly monotone. If the Leray-Lions theory of monotone operators is applied
directly to (0.1), the existence of weak solutions is obtained for p ≥ 3

2 (in dimen-

sion d, the corresponding bound reads p ≥ 3d
d+2 , which is the case when testing

by ϕ ∈ Vp is allowed in (0.5))(see [4] for details).
Finer techniques, using strict monotonicity of T and a construction of a spe-

cial L∞-test function, provide the existence of weak solution to (0.1) for p ≥ 4
3

(generally for p ≥ 2d
d+1 , cf. [3]). The bound corresponds to the situation when

vk
∂v
∂xk

∈ L1(Ω) for v ∈ Vp.

In two dimensions, these results can be improved because of an additional2

cancellation in the convective term. More precisely, using the fact that ∂u1
∂x1
=

−∂u2
∂x2
, we can easily check that

(0.9)
∂ui

∂xj

∂uj

∂xs

∂ui

∂xs
= 0,

(see [12] for the proof of it).
This cancellation brings in the periodic case higher regularity for v for all p > 1,

namely

(0.10) v ∈
{

W
2,2
loc

(

R
2
)

∩ Vp for p ≥ 2
W 2,p
loc

(

R2
)

∩ Vp for p ∈ (1, 2)
which gives the compactness for ∇v, and consequently the existence of weak
solutions.
To obtain higher regularity, we will show that there is a p0 > 2 such that

(0.11) ∇v ∈ W 1,p0
loc

(

R
2
)

.

Once having (0.11), we see that∇v, and thusD(v), is hölderian. In particular, the

‘coefficients’
∂2F (|D(v)|2)

∂pij∂pkl
are bounded and Hölder continuous for all p ∈ (1,∞).

Then the standard approach used in the regularity theory of linear elliptic systems
gives as much regularity as needed (or as data allow).
The key role in getting (0.11) plays Lemma A formulated below, concerning

linear elliptic systems with bounded measurable coefficients and extendable to
linear systems of the Stokes type (cf. [10] or [11] for the proofs based on the
Lp-estimates for linear systems proved by Bojarski in [2] and Meyers in [7]).
Let κ ∈ N, κ ≥ 1. For u : Ω→ R2, let us denote

Niu =

2
∑

r=1

∑

|α|=κ

airαDαur, i = 1, . . . , h.

2By the standard cancellation we mean the fact that
R
Ω

wk
∂vi

∂xk

vi dx = 0 for any w which is

divergence-free.
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Similarly, denoting ξα = ξα1
1 ξα2
2 , we put

Nirξ =
∑

|α|=κ

airαξα

and we assume

rangNξ = rang(Nirξ)
r=1,2
i=1,...,h = 2 ∀ ξ ∈ R

mi .

Now consider the equation

(0.12)

∫

Ω
Aij(x)Niu(x)Njϕ(x) dx =

∫

Ω
gjNjϕdx, ∀ϕ ∈ Wκ,2.

Assume that
(0.13)

Aij ∈ L∞ (Ω) , Aij = Aji for i, j = 1, 2

∃λ1, λ2 > 0 ∀ η ∈ R
h and for a.e. x ∈ Ω : λ1 |η|2 ≤ Aij(x)ηiηj ≤ λ2 |η|2

and

(0.14) g ∈ Lr (Ω) , r > 2.

Then it holds:

Lemma A. Let u ∈ Wκ,2 (Ω) be a solution of (0.12) with Aij satisfying (0.13).
Let 2 ≤ p ≤ 2+ ρ. Then there exist γ1 = γ1(ρ) > 1 and γ2 = γ2(ρ) > 1 such that

(0.15) ‖u‖κ,p ≤ C

λ1
γ
1− 2

p

2 ‖g‖p

for p satisfying

(0.16) p ≤ 2
(

1− lg
[

1− λ1
2λ2

1− λ1
λ2

]

/ lg γ1

)−1

.

The same result is valid for the generalized Stokes system

(0.17)

∫

Ω
Aij(x)Niu(x)Njϕ(x) dx+

∫

Ω
π divϕ =

∫

Ω
gjNjϕdx ∀ϕ ∈ Wκ,2,

where the solution u ∈ Wκ,2 (Ω) ∩ Vp. One way how to see that Lemma A is
applicable to (0.17) is to introduce the stream function to u and ϕ, which leads to
an elliptic equation of higher order for the stream function to u. An alternative
way is to proceed as in the proof of Lemma A (cf. [10] or [11]) using as the
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starting point L2+ρ-estimates (ρ > 0) for solutions of the Stokes system instead
of L2+ρ-estimates for the Laplace equation, see for example [1] for the proof of
these estimates.

The scheme of the paper is following: Section 1 is devoted to the question
of W 2,p0-regularity, p0 > 2, of solution to (0.1)–(0.4) for p = 2, where we can
apply Lemma A directly as the coefficients are bounded (cf. (0.3)–(0.4)) from
above and below. Section 2 deals with the most interesting case p ∈ (1, 2).
We construct λ-approximations to (0.1) which are again ‘quadratic’, so that the

corresponding solutions uλ’s are smooth by the results in Section 1. The main task
of Section 2 is to obtain this smoothness uniformly for all λ > 0. Letting λ → 0 we
finally obtain the W 2,p0-regularity of the solution to the original problem (0.1).
Moreover, we show the full regularity result. Section 3 is devoted to the results
for p > 2. Here we only present theorems and omit the proofs, that are similar to
those in Section 2. The detailed proofs for p > 2 will be given in a forthcoming
paper, where we will analyze the Dirichlet boundary problem. By our preliminary
calculations it seems that we will be able to gain the continuity for ∇v ‘only’ for
p ≥ 6

5 , in contrary to the periodic problem, where the Hölder continuity of ∇v
holds for all p > 1, as presented below.

We finish this introductory part by a few words on the physical background
of (0.1). The system (0.1) occurs in non-linear fluid mechanics. It describes the
steady motion of a class of homogeneous incompressible fluids (having constant
density normalized to one). Then v represents the velocity field and π is the
pressure. This class of fluids is characterized by the nonlinear dependence of the
extra stress tensor on the velocity gradient. The principle of the material frame
indifference and the representation of the isotropic tensors of second order in two
dimensions lead then to the form

(0.18) T (D(v)) = 2µ
(

|D(v)|2
)

D(v).

Note that F defined by F
(

|D(v)|2
)

=
∫ |D(v)|2

0 µ (s) ds satisfies (0.2). Setting in

addition

(0.19) µ (s) = 2µ0 (1 + s)
p−2
2 , µ0 > 0,

we obtain the classical example of T undergoing (0.2)–(0.4). If p 6= 2 then the
apparent viscosity µ is a function of |D(v)|2 and the model (0.5)–(0.6) can cap-
ture such non-Newtonian phenomena as shear thinning (if p ∈ (1, 2)) or shear
thickening (p > 2), and these models are used in modelling of processes in many
branches of science (see [6] for further references).
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1. The case p = 2

In this section we consider the system (0.1) with assumptions (0.2)–(0.4) for
p = 2. We have

Theorem 1.1. Let f ∈ V ∗
2 (dual to V2) and p = 2. Then there exists a weak

solution v ∈ V2 and π ∈ L2 (Ω),
∫

Ω π dx = 0, such that

(1.2) ‖∇u‖2 + ‖π‖2 ≤ C ‖f‖V ∗

2
.

If in addition f ∈ Lp0 (Ω), p0 > 2, then

(1.3) ‖v‖2,p0 ≤ C
(

‖f‖V ∗

2
+ ‖f‖p0

)

.

Proof: By the classical Leray-Lions theory (p ≥ 3
2 ) we obtain the existence of a

v ∈ V2 satisfying (0.5) and

‖D(v)‖2 ≤ C ‖f‖V ∗

2
.

It is easy to verify that

(1.4) ‖∇v‖2 =
√
2 ‖D(v)‖2 for v ∈ V2 ,

which implies

(1.5) ‖∇v‖2 ≤ C ‖f‖V ∗

2
.

Defining

〈E, ϕ〉 ≡
∫

Ω
Tij (D(v))Dij(ϕ) dx+

∫

Ω
vk

∂vi

∂xk
ϕi dx −

∫

Ω
fiϕi dx

for all ϕ ∈ W 1,2
loc

(

R2
)

periodic we see from (0.5) and (1.5)

(1.6) 〈E, ϕ〉 = 0, ∀ϕ ∈ V2 and ‖E‖(W 1,2(Ω))∗ ≤ C < ∞.

By de Rham’s theorem and Nečas theorem on negative norms (see [8]), we obtain
the existence of π ∈ L2 (Ω) such that

(1.7)

∫

Ω
π dx = 0, ‖π‖2 ≤ C ‖f‖2V ∗

2
,

〈E, ϕ〉 =
∫

Ω
π divϕdx ∀ϕ ∈ W

1,2
loc

(

R
2
)

periodic.
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Due to the periodicity and ‘Hilbert’s’ structure we can now easily apply the
standard difference technique to obtain W 2,2-regularity for v. Indeed, denoting

dr
hv(x) ≡ v (x+ her)− v (x)

h
, r = 1, 2,

(er denotes unit vector at r-axes direction), we get from (0.5) a similar system
for dr

hv, r = 1, 2,

(1.8)

div (dr
hv) = 0

∫

Ω

(

dr
hvk(x)

∂vi

∂xk
(x + her) + vk(x)

∂dr
hvi(x)

∂xk

)

ϕi(x) dx

+

∫

Ω
Akl

ij (x)Dkl (d
r
hv)Dij (ϕ) dx =

∫

Ω
dr
hfiϕi dx

for all ϕ ∈ V2. In (1.8)

Akl
ij (x) ≡

∫ 1

0

∂2F (Dv(x) + s(Dv(x + her)− Dv(x)))

∂pij∂pkl
ds.

Testing in (1.8) by dr
hv ∈ V2 and using (0.3) together with (1.4), we obtain

(1.9) C1 ‖∇dr
hv‖22 ≤ C

(

‖f‖22 + ‖dr
hv‖24

)

,

where we used the fact that
∫

Ω vk
∂

∂xk

(

dr
hvi
)

dr
hvi dx = 0 and the term

∫

Ω
dr
hvk

∂vi

∂xk
dr
hvi dx

was estimated by Hölder’s inequality and (1.5). Since in two dimensions

(1.10) ‖u‖4 ≤ ‖u‖1/22 ‖∇u‖1/22 ,

we see immediately from (1.9)

(1.11) ‖∇dr
hv‖22 ≤ C

(

‖f‖22 + 1
)

.

This implies

(1.12)
‖∇π‖2 ≤ C,

∥

∥

∥
∇2v

∥

∥

∥

2
≤ C (‖f‖2 + 1)
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and the equations (0.1)2 hold a.e. (for p = 2!!). Moreover, for r = 1, 2, the

functions wr ≡ ∂v
∂xr ∈ V2 and σr ≡ ∂π

∂xr
∈ L2(Ω) solve in the weak sense the

system

(1.13)

divwr = 0

∂

∂xr

(

vk
∂vi

∂xk

)

− ∂

∂xj

(

∂2F (|Dv|2)
∂pij∂pkl

Dkl (w
r)

)

+
∂σr

∂xi
=

∂fi

∂xr
, i = 1, 2.

As the coefficients Akl
ij ≡ ∂2F (|D(v)|2)

∂pij∂pkl
satisfy assumption (0.13), f ∈ Lp0 (Ω) and

∥

∥

∥

∥

vk
∂v

∂xk

∥

∥

∥

∥

p0

≤ C ‖∇v‖p0
‖v‖∞ ≤ C ‖v‖22,2 ≤ C

(

‖f‖22 + 1
)

,

we can apply Lemma A that guaranties

(1.14) v ∈ W
2,p0
loc

(

R
2
)

, ∇v ∈ C0,α
(

Ω̄
)

, α = 1− 2
p0

.

The proof of Theorem 1.1 is complete. �

Remark 1.15. Let us remark that for the case p = 2 we proved that every weak
solution has Hölder-continuous first derivatives. Higher regularity is then reduced
to a more or less standard application of the technique of the regularity theory for
linear elliptic systems. The only term that requires circumspection is the term of
the type

J ≡
∫

Ω

∂3F (|D(v)|2)
∂pij∂pkl∂prs

Drs(∇v)Dkl(∇v)Dij(∇(2)v) dx ,

which appears while deriving W 3,2-regularity. In such a case, we have L2-norm
of the third derivatives of v on the left hand side and we know (see (1.14)) that

v ∈ W 2,p0
loc

(

R2
)

for p0 > 2. Write p0 = 2 + ρ. Then the interpolation inequality
analogous to (1.10)

‖u‖4 ≤ ‖u‖
2+ρ
4

2+ρ ‖∇u‖
2−ρ
4

2

leads to the following estimate of J (using also (1.14), the Hölder and Young
inequalities):

|J | ≤ C

∫

Ω
|∇(2)v|2 |∇(3)v| ≤ C‖∇(2)v‖24‖∇(3)v‖2

≤ ‖∇(2)v‖
2+ρ
2

p0 ‖∇(3)v‖2−
ρ
2

2 ≤ ε

2
‖∇(3)v‖22 + C .

Choosing ε < 2C1, we move
ε
2‖∇(3)v‖22 to the left hand side, and we conclude

W 3,2-regularity for v. The higher regularity is then straightforward.
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2. The case p ∈ (1, 2), λ-approximations

In order to prove the W 2,p0-regularity (p0 > 2) for (0.1)–(0.3) for p ∈ (1, 2),
we study the following quadratic λ-approximations to (0.1): for λ ∈ (0, 1) we
consider (v, π) = (vλ, πλ) as a solution of the system (in R2)

(2.1)

div v = 0

vk
∂v

∂xk
− div

(

(

1 + λ |D(v)|2
)
2−p
2

T (D(v))

)

= −∇π + f,

where all functions are again periodic, etc. Denoting

τλ
ij
def.≡

(

1 + λ |D(v)|2
)
2−p
2

Tij(D(v))

= 2
(

1 + λ |D(v)|2
)
2−p
2

F ′
(

|D(v)|2
)

Dij(v),

we first verify that τλ satisfy (0.2)–(0.4) with the quadratic potential

(2.2) Fλ
(

|D(v)|2
)

≡
∫ |D(v)|2

0
(1 + λs)

2−p
2 F ′(s) ds.

Indeed, recalling that
∂F (|η|2)

∂ηij
= 2F ′

(

|η|2
)

ηij we have

∂2Fλ
(

|η|2
)

∂ηij∂ηkl
=
(

1 + λ |η|2
)
2−p
2

∂2F
(

|η|2
)

∂ηij∂ηkl
+λ(2−p)

(

1 + λ |η|2
)− p

2
∂F
(

|η|2
)

∂ηij
ηkl

and

(2.3)
∂2Fλ

(

|η|2
)

∂ηij∂ηkl
ξijξkl =

(

1 + λ |η|2
)
2−p
2

∂2F
(

|η|2
)

∂ηij∂ηkl
ξijξkl

+ 2(2− p)λ
(

1 + λ |η|2
)− p

2
F ′
(

|η|2
)

ηklξklηijξij .

Note that the last term is nonnegative for p ∈ (1, 2). Consequently by (0.3), (0.4)
and (0.7)

(2.4)

∂2Fλ
(

|η|2
)

∂ηij∂ηkl
ξijξkl ≥ C1λ

2−p
2 |ξ|2 def.≡ C̃1(λ) |ξ|2

∣

∣

∣

∣

∣

∣

∂2Fλ
(

|η|2
)

∂ηij∂ηkl

∣

∣

∣

∣

∣

∣

≤ C2 + C5.
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Thus we can apply Theorem 1.1 and we obtain for each λ > 0 the existence of
pλ > 2 and vλ such that

vλ ∈ W
2,pλ

loc

(

R
2
)

∩ C1(Ω̄).

In the rest of this section we will show that (for certain p0 > 2) we have

(2.5)
∥

∥

∥
vλ
∥

∥

∥

2,p0
≤ K uniformly with respect to λ > 0.

Assume for a while that (2.5) holds. Then letting λ → 0 we can find a sequence
λn → 0 such that vn ≡ vλn satisfy

vn ⇀ v weakly in W 2,p0 (Ω)

vn → v strongly in W 1,2 (Ω).

Then it is trivial to see that v satisfies (0.5) and v ∈ W 2,p0 (Ω) (cf. (2.5)). Then
∇v ∈ C0,α

(

Ω̄
)

, and we have

Theorem 2.6. Let p ∈ (1, 2) and f ∈ Lp′ (Ω). Then there exists a solution v, π
to (0.1)–(0.4) such that

v ∈ W
2,p′

loc

(

R
2
)

∩ C1,α
(

Ω̄
)

,

π ∈ W
1,p′

loc

(

R
2
)

,

∫

Ω
π dx = 0.

The direct consequence of Theorem 2.6 (see also Remark 1.15) is the following

Theorem 2.7. Let p ∈ (1, 2), k ∈ N, k ≥ 1. Assume F ∈ Ck+2
(

R
+
0

)

and

f ∈ W k,2 (Ω). Then

v ∈ W
k+2,2
loc

(

R
2
)

.

In particular, if F ∈ C∞
(

R
+
0

)

and f ∈ C∞
(

Ω̄
)

, then v ∈ C∞
(

Ω̄
)

.

Proof of Theorem 2.6: As described above, it remains to show (2.5) for vλ

being the solution of (2.1). Let us first note that by testing (2.1)2 by v = vλ we
obtain, with help of (0.6), the uniform estimate

(2.8)
∥

∥

∥
D(vλ)

∥

∥

∥

p
≤ C < ∞ .

This helps us to show another uniform estimate, namely

(2.9)

∫

Ω

(

1 +
∣

∣

∣
D(vλ)

∣

∣

∣

2
)

p−2
2
∣

∣

∣
D(∇vλ)

∣

∣

∣

2
dx ≤ C < ∞.
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Indeed, multiplying (2.1)2 scalarly by −∆vλ (recall that for λ fixed we have

enough regularity and −∆vλ is divergence-free and periodic), integrating over Ω,
performing integration by parts and using the notation (2.2), we obtain

(2.10)

∫

Ω

∂2Fλ

(

∣

∣

∣
D(vλ)

∣

∣

∣

2
)

∂pij∂pkl
Dij

(

∂vλ

∂xs

)

Dkl

(

∂vλ

∂xs

)

dx

=

∫

Ω
f∆vλ dx −

∫

Ω

∂vλ
k

∂xs

∂vλ
i

∂xk

∂vλ
i

∂xs
dx.

Using the fact
∂vλ
1

∂x1
= −∂vλ

2

∂x2
one can check that the last term vanishes. Using (0.3)

and
(

1 + λ |η|2
)
2−p
2 ≥ 1 in (2.4) leads to

(2.11)
∂2Fλ

(

|η|2
)

∂ηij∂ηkl
ξijξkl ≥ C1

(

1 + |η|2
)

p−2
2 |ξ|2 .

Then from (2.10)

(2.12) C1

∫

Ω

(

1 +
∣

∣

∣
D(vλ)

∣

∣

∣

2
)

p−2
2
∣

∣

∣
D(∇vλ)

∣

∣

∣

2
dx ≤

∥

∥

∥
∇2vλ

∥

∥

∥

p
‖f‖p′ .

Now we will show that
∥

∥

∥
∇2vλ

∥

∥

∥

p
is controlled by the integral on the left-hand

side of (2.12). With help of Hölder’s inequality we have

(2.13)
∥

∥

∥
D
(

∇vλ
)
∥

∥

∥

2

p

≤
(

1 +
∥

∥

∥
D
(

vλ
)∥

∥

∥

p

)2−p ∫

Ω

(

1 +
∣

∣

∣
D(vλ)

∣

∣

∣

2
)

p−2
2
∣

∣

∣
D(∇vλ)

∣

∣

∣

2
dx.

The algebraic identity

(2.14)
∂2vi

∂xj∂xk
=

∂Dik(v)

∂xj
+

∂Dij(v)

∂xk
−

∂Djk(v)

∂xi

together with (2.13) and (2.8) give

(2.15)
∥

∥

∥
∇2vλ

∥

∥

∥

2

p
≤ C

∫

Ω

(

1 +
∣

∣

∣
D(vλ)

∣

∣

∣

2
)

p−2
2
∣

∣

∣
D(∇vλ)

∣

∣

∣

2
dx.

Hence, from (2.12) and (2.15) we have (2.9) and

(2.16)
∥

∥

∥
∇2vλ

∥

∥

∥

2

p
≤ C < ∞.
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Now we are ready to prove (2.5). Similarly to the analysis in Section 1, we

have for wr =
∂vλ

∂xr
, r = 1, 2, the equation

(2.17)

∫

Ω

∂2Fλ

(

∣

∣

∣
D(vλ)

∣

∣

∣

2
)

∂pij∂pkl
Dkl(wr)Dij(φ) dx =

∫

Ω
Gλ

α
∂φα

∂xr
dx,

valid for all φ smooth, div φ = 0. Here

Gλ ≡ vλ
k

∂vλ

∂xk
− f.

It follows from (2.16) and the assumption on f the existence of q > 2 such that
∥

∥

∥
Gλ
∥

∥

∥

q
≤ C < ∞.

For fixed λ > 0 all assumption of Lemma A are verified. Denote V = V (λ) ≡

supx∈Ω̄

(

1 +
∣

∣

∣
D(vλ(x))

∣

∣

∣

2
)
1

2

. Then (2.4)2 and (2.11) imply

(2.18) C1V
p−2 |ξ|2 ≤

∂2Fλ

(

∣

∣

∣
D(vλ)

∣

∣

∣

2
)

∂ηij∂ηkl
ξijξkl ≤ (C2 + C5) |ξ|2

valid for all λ > 0. By Lemma A

(2.19) ‖wr‖1,q ≤ KV 2−p, r = 1, 2,

with

(2.20) q ≤ 2
(

1− lg
[

1− 12
C1
C2

V p−2

1− C1
C2

V p−2

]

/ lg γ3

)−1

, γ3 > 1 ,

which gives

q = 2

(

1− δ lg

[

1− 12
C1
C2

V p−2

1− C1
C2

V p−2

]

/ lg γ3

)−1

for a certain δ ∈ (0, 1] .

This implies

1− 2
q
=

δ

lg γ3
lg

(

1− 12
C1
C2

V p−2

1− C1
C2

V p−2

)

=
δ

lg γ3
lg

(

1 +

1
2

C1
C2

V p−2

1− C1
C2

V p−2

)

≥
{

δ lg 2lg γ3
if 32

C1
C2

V p−2 ≥ 1,

δ 1
4 lg γ3

C1
C2

V p−2 if 32
C1
C2

V p−2 < 1,
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as lg(1+x) ≥ x
2 on [0, 1]. Thus setting L ≡ min

(

lg 2
lg γ3

, C1
4C2 lg γ3

)

yields (1 ≥ V p−2)

(2.21) 1− 2
q
≥ LV p−2δ ≡ Mδ.

Then q > 2
1−Mδ > 2. (Of course, we restrict only on such q’s that W 2,p (Ω) →֒

W 1,q (Ω).) Let us finally denote θ ≡
(

1 +
∣

∣

∣
D(vλ)

∣

∣

∣

2
)
1

2

. By (2.8) and (2.9)

(2.22)
∥

∥

∥
θ

p
2

∥

∥

∥

1,2
< K,

and by (2.19)

(2.23)
∥

∥

∥
θ

p
2

∥

∥

∥

1,q
< KV 2−p.

For p0 ∈ (2, q), the interpolation inequality implies
∥

∥

∥
θ

p
2

∥

∥

∥

1,p0
≤
∥

∥

∥
θ

p
2

∥

∥

∥

1−a

1,2

∥

∥

∥
θ

p
2

∥

∥

∥

a

1,q
≤ KV a(2−p),

where a is given by 1p0 =
1−a
2 +

a
q . Then it holds due to (2.21)

1− 2
p0
= 1− 2

(

a

q
+
1− a

2

)

= a

(

1− 2
q

)

≥ Mδa = LV p−2δa,

and from the Morrey imbedding inequality (cf. [13, p. 58])

V
p
2 =

∥

∥

∥
θ

p
2

∥

∥

∥

C(Ω̄)
≤ K

(

p0 − 1
p0 − 2

)1− 1
p 0

V a(2−p)

≤ K

(

1

1− 2
p0

)1− 1
q

V a(2−p) ≤ K̃V
(2−p)(a+1− 1

q
)
δ
1− 1

q .

We need (2− p)(a+ 1− 1q ) <
p
2 , which can be rewritten as

p >
2(a+ 1− 1q )
a+ 32 − 1q

a→0+→ 2(q − 1)
3
2q − 1

q→2→ 1.

Therefore, for given p ∈ (1, 2) we find q0 so that
2(q0−1)
3

2
q0−1

≤ 1+p
2 . Taking q < q0

in such a way that (2.20) holds, then we can fix a so that

p >
2(a+ 1− 1q )
a+ 32 − 1q

.

Under these circumstances,
∥

∥

∥
θ

p
2

∥

∥

∥

C(Ω̄)
=

∥

∥

∥

∥

∥

(

1 +
∣

∣

∣
D(vλ)

∣

∣

∣

2
)

p
4

∥

∥

∥

∥

∥

C(Ω̄)

≤ K which

implies (2.3) from (2.23). The proof of Theorem 2.5 is complete. �
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3. The case p > 2

Using the analogous regularization we can repeat the procedures of Section 2
for p ∈ (2, 3) under some restriction on the constants C1, C2, C5, compare also
with [9]. By a slightly different regularization based on changing the values of F
outside the ball with a radius R of a suitable functional FR with quadratic growth
(see [5]) and using the bootstrap arguments for higher p we obtain the following

Theorem 3.1. Let r, p ∈ (2,∞) and f ∈ Lr (Ω). Then there exists a solution
v, π to (0.1)–(0.4) such that

v ∈ W 2,r
loc

(

R
2
)

∩ C1,α
(

Ω̄
)

,

π ∈ W 1,r
loc

(

R
2
)

,

∫

Ω
π dx = 0.

The direct consequence of Theorem 2.6 is the following

Theorem 2.7. Let p ∈ (2,∞), k ∈ N, k ≥ 1. Assume F ∈ Ck+2
(

R
+
0

)

and

f ∈ W k,2 (Ω). Then

v ∈ W k+2,2
loc

(

R
2
)

.

In particular, if F ∈ C∞
(

R
+
0

)

and f ∈ C∞
(

Ω̄
)

, then v ∈ C∞
(

Ω̄
)

.
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[3] Frehse J., Málek J., Steinhauer M., An Existence Result for Fluids with Shear Depen-
dent Viscosity-Steady Flows, accepted to the Proceedings of the Second World Congress of
Nonlinear Analysts.
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[11] Stará J., Regularity results for non-linear elliptic systems in two dimensions, Annali della
Scuola Normale Superiore di Pisa XXV Fasc. I (1971), 163–190.

[12] Temam R., Navier-Stokes Equations and Nonlinear Functional Analysis, Society for In-
dustrial and Applied Mathematics, Philadelphia, Pennsylvania, 1995, second edition.

[13] Ziemer W.P., Weakly Differentiable Functions, Springer-Verlag, New York Inc., 1989.

P. Kaplický, J. Stará:
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public

E-mail : kaplicky@karlin.mff.cuni.cz
stara@karlin.mff.cuni.cz

J. Málek:
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