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On the quantification of uniform properties

R. Lowen, B. Windels

Abstract. Approach spaces ([4], [5]) turned out to be a natural setting for the quantifi-
cation of topological properties. Thus a measure of compactness for approach spaces
generalizing the well-known Kuratowski measure of non-compactness for metric spaces
was defined ([3]). This article shows that approach uniformities (introduced in [6]) have
the same advantage with respect to uniform concepts: they allow a nice quantification
of uniform properties, such as total boundedness and completeness.

Keywords: uniform space, approach uniform space, totally bounded, precompact, com-
plete, measure of total boundedness, measure of completeness

Classification: 54E15, 54B30, 54E35

1. Introduction

Suppose that (X, d) is a metric space and that A ⊂ X , then

µK(A) := inf

{
ε ∈ R+ | ∃X1, . . . , Xn ⊂ X :

n
max
i=1

diam(Xi) ≤ ε,A ⊂
n⋃

i=1

Xi

}

is called the Kuratowski measure of non-compactness of A. An interesting variant
of this measure is the so-called Hausdorff measure of non-compactness defined by

µH(A) := inf

{
ε ∈ R+ | ∃x1, . . . , xn ∈ X : A ⊂

n⋃

i=1

B(xi, ε)

}
.

It is easily seen that for any A ⊂ X we have µH(A) ≤ µK(A) ≤ 2 · µH(A).
These measures express to what extent a metric space is compact. The Haus-

dorff measure can be extended to arbitrary approach spaces ([5]). This article
shows that, in the setting of approach uniformities, the same can be done for
total boundedness, completeness and uniform connectedness.
Recall that an approach uniform space (X,Γ) is a set X together with an ideal

Γ of functions from X ×X into [0,∞], satisfying the following conditions:

(AU1) ∀ γ ∈ Γ, ∀x ∈ X : γ(x, x) = 0;

(AU2) ∀ ξ ∈ [0,∞]X×X :
(
∀ ε > 0, ∀N <∞ : ∃ γN

ε ∈ Γ s.t. ξ ∧N ≤ γN
ε + ε

)
⇒

ξ ∈ Γ;
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(AU3) ∀ γ ∈ Γ, ∀N < ∞, ∃ γN ∈ Γ s.t. ∀x, y, z ∈ X : γ(x, z) ∧N ≤ γN (x, y) +

γN (y, z);
(AU4) ∀ γ ∈ Γ : γs ∈ Γ.

Equivalently, an approach uniformity can be described with a uniform tower,
i.e. a family of filters (Uε)ε∈R+ on X ×X , such that

(UT1) ∀ ε ∈ R+, ∀U ∈ Uε : ∆X ⊂ U ;
(UT2) ∀ ε ∈ R+, ∀U ∈ Uε : U

−1 ∈ Uε;
(UT3) ∀ ε, ε′ ∈ R+ : Uε ◦ Uε′ ⊃ Uε+ε′;
(UT4) ∀ ε ∈ R+ : Uε =

⋃
α>ε Uα

or equivalently, a family (Uε)ε∈R+ of semi-uniformities, satisfying (UT3) and
(UT4).
If d is a pseudo-metric, then the collection Γ(d) := {γ | γ ≤ d} is an approach

uniformity. It is referred to as the metric approach uniformity induced by d.
If U is a uniformity, then the trivial tower (U)ε (U on every level ε), is a uniform

tower, defining an approach uniformity Γ(U), which is referred to as the uniform
approach uniformity induced by U .
If (X,Γ) and (Y,Ψ) are approach uniform spaces, then a function f : (X,Γ)→

(Y,Ψ) is called a uniform contraction iff ∀ψ ∈ Ψ : ψ ◦ (f × f) ∈ Γ.
The category AUnif of approach uniform spaces and uniform contractions is

a topological category. It contains Unif both reflectively and coreflectively and
pMET coreflectively.
For every approach uniform space (X,Γ) and for any x ∈ X we can consider

the set
A(x) := {γ(x, ·) | γ ∈ Γ} ⊂ [0,∞]X .

The family (A(x))x∈X defines an approach space on X , which we shall call the
underlying approach space of Γ.
If it is clear from the context we shall write X instead of (X,Γ) or

(X, (A(x))x∈X ).
Also recall that in any approach space (X, (A(x))x∈X ) and for any filter F on

X and any x ∈ X , we define

λF(x) := sup
ϕ∈A(x)

inf
F∈F

sup
y∈F

ϕ(y)

and
αF(x) := sup

ϕ∈A(x)
sup
F∈F

inf
y∈F

ϕ(y).

Let F(X) denote the set of all filters on X , and let U(X) denote the set of all
ultra-filters on X .
Finally recall that given an approach space X , the measure of compactness of

X (mentioned above, see [4]) is defined as
µc(X) := sup

F∈F(X)
inf

x∈X
αF(x)

= sup
F∈U(X)

inf
x∈X

λF(x).
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2. Precompactness and total boundedness

Recall the following definitions concerning a semi-uniform space (X,U).

(X,U) is totally bounded iff ∀U ∈ U , ∃A1, . . . , An ⊂ X such that
⋃n

i=1Ai = X
and ∀ i ∈ {1, . . . , n} : Ai ×Ai ⊂ U .

(X,U) is precompact iff ∀U ∈ U , ∃x1, . . . , xn ∈ X such that
⋃n

i=1 U(xi) = X .

If (X,U) is totally bounded, then it is precompact. (X,U) is totally bounded
iff every ultrafilter is U-Cauchy.

Definition 2.1. Let X be an approach uniform space with tower (Uε)ε. Then X
is called ε-totally bounded (ε-precompact) if Uε is totally bounded (precompact).
Then µtb(X) := inf{ε | X is ε-totally bounded} and µpc(X) := inf{ε | X is

ε-precompact} are called the measure of total boundedness and the measure of
precompactness respectively.

Proposition 2.2. Let X be an approach uniform space. Then

µpc(X) ≤ µtb(X) ≤ 2 · µpc(X).

Proof: Since for any ε ∈ R+, if Uε is totally bounded, then Uε is precompact,
it follows that µpc(X) ≤ µtb(X). Conversely, if Uε is precompact, then U2ε is
totally bounded. To see this, it suffices to observe that for any U ∈ U2ε, by
(UT3), there exists some symmetric V ∈ Uε such that V ◦V ⊂ U , and there exist
x1, . . . , xn ∈ X such that

⋃n
i=1 V (xi) = X , and then V (xi)×V (xi) ⊂ V ◦V ⊂ U .

�

Proposition 2.5 shows that µtb(X) = µpc(X) if X is a metric approach unifor-
mity.

Example 2.3. Let Uε be the discrete uniformity on R if ε < 1 and let it be the
trivial uniformity on R if ε ≥ 2. If 1 ≤ ε < 2, then put Uε := 〈{(x, y) ∈ R2 |
xy = 0 or x = y}〉.
Then µtb(R) = 2 and µpc(R) = 1.

Proposition 2.4. Let (X,Γ) be a uniform approach uniform space, say Γ =
Γ(U). Then the following are equivalent:

(1) µtb(X) = 0,
(2) µpc(X) = 0,
(3) (X,U) is totally bounded.

Quite remarkably, whereas, in the case of approach spaces it is only possible
to give a canonical extension of the Hausdorff measure of non-compactness ([3]),
in the case of approach uniformities the foregoing definitions of µtb and µpc give
canonical extensions precisely of Kuratowski’s measure of non-compactness and
of Hausdorff’s measure of non-compactness respectively.
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Proposition 2.5. Let (X,Γ) be a ∞p-metric approach uniform space, say Γ =
Γ(d). Then we have

(a) µpc(X) = µH(X),
(b) µtb(X) = µK(X).

Consequently, the following are equivalent:

(1) µtb(X) = 0,
(2) µpc(X) = 0,
(3) (X, d) is totally bounded.

Proof: (a) To prove that µpc(X) ≤ µH(X), suppose that µH(X) ≤ ε. Then
for any α > ε, there is some A ⊂ X finite, such that X =

⋃
a∈A B(a, α) = {d <

α}(A). Thus µpc(X) ≤ ε.
Conversely, suppose that Uε is precompact and α > ε. Then there is some

A ⊂ X finite, such that {d < α}(A) =
⋃

a∈A B(a, α) = X , and thus µH(X) ≤ ε.
Therefore µpc(X) ≥ µH(X).

(b) To see that µtb(X) ≤ µK(X), observe that for any cover X1, . . . , Xn of X
such that maxni=1 diamXi ≤ ε, we have that ∀α > ε : Xi ×Xi ⊂ {d < α}, which
means that Uε is totally bounded. Conversely, if Uε is totally bounded, then
∀α > ε : ∃X1, . . . , Xn covering X , such that for each i ∈ {1, . . . , n} Xi ×Xi ⊂
{d < α}. Thus, if µtb(X) ≤ ε, then µK(X) ≤ ε. �

Proposition 2.6. Let (X,Γ) be a p-metric approach uniform space, say Γ =
Γ(d). Then the following are equivalent:

(1) µtb(X) <∞,
(2) µpc(X) <∞,
(3) (X, d) is bounded.

Proof: The equivalence of (1) and (2) is clear from Proposition 2.2. To prove
that (3)⇒ (1), observe that if d ≤M (M ∈ R), then UM is the trivial uniformity
and thus totally bounded. To see that (1) ⇒ (3), notice that µtb(X) <∞ yields
some ε such that Uε is totally bounded; fix α > ε and choose x1, . . . , xn such that⋃n

i=1B(xi, α) = X . Then d ≤ diam{x1, . . . , xn}+ 2α <∞. �

The fact that the uniformly continuous image of a totally bounded uniformity
is again totally bounded, is generalized by the following proposition.

Proposition 2.7. Let (X,Γ) and (Y,Ψ) be approach uniform spaces. If f :
(X,Γ) → (Y,Ψ) is a surjective uniform contraction, then µtb(Y ) ≤ µtb(X) and
µpc(Y ) ≤ µpc(X).

Proof: This follows from the fact that ifX is ε-totally bounded (or precompact),
then Y is ε-totally bounded (or precompact). �

In the category sUnif, total boundedness is stable for initial structures. There-
fore we obtain the following.
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Proposition 2.8. Let J be a set and let
(
fj : X → Yj

)
j∈J
be an initial AUnif-

source, then µtb(X) ≤ supj∈J µtb(Yj).

Proof: If ∀ j ∈ J : Yj is εj-totally bounded, then each Yj is supj∈J εj-totally
bounded. Consequently, X is supj∈J εj-totally bounded. �

As immediate consequences of the previous proposition, we obtain the following
results.

Proposition 2.9. Let X be an approach uniformity. If Y is a subspace of X ,
then µtb(Y ) ≤ µtb(X).

Proposition 2.10. Let J be a set, and let for each j ∈ J , Xj be an approach

uniformity. Then µtb

( ∏

j∈J

Xj

)
= sup

j∈J
µtb(Xj).

Proof: Since all projections πj :
∏

j∈J Xj → Xj are surjective uniform contrac-

tions, we know that ∀ j ∈ J : µtb(Xj) ≤ µtb(
∏
Xj).

The converse inequality is exactly Proposition 2.8. �

Precompactness is, however, not stable for initial structures. This is illustrated
in the following example.

Example 2.11. LetR be equipped with the approach uniformity in Example 2.3,
and consider its subspace R0. Then µpc(R) = 1 and µpc(R0) = 2.

But we do have the following.

Proposition 2.12. Let J be a set and let
(
fj : X → Yj

)
j∈J
be an initial AUnif-

source, then µpc(X) ≤ 2 · supj∈J µpc(Yj).

Proof: If ∀ j ∈ J : Yj is εj-precompact, then each Yj is supj∈J 2εj-totally
bounded. Consequently, X is 2 · supj∈J εj -totally bounded. �

The measure of total boundedness behaves nicely with respect to completion.

If (X,Γ) is an approach uniform space, then let X̂ denote the set of all minimal
Cauchy filters on X , w.r.t. the uniform coreflection. For each γ ∈ Γ and for all
M,N ∈ X̂ , define γ̂(M,N ) := infF∈M∩N supx,y∈F γ(x, y). Then {γ̂ | γ ∈ Γ}

is a basis for an approach uniformity on X̂, which is called the completion of X .

The map i : X → X̂ : x 7→ ẋ is an embedding, and ∀ γ ∈ Γ : γ̂ ◦ i = γ ([7]).

Proposition 2.13. Let X be an approach uniform space. Then µtb(X) =

µtb(X̂).

Proof: Since X is a subspace of X̂ , we have that µtb(X) ≤ µtb(X̂).
Conversely, suppose that µtb(X) ≤ ε. Then Uε is totally bounded. We have

to prove that ∀ Û ∈ Ûε, ∃B1, . . . , Bn covering X̂ , such that ∀ k ∈ {1, . . . , n} :

Bk × Bk ⊂ Û . Let Û ∈ Ûε, Û = {γ̂ < α} (α > ε) say. Choose γ̃ ∈ Γ such
that ∀u, x, y, z ∈ X : γ(u, z) ∧ N ≤ γ̃(u, x) + γ̃(x, y) + γ̃(y, z) for some N > 2ε.
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Put U := {γ̃ < α+ε
2 }. Since (X,Uε) is totally bounded, there exist A1, . . . , An

covering X such that ∀ k ∈ {1, . . . , n} : Ak × Ak ⊂ U . For every k ∈ {1, . . . , n}

put Bk := i(Ak). Clearly

n⋃

k=1

Bk =

n⋃

k=1

i(Ak) = i

(
n⋃

k=1

Ak

)
= i(X) = X̂.

On the other hand, ifM,N ∈ Bk, then ∃x, y ∈ Ak :

̂̃γ(M, ẋ) <
α− ε

4
and ̂̃γ(N , ẏ) <

α− ε

4

and then

γ̂(M,N ) ≤ ̂̃γ(M, ẋ) + ̂̃γ(ẋ, ẏ) + ̂̃γ(N , ẏ)

<
α− ε

4
+
α+ ε

2
+
α− ε

4
= α.

Therefore ∀ k ∈ {1, . . . , n} : Bk ×Bk ⊂ {γ̂ < α}. �

Compact uniform spaces are always precompact. Therefore it is natural to ask
whether the measure of precompactness of an approach uniformity is related to
the measure of compactness of the underlying approach space.

Proposition 2.14. Let X be an approach uniform space. Then µpc(X) ≤
µc(X).

Proof: We shall show that if (Uε)ε is the tower onX , then Uµc(X) is precompact.

Suppose it is not. Then there exist γ ∈ Γ and µ > µc(X) such that ∀A ∈ 2(X) :
{γ < µ}(A) 6= X . Consider the filter

F := {X \ {γ < µ}(A) | A ∈ 2(X)}

and the ultra-filter H containing F . Since

µ > µc(X) = sup
G∈U(X)

inf
x∈X

λG(x),

there exist x ∈ X and H ∈ H such that ∀ y ∈ H : γ(x, y) < µ. This means that
H ⊂ {γ < µ}(x) and thus {γ < µ}(x) ∈ H, while X \ {γ < µ}(x) ∈ H too, which
is impossible. �

For metric spaces, we always have µpc(X) = µc(X) = µH(X), but the inequal-
ity in Proposition 2.14 is strict in general. This becomes clear in the following
example.
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Example 2.15. LetM(X) be the set of all probability measures on a separable
metrizable topological space X . Let H be a weakly compact subset ofM(X) and
let K be any subset ofM(X) containing H. Fix ε > 0, and consider the following
subspace ofM(X):

Y := {(1− ε)P + εQ | P ∈ H, Q ∈ K}.

Then µc(Y ) ≤ 2ε (see [5]). We shall show that µpc(Y ) ≤ ε.
Let α > ε and let C be a finite subset of C(X, [0, 1]). Since H is weakly

compact, Proposition 2.14 implies that µpc(H) = 0. Consequently, there exists
some G ⊂ H finite such that {dC < α− ε}(G) = H.
For any (1− ε)P + εQ ∈ Y , consider G ∈ G such that dC(G,P ) < α− ε. Then

dC((1 − ε)P + εQ,G) = sup
f∈C

∣∣∣∣(1 − ε)

∫
f dP + ε

∫
f dQ−

∫
f dG

∣∣∣∣

≤ sup
f∈C

∣∣∣∣
∫
f dP −

∫
f dG

∣∣∣∣+ sup
f∈C

∣∣∣∣ε
∫
f dQ− ε

∫
f dP

∣∣∣∣

= dC(G,P ) + εdC(P,Q)

≤ α

which proves that Y is ε-precompact.

The inequalities in previous propositions quantify a number of well-known clas-
sical results concerning uniform and metric spaces. Conversely, these results can
be deduced from the AUnif-generalizations.

Corollary 2.16.

(a) A subspace of a totally bounded uniform space is totally bounded.
(b) A subspace of a totally bounded ∞p-metric space is totally bounded.
(c) A product of uniform spaces is totally bounded iff each factor space is
totally bounded.

(d) A finite product of ∞p-metric spaces is totally bounded iff each factor
space is totally bounded.

(e) A uniform space is totally bounded if and only if its completion is totally
bounded.

(f) A compact uniform space is totally bounded.

Proof: (a) Let X be a totally bounded uniform space and let Y ⊂ X be a
subspace. Applying Propositions 2.9 and 2.4, we see that µtb(Y ) ≤ µtb(X) = 0,
and therefore µtb(Y ) = 0. Again using Proposition 2.4, we conclude that Y is
totally bounded.

(b)–(f) Analogously, (b) follows from 2.5 and 2.9, (c) from 2.4 and 2.10, (d) from
2.5 and 2.10, (e) from 2.4 and 2.13, and (f) from 2.4 and 2.14. �
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3. Completeness

For uniform spaces, completeness means that every Cauchy-filter has an adher-
ence point. In the context of approach uniformities we can consider Cauchy-filters
on every level ε ∈ R+. Denote the set of all ε-Cauchy filters on X (that is, the
set of all filters that are Cauchy with respect to Uε) by Cε(X). If every ε-Cauchy
filter ‘clusters up to ε’, then we call the approach uniformity ε-complete.

Definition 3.1. Let X be an approach uniform space. Then X is called ε-
complete if ∀ θ ≥ ε : supF∈Cθ(X) infx∈X αF(x) ≤ θ.

Then µv(X) := inf{ε | X is ε-complete} is called the measure of completeness
of X .

The letter v in the notation µv stands for the German term Vollständigkeit.
For ∞p-metric approach uniformities, the measure of completeness is totally

uninteresting. For uniform approach uniformities, however, it generalizes the well
known concept of completeness for uniform spaces.

Proposition 3.2. Let (X,Γ) be a uniform approach uniform space, say Γ =
Γ(U). Then the following are equivalent:

(1) µv(X) = 0,
(2) (X,U) is complete.

Proof: For arbitrary ε ∈ R+, ε-Cauchy filters are exactly U-Cauchy filters. If
µv(X) = 0, then

∀F Cauchy , ∃x ∈ X, ∀U ∈ U , ∀F ∈ F : F ∩ U(x) 6= ∅.

Thus every Cauchy filter has a cluster point, and therefore converges.
Conversely, since every Cauchy filter converges, we have that

sup
F∈Cε(X)

inf
x∈X

αF(x) = 0 ≤ ε.

�

Proposition 3.3. Let (X,Γ) be a∞p-metric approach uniformity, say Γ = Γ(d).
Then µv(X) = 0.

Proof: Let ε ≥ 0 arbitrary. Let F be an ε-Cauchy filter and let α > ε. Then
there is some F ∈ F such that F ×F ⊂ {d < α}. For arbitrary x ∈ X and G ∈ F ,
we know that F ∩G 6= ∅, y ∈ F ∩G say, and thus d(x, y) < α. Consequently,

sup
F∈Cε(X)

inf
x∈X

sup
G∈F

inf
y∈G

d(x, y) ≤ ε

which by arbitrariness of ε implies that µv(X) = 0. �

The measure of completeness generalizes different properties of completeness.
If X is an approach uniform space with tower (Uε)ε and α ∈ R+, then a subset
Y ⊂ X is called α-closed if it is closed with respect to the underlying topology
of Uα.
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Proposition 3.4. Let X be an approach uniform space, and let Y ⊂ X . If Y is
µv(X)-closed, then µv(Y ) ≤ µv(X).

Proof: Suppose µv(X) ≤ ε. Every ε-Cauchy filter F in Y induces an ε-Cauchy
filter F ′ in X . Consequently,

∀α > ε, ∃x ∈ X, ∀ γ ∈ Γ, ∀F ∈ F , ∃ y ∈ F : γ(x, y) < α

but since ∀ γ ∈ Γ, ∀α > ε : {γ(x, ·) < α} ∩ Y 6= ∅, we also have that

∀α > ε, ∃x ∈ Y, ∀ γ ∈ Γ, ∀F ∈ F , ∃ y ∈ F : γ(x, y) < α.

Therefore µv(Y ) ≤ ε. �

Proposition 3.5. Let J be a set, and let for each j ∈ J , Xj be an approach

uniform space. Then µv

( ∏

j∈J

Xj

)
= sup

j∈J
µv(Xj).

Proof: Suppose that ∀ j ∈ J : µv(Xj) ≤ ε. If F is an ε-Cauchy filter on∏
j∈J Xj , then ∀ j ∈ J : πj(F) is an ε-Cauchy filter on Xj . Since ∀ θ > ε, ∃xj ∈

Xj : α
(
πj(F)

)
(xj) ≤ θ, we have for x = (xj)j∈J that ∀ θ > ε : αF(x) ≤ θ.

Consequently µv

(∏
j∈J Xj

)
≤ ε.

Conversely, let µv

(∏
j∈J Xj

)
< ε and let θ ≥ ε and j ∈ J . Every θ-Cauchy fil-

ter F on Xj , generates a θ-Cauchy filter F
′ on

∏
j∈J Xj . Since inf

x∈
Q

j∈J Xj

αF ′(x)

≤ θ, considering xj = πj(x) yields infxj∈Xj
αF(xj) ≤ θ. By arbitrariness of θ,

this means that µv(Xj) ≤ ε. �

We now investigate the relationship between the measure of completeness and
other measures.

Proposition 3.6. Let X be an approach uniform space. Then µv(X̂) ≤ µv(X).

Proof: Suppose that µv(X) ≤ ε. Let F be an ε-Cauchy filter on X̂. Then
i−1(F) is an ε-Cauchy filter on X and thus for any θ > ε, there is some x ∈ X
such that

sup
γ∈Γ

sup
G∈i−1(F)

inf
y∈G

γ(x, y) < θ.

Consequently, for arbitrary γ ∈ Γ and F ∈ F we have

∃ y ∈ i−1(F ) : γ̂(ẋ, ẏ) = γ(x, y) < θ.

Therefore
inf

M∈bx supγ∈Γ
sup
F∈F

inf
N∈F

γ̂(M,N ) ≤ ε.

�

Note that the converse inequality need not be true. Any non-complete uniform
approach uniformity is a counter-example.
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Proposition 3.7. Let X be an approach uniform space. Then µv(X) ≤ µc(X).

Proof: Suppose µc(X) ≤ ε. Then for any θ ≥ ε :

sup
F∈Cθ(X)

inf
x∈X

αF(x) ≤ sup
F∈F(X)

inf
x∈X

αF(x) ≤ ε ≤ θ.

Therefore, µv(X) ≤ ε. �

Proposition 3.8. Let X be an approach uniform space. Then µpc(X)∨µv(X) ≤
µc(X) ≤ µtb(X) ∨ µv(X).

Proof: The first inequality is a combination of Proposition 2.14 and Proposi-
tion 3.7. In order to prove the second inequality, suppose µtb(X)∨µv(X) ≤ ε. If
F is an ultrafilter, then µtb(X) ≤ ε implies that F is ε-Cauchy. Since µv(X) ≤ ε,
we obtain inf

x∈X
αF(x) ≤ ε. Thus,

µc(X) = sup
F∈U(X)

inf
x∈X

αF(x) ≤ ε.

�

Proposition 3.9. Let X be an approach uniform space. Then 1/2µtb(X) ≤

µc(X̂) ≤ µtb(X) ∨ µv(X̂).

Proof: Observe that by Propositions 2.13 and 2.2,

1/2µtb(X) = 1/2µtb(X̂)

≤ µpc(X̂)

≤ µc(X̂)

≤ µtb(X̂) ∨ µv(X̂)

≤ µtb(X) ∨ µv(X̂).

�

From the results in this section too, different classical theorems concerning
uniform spaces can be deduced.

Corollary 3.10.

(a) A closed subspace of a complete uniform space is complete.
(b) A product of uniform spaces is complete iff each factor space is complete.
(c) A uniform space is compact if and only if it is totally bounded and com-
plete.

(d) A uniform space is totally bounded if and only if its completion is compact.

Proof: These theorems are consequences of Propositions 3.4, 3.5, 3.8 and 3.9
respectively. �
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