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On monotone nonlinear variational inequality problems
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Abstract. The solvability of a class of monotone nonlinear variational inequality prob-
lems in a reflexive Banach space setting is presented.
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1. Introduction

General theory of monotone variational inequalities has been applied to vari-
ous problems in applied mathematics, physics, engineering sciences, and others.
A closely associated notion of the complementarity involves several problems in
mathematical programming, game theory, economics, and mechanics. For more
details on general variational inequalities, we advise to consult [1], [4]–[14].
Let X be a reflexive real Banach space with dual X∗ and [w, x] denote a

continuous duality pairing between the elements w in X∗ and x in X . Let K

be a nonempty closed convex subset of X . Here we present the solvability of a
class of monotone nonlinear variational inequality (MNVI) problems: Determine
an element x in K for a given w in X∗ such that

(1.1) [Sx − Tx − w, v − x] + f(v)− f(x) ≥ 0 for all v ∈ K,

where S, T : K → X∗ are nonlinear operators, and f : X → (−∞,+∞] is convex
lower semicontinuous functional with f 6≡ ∞. Here S and T are, respectively,
p-monotone and p-Lipschitz continuous (or p-Lipschitzian).
Next, we recall some definitions needed for the work at hand.

Definition 1.1. An operator S : K → X∗ is said to be p-monotone if, for all
u, v ∈ K, there exist constants r > 0 and p > 1 such that

(1.2) [Su − Sv, u − v] ≥ r‖u − v‖p.

The inequality (1.2) implies that S is strictly monotone and coercive for p > 1, S
is strongly monotone for p = 2, and S is uniformly monotone for p ≥ 2.
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Definition 1.2. An operator T : K → X∗ is called p-Lipschitz continuous (or
p-Lipschitzian) if, for all u, v ∈ K, there exist constants k > 0 and p > 1 such
that

(1.3) [Tu − Tv, u − v] ≤ k‖u − v‖p.

Let us consider an example of p-Lipschitzian operators in the context of gen-
eralized pseudocontractions — a mild generalization of the pseudocontractions
introduced by Browder and Petryshyn [2] — in a Hilbert space H . Generalized
pseudocontractions are more general than Lipschitzian operators and unify certain
classes of operators.

Definition 1.3. An operator T : H → H is said to be a generalized pseudocon-
traction if, for all u, v ∈ H , there exists a constant k > 0 such that

(1.4) ‖Tu − Tv‖2 ≤ k2‖u − v‖2 + ‖Tu − Tv − k(u − v)‖2.

This is equivalent to

(1.5) 〈Tx − Ty, x − y〉 ≤ k‖x − y‖2,

where T : H → H is 2-Lipschitzian.

Example 1.4 ([JY]). Let K be a closed convex subset of a real Hilbert space
H , and let T : K → K be hemicontinuous and 2-Lipschitzian with a constant
0 < k < 1. Then T has a unique fixed point in K.

Definition 1.5. A multivalued mapping F : X → P (X) is called the KKM

mapping if, for every finite subset {u1, u2, . . . , un} of X , conv{u1, u2, . . . , un} is

contained in
n⋃

i=1
F (ui), where conv{A} is the convex hull of set A and P (X)

denotes the power set of X .

Before we present our main results, we need to recall some auxiliary results [3].

Lemma 1.6 ([3, Theorem 4]). Let Y be a convex set in a topological vector

space X , and let K be a nonempty subset of Y . For all x ∈ K, let F (x) be
a relatively closed subset of Y such that the convex hull of every finite subset

{x1, x2, . . . , xn} of K is contained in the corresponding union
n⋃

i=1
F (xi). If there

is a nonempty subset K0 of K such that the intersection
⋂

x∈K0
F (x) is compact

and K0 is contained in a compact convex subset of Y , then
⋂

x∈K

F (x) 6= ∅.
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Lemma 1.7 ([3, Corollary 1]). Let K be a nonempty set in a topological vector

space X . Let F : K → P (K) be a KKM mapping from K into the power set

of K. If F (u) is closed in X for all u ∈ K and is compact for at least one u ∈ K,

then
⋂

u∈K

F (u) 6= ∅.

We note that in Lemma 1.6 the hypothesis “
⋂

x∈K0

F (x) is compact” does

not rule out the possibility that it may be empty. However, the conclusion
“

⋂
x∈K

F (x) 6= ∅” does imply that
⋂

x∈K0

F (x) is nonempty. The compactness con-

dition in Lemma 1.7 is relaxed in Lemma 1.6.

2. The main results

Theorem 2.1. Let K be a convex subset of a reflexive real Banach space X with

dual X∗ and 0 ∈ K. Let S : K → X∗ be hemicontinuous and p-monotone and

let T : K → X∗ be hemicontinuous and p-Lipschitz continuous. Let us further

assume that f : K → (−∞,∞] is a convex functional with f(0) = 0, f(u) > 0
and f 6≡ ∞. Then, for a given w ∈ X∗, an element u in K is a solution of the

MNVI problem

(2.1) [Su − Tu − w, v − u] + f(v)− f(u) ≥ 0 for all v ∈ K

iff u is a solution of a new MNVI problem

(2.2) [Sv − Tv − w, v − u] + f(v)− f(u) ≥ c‖v − u‖p for all v ∈ K,

where c = r − k > 0 and p > 1. Here r is the p-monotonicity constant of S and

k is the p-Lipschitz continuity constant of T .

When S and T are monotone and antimonotone, respectively, and w = 0,
Theorem 2.1 reduces to [8, Lemma 1].

Corollary 2.2. Let K be a nonempty convex subset of X and let S : K → X∗

and T : K → X∗ both be hemicontinuous, and be monotone and antimono-

tone, respectively. Let f be convex with f 6≡ ∞. Then the following variational
inequality problems are equivalent:

u ∈ K : [Su − Tu, v − u] + f(v)− f(u) ≥ 0 for all v ∈ K;(2.3)

u ∈ K : [Sv − Tv, v − u] + f(v)− f(u) ≥ 0 for all v ∈ K.(2.4)

For T = 0 and f an indicator functional (that is, f = 0 on K and f = ∞
off K), Theorem 2.1 reduces to
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Corollary 2.3. Let K be a nonempty closed convex subset of a reflexive real

Banach space X with dual X∗ and let S : K → X∗ be hemicontinuous and

p-monotone. Then the MNVI problem

(2.5) u ∈ K : [Su − w, v − u] ≥ 0 for all v ∈ K,

has a unique solution iff the MNVI problem

(2.6) u ∈ K : [Sv − w, v − u] ≥ r‖v − u‖p for all v ∈ K,

has a unique solution for each w ∈ X∗.

Proof of Theorem 2.1: Suppose that (2.1) holds. Since S is p-monotone and
T is p-Lipschitz continuous, this implies that

[(S − T )v − (S − T )u, v − u] ≥ c‖v − u‖p

or

[(S − T )v, v − u] ≥ c‖v − u‖p + [(S − T )u, v − u]

≥ c‖v − u‖p + [w, v − u] + f(u)− f(v).

This implies that

[(S − T )v − w, v − u] + f(v)− f(u) ≥ c‖v − u‖p.

Conversely, if (2.2) holds, then by choosing an element v with f(v) < +∞, we
find that f(u) is finite. Let x be an element of K such that vt = (1 − t)u + tx

satisfies (2.2) for 0 < t < 1. Then, it follows that vt − u = t(x − u) and, as a
result, we find that

[(S − T )vt − w, vt − u] + f(vt)− f(u) ≥ c‖vt − u‖p

or
t[(S − T )vt − w, x − u] + f((1− t)u+ tx)− f(u) ≥ c‖vt − u‖p.

Since f is convex, this implies that

t[(S − T )vt − w, x − u] ≥ c‖vt − u‖p + f(u)− (1− t)f(u)− tf(x)

= c‖t(x − u)‖p + t(f(u)− f(x)).

Thus, given that t > 0, we find

[(S − T )vt − w, x − u] + f(x)− f(u) ≥ ctp−1‖x − u‖p.

Since the hemicontinuity of S and T implies the hemicontinuity of S −T , we find
that (S − T )vt converges weakly to (S − T )u in X∗ as t → 0. Hence, we obtain

[(S − T )u − w, x − u] + f(x)− f(u) ≥ 0 for all x ∈ K,

that is, the variational inequality (2.1) holds. �
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Theorem 2.4. Let K be a nonempty closed convex subset of a reflexive real

Banach spaceX with 0 ∈ K. Let S : K → X∗ be hemicontinuous and p-monotone

with constant r > 0, T : K → X∗ be hemicontinuous and p-Lipschitz continuous

with constant k > 0, and f : X → (−∞,+∞] be convex lower semicontinuous
with f 6≡ ∞. Then the MNVI problem

(2.7) u ∈ K : [Su − Tu − w, v − u] + f(v)− f(u) ≥ 0 for all v ∈ K

has a unique solution for each w ∈ X∗.

For w = 0, S strictly monotone, T strictly antimonotone, and K bounded,
Theorem 2.4 reduces to [8, Theorem 3].

Corollary 2.5. Let K be a nonempty bounded closed convex subset of X , and

S, T : K → X∗ both be hemicontinuous and be strictly monotone and antimono-

tone, respectively. Let f : X → (−∞,+∞] be convex lower semicontinuous with
f 6≡ ∞. Then the variational inequality problem

(2.8) u ∈ K : [Su − Tu, v − u] + f(v)− f(u) ≥ 0 for all v ∈ K

has a unique solution.

When T = 0 and f is an indicator functional on K (that is, f = 0 on K and
f =∞ off K), Theorem 2.4 reduces to [5, Theorem 2].

Corollary 2.6. Let X be a reflexive real Banach space with dual X∗ and K be

a nonempty closed convex subset X . Let S : K → X∗ be hemicontinuous and

p-monotone. Then the variational inequality problem

(2.9) u ∈ K : [Su − w, v − u] ≥ 0 for all v ∈ K

has a unique solution for each w ∈ X∗.

Proof of Theorem 2.4: We first prove the existence of the solution of the
MNVI problem (2.7). Let us define the multivalued mappings F , G : K → P (K)
by

F (v) = {u ∈ K : [Su − Tu − w, v − u] + f(v)− f(u) ≥ 0} for all v ∈ K

and

G(v) = {u ∈ K : [Sv − Tv −w, v − u] + f(v)− f(u) ≥ c‖v − u‖p} for all v ∈ K,

respectively. We show by a contradiction approach that F is a KKM mapping.

Assume {v1, v2, . . . , vn} is in K,
n∑

i=1
ti = 1, ti > 0 and v =

n∑
i=1

tivi is not in

n⋃
i=1

F (vi). Then for u = v,

[Su − Tu − w, vi − u] < f(u)− f(vi) for any i = 1, . . . , n.
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Thus, we find

0 = [Su − Tu − w, v − u] = [Su − Tu − w,

n∑

i=1

tivi − u]

=

n∑

i=1

ti[Su − Tu − w, vi − u] <

n∑

i=1

ti(f(u)− f(vi))

= f(u)−
n∑

i=1

tif(vi) ≤ f(u)− f(

n∑

i=1

tivi)

= f(u)− f(v) = 0,

a contradiction. This implies that conv{v1, v2, . . . , vn} is contained in
n⋃

i=1
F (vi).

Next, to show F (v) ⊂ G(v) for all v ∈ K, let u belong to F (v). Then using
the p-monotonicity of S and p-Lipschitz continuity of T , we obtain

[(S − T )v − (S − T )u, v − u] ≥ c‖v − u‖p.

Thus,

[(S − T )v, v − u] ≥ c‖v − u‖p + [(S − T )u, v − u] or

[(S − T )v − w, v − u] ≥ c‖v − u‖p + [(S − T )u − w, v − u]

≥ c‖v − u‖p + f(u)− f(v) or

[(S − T )v − w, v − u] + f(v)− f(u) ≥ c‖v − u‖p for all v ∈ K.

This implies that u belongs to G(v) and, consequently, G is a KKM mapping
on K. Hence, by Theorem 2.1, we find

⋂
v∈K

F (v) =
⋂

v∈K

G(v).

Since f is lower semicontinuous and the duality pairing [·, ·] is continuous, it
follows that G(v) is closed for all v ∈ K. Clearly, K is a weakly compact set in
X with weak topology and, as a result, G(v) is weakly compact in K since G(v)
is contained in K for each v ∈ K. Now, by Lemma 1.7, we find

⋂

v∈K

F (v) =
⋂

v∈K

G(v) 6= ∅.

Hence, there exists an element u0 in K such that

[Su0 − Tu0 − w, v − u0] + f(v)− f(u0) ≥ 0 for all v ∈ K.

To show the uniqueness of the solution, let x1, x2 be two solutions of the MNVI
problem (2.7), that is,

(2.10) [Sx1 − Tx1 − w, v − x1] + f(v)− f(x1) ≥ 0 for all v ∈ K,
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and

(2.11) [Sx2 − Tx2 − w, v − x2] + f(v)− f(x2) ≥ 0 for all v ∈ K.

Setting v = x2 in (2.10) and v = x1 in (2.11), and adding, we obtain

−[Sx1 − Tx1 − w, x1 − x2] + [Sx2 − Tx2 − w, x1 − x2] ≥ 0,

or
−[Sx1 − Sx2, x1 − x2] + [Tx1 − Tx2, x1 − x2] ≥ 0,

or
[Sx1 − Sx2, x1 − x2] ≤ [Tx1 − Tx2, x1 − x2].

Since S is p-monotone with constant r > 0 and T is p-Lipschitz continuous
with constant k > 0, this implies that

r‖x1 − x2‖
p ≤ [Sx1 − Sx2, x1 − x2] ≤ [Tx1 − Tx2, x1 − x2] ≤ k‖x1 − x2‖

p.

It follows that
(r − k)‖x1 − x2‖

p ≤ 0.

Since r − k > 0, we find that x1 = x2. This completes the proof. �

Acknowledgment. The author wishes to express his sincere appreciation to the
referee for some valuable suggestions leading to the revised version.

References

[1] Browder F.E., On the unification of the calculus of variations and the theory of monotone
nonlinear operators in Banach spaces, Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 419–425.

[2] Browder F.E., Petryshyn W.V., Construction of fixed points of nonlinear mappings in
Hilbert spaces, J. Math. Anal. Appl. 20 (1967), 197–228.

[3] Fan K., Some properties of convex sets related to fixed point theorems, Math. Annal. 266
(1984), 519–537.

[4] Glowinski R., Numerical Methods for Nonlinear Variational Problems, Springer-Verlag,
New York, 1984.

[5] Goeleven D., Motreanu D., Eigenvalue and dynamic problems for variational and hemi-
variational inequalities, Comm. Appl. Nonlinear Anal. 3 (4) (1996), 1–21.

[6] Noor M.A., Mixed variational inequalities, Appl. Math. Lett. 3 (1990), 73–75.
[7] Noor M.A., General auxiliary principle for variational inequalities, PanAmerican Math. J.
4 (1) (1994), 27–44.

[8] Siddiqi A.H., Ansari Q.H., Kazmi K.R., On nonlinear variational inequalities, Indian J.
Pure Appl. Math. 25 (9) (1994), 969–973.

[9] Szulkin A., Positive solutions of variational inequalities: A degree-theoretic approach, J.
Diff. Equ. 57 (1985), 90–111.

[10] Verma R.U., Iterative algorithms for variational inequalities and associated nonlinear equa-
tions involving relaxed Lipschitz operators, Appl. Math. Lett. 9 (4) (1996), 61–63.

[11] Verma R.U., Generalized variational inequalities involving multivalued relaxed monotone
operators, Appl. Math. Lett., to appear.



98 R.U.Verma

[12] Verma R.U., Nonlinear variational and constrained hemi-variational inequalities involving
relaxed operators, Z. Angew. Math. Mech. 77 (1997), 387–391.

[13] Yao J.-C., Applications of variational inequalities to nonlinear analysis, Appl. Math. Lett.
4 (1991), 89–92.

[14] Zeidler E., Nonlinear Functional Analysis and its Applications IV, Springer-Verlag, New
York, 1988.

International Publications, 12046 Coed Drive, Orlando, Florida 32826, USA

Istituto per la Ricerca di Base, Division of Mathematics, I-86075 Monteroduni
(IS), Molise, Italy

(Received February 3, 1997, revised August 6, 1997)


		webmaster@dml.cz
	2012-04-30T17:45:58+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




