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Convergence in compacta and linear Lindelöfness

A.V. Arhangel’skii, R.Z. Buzyakova

Abstract. Let X be a compact Hausdorff space with a point x such that X \ {x} is
linearly Lindelöf. Is then X first countable at x? What if this is true for every x in X?
We consider these and some related questions, and obtain partial answers; in particular,
we prove that the answer to the second question is “yes” when X is, in addition, ω-
monolithic. We also prove that if X is compact, Hausdorff, and X \ {x} is strongly
discretely Lindelöf, for every x in X, then X is first countable. An example of linearly
Lindelöf hereditarily realcompact non-Lindelöf space is constructed. Some intriguing
open problems are formulated.

Keywords: point of complete accumulation, linearly Lindelöf space, local compactness,
first countability, κ-accessible diagonal

Classification: 54F99, 54D30, 54E35

Let X be a space, and P a subset of X . The Hušek number of P in X , denoted
by Hus(P,X), is the smallest infinite cardinal number τ satisfying the following
condition:

(H) for every subset A of X \ P such that the cardinality of A is a regular
cardinal number which is not less than τ , there is an open neighborhood U of P
in X such that |A \ U | = |A|.

Clearly,Hus(P,X) is always defined. This definition is motivated by the notion
of a space without κ-accessible diagonal introduced by M. Hušek (see [9] and [10]).
The Hušek number is closely related to the pseudocharacter ψ(P,X) of P in X ,
which is the smallest infinite cardinal number τ such that there exists a family γ
of open sets in X such that ∩γ = P and |γ| ≤ τ . Indeed, we obviously have:

Proposition 1. For any space X and any subset P of X , the Hušek num-

ber Hus(P,X) does not exceed the first cardinal number which is greater than
ψ(P,X).

If P = {x} for some x ∈ X , we write Hus(x,X) instead of Hus({x}, X),
and call Hus(x,X) the Hušek number of X at x. Of course, the Hušek number
Hus(X) of a space X is the supremum of Hus(x,X), when x runs over X .
The following assertion is obvious:

Proposition 2. If X is a compact Hausdorff space, and x ∈ X , then the Hušek
number ofX at x is the smallest infinite cardinal number τ satisfying the following
condition:
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(NC) for every infinite subset A of X such that the cardinality |A| of A is a
regular cardinal number which is not less than τ , there is a point of complete

accumulation in X different from x.

An infinite subset A of a space X is said to converge to a point x ∈ X , if
for every open neighborhood U of x, the cardinality of A \ U is smaller than the
cardinality of A. Clearly, we have:

Proposition 3. Hus(x,X) is the smallest infinite cardinal number τ such that if
an infinite subset A ⊂ X of regular cardinality converges to x, then the cardinality

of A is less than τ .

It is well known that a space X is compact, if and only if for every infinite
subset of X there exists a point of complete accumulation ([1]). On the other
hand, the following condition (introduced in [1]):

(CAP) every uncountable subset A of X of regular cardinality has a point of
complete accumulation in X ,

does not characterize Lindelöf spaces. A non-normal Tychonoff space of this
kind was constructed by A.S. Mischenko [12]. The spaces satisfying (CAP) were
later renamed into linearly Lindelöf, or chain-Lindelöf spaces (see [13]), since the
condition (CAP) turned out to be equivalent to the following requirement: every
open covering γ of X which is a chain (that is, for any two elements of γ, one is
a subset of the other one) contains a countable subcovering of X .
All spaces considered are assumed to be T1. In what follows, τ is an infinite

cardinal number, which we also interpret as the first ordinal number of cardina-
lity τ .
Proposition 2 shows that the notion of Hušek number is closely related to the

notion of a linearly Lindelöf space. Indeed, we obviously have:

Proposition 4. Let X be a compact Hausdorff space and x ∈ X . Then

Hus(x,X) ≤ ω1, if and only if the space X \ {x} is linearly Lindelöf.

One can compare this fact with the following one:

Theorem 5. If X is a compact Hausdorff space, x ∈ X , and Hus(x,X) = ω,

then the point x is isolated in X .

Proof: Let Y = X \ {x}. Since Hus(x,X) = ω, it follows from Proposition 2
that the space Y is countably compact. On the other hand, Proposition 4 implies
that Y is linearly Lindelöf. Every linearly Lindelöf countably compact space is
compact. Therefore, Y is compact. Since X is Hausdorff, Y is closed in X . It
follows that x is isolated in X . �

Theorem 5 and Proposition 4 motivate the following question:

Question 1. Let X be a compact Hausdorff space, and x ∈ X , such that the
space Y = X \ {x} is linearly Lindelöf (that is, Hus(x,X) ≤ ω1). Is then X first
countable at x? Is this true at least under (CH)?
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If we assume that the condition above is satisfied not at a fixed point x but for
all x in X , then a consistent answer is available:

Theorem 6. If (CH) holds, and X is a compact Hausdorff space such that
X \ {x} is linearly Lindelöf for each x ∈ X (that is, Hus(X) ≤ ω1), then X is
first countable.

Proof: Indeed, in view of Propositions 3 and 4, this theorem is contained in the
following result of Juhász (see [11]): under (CH), if X is a compact Hausdorff
space, then either X is first countable, or there is a subset A of X such that

|A| = ω1 and A converges to some point x in X. �

Theorem 6 makes Question 1 especially interesting.
We are going to establish some results in the direction of Question 1 using our

recent results in [5].
A space X is weakly ω-monolithic, if the closure of any countable discrete

subspace of X has a countable network.

Theorem 7. Let X be a weakly ω-monolithic compact Hausdorff space such that

Hus(X) ≤ ω1 (that is, X \ {x} is linearly Lindelöf for each x ∈ X). Then X is
first countable.

Proof: First, we need the next result:

Lemma 8. If X is a compact Hausdorff space such that X \ {x} is linearly
Lindelöf for each x ∈ X , then the tightness of X is countable.

Proof of the Lemma: Assume the contrary. Then, according to a fundamental
result of Juhász and SzentMiclossy (see [11]), there is a set A of cardinality ω1
converging to a point x ∈ X , which contradicts Proposition 3. �

We continue the proof of Theorem 7. Let x be any point ofX , and Y = X\{x}.
By Lemma 8 and the assumptions, Y is a weakly ω-monolithic linearly Lindelöf
space of countable tightness (note that weak ω-monolithicity and countable tight-
ness are both inherited by subspaces). Now we apply the next result from [5]:

Theorem 9. Every weakly ω-monolithic linearly Lindelöf space of countable

tightness is Lindelöf.

It follows from Theorem 9 that the space Y is Lindelöf. Then Y is σ-compact,
since Y is locally compact, which implies that {x} is a Gδ-set in X . There-
fore, since X is compact and Hausdorff, X is first countable at x. The proof of
Theorem 7 is complete. �

A space X is ω1-Lindelöf, if every open covering γ of X such that |γ| ≤ ω1
contains a countable subcovering. Every linearly Lindelöf space is ω1-Lindelöf.
The proof of Theorem 7 easily generalizes to the case when X \{x} is ω1-Lindelöf
for each x ∈ X .
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Recall that a space X is said to be strongly discretely Lindelöf, if the closure of
every discrete subspace of X is Lindelöf [4]. It is still an open question, whether
every strongly discretely Lindelöf Tychonoff space is Lindelöf ([4]). On the other
hand, every strongly discretely Lindelöf space is linearly Lindelöf ([4]).
A point x of a space X will be called a dl-point (an ll-point), if the space

X \ {x} is strongly discretely Lindelöf (linearly Lindelöf). Every dl-point is an
ll-point, so the next result would become a corollary from Theorem 6, if we could
drop CH in it.

Theorem 10. Let X be a compact Hausdorff space. Then X is first countable,

if and only if every point of X is a dl-point.

Proof: Clearly, we only have to prove that if every point of X is a dl-point,
then X is first countable. By Lemma 8, the tightness of X is countable. Fix
x ∈ X , and put Y = X \ {x}. Then Y is a strongly discretely Lindelöf Tychonoff
space of countable tightness. It was shown in [5] that every such space is Lindelöf.
Therefore, Y is Lindelöf. Since X is compact and Hausdorff, it follows that X is
first countable at x. �

Question 2. Is every locally compact linearly Lindelöf (strongly discretely Lin-
delöf) Hausdorff space Lindelöf?

Question 3. Is every normal locally compact linearly Lindelöf space Lindelöf?

Since every countably paracompact linearly Lindelöf Tychonoff space is Lin-
delöf (see [13], [4]), to answer Question 3 in negative, we have to produce an
especially nice Dowker space (see [13] about Dowker spaces).

Question 4. Let X be a compact Hausdorff space such that Hus(X) ≤ ω1. Is
then true that the cardinality of X is not greater than 2ω?

Note that the answer is “yes” under (CH) (see Theorem 6). Clearly, a positive
answer to Question 4 would give a generalization of the theorem on cardinality of
first countable compacta in [2].

It is worthwhile to note that compactness in Theorem 7 is needed mainly to
prove that the tightness of X is countable. Indeed, we have the following corollary
of Theorem 9:

Corollary 11. If X is a Tychonoff weakly ω-monolithic space of countable tight-

ness, then every ll-point in X is a Gδ in X .

Under (CH) one can drop in Theorem 9 the assumption that X is weakly ω-
monolithic and replace linear Lindelöfness by ω1-Lindelöfness (see [5]). Therefore,
the following is true:

Theorem 12. Under (CH), if X is a Tychonoff space of countable tightness, and
x ∈ X is such that X \ {x} is ω1-Lindelöf, then x is a Gδ in X .
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The questions we consider in this article turn out to be naturally related to
the notion of a c-sequential space (see [3]). A space X is called c-sequential, if for
every closed subspace Y of X and every non-isolated point y of the space Y , there
exists a sequence in Y \{y} converging to y. Every c-sequential compact Hausdorff
space is countably tight (see [11]), and, under Martin’s Axiom, sequential (see [3]).
We have:

Theorem 13. Every countably compact Hausdorff space X such that Hus(X) ≤
ω1 is c-sequential.

Proof: Let Y be a closed subspace of X and y a non-isolated point in Y . Then
the set A = Y \ {y} is not closed in Y ; therefore, the subspace A is not compact.
Since every countably compact linearly Lindelöf space is compact, it follows that
A is not countably compact. Take any sequence (yn : n ∈ ω) which does not have
accumulation points in A. Then (yn : n ∈ ω) converges to y, since Y is countably
compact. �

Corollary 14. Under Martin’s Axiom, every compact Hausdorff space X such

that Hus(X) ≤ ω1, is sequential.

Question 5. Is it true in ZFC that every compact Hausdorff space X such that
Hus(X) ≤ ω1, is sequential?

Example 15. We will construct a consistent example of a linearly Lindelöf he-
reditarily realcompact non-Lindelöf space H , answering a question in [5]. First,
we will describe a linearly Lindelöf Tychonoff non-Lindelöf space X which was
introduced independently by R. Buzyakova (see [5]) and G. Gruenhage. Let D be
the standard discrete two-point set, with elements 0 and 1, and τ = ℵω, that is,
τ is the first uncountable cardinal number cofinal to ω. Fix a set A of cardinality
τ , and consider the product space DA, with the usual product topology. For a
point x ∈ DA we denote by Ax the set of all a ∈ A such that the corresponding
coordinate xa of x is 1. Let X be a subspace of D

A consisting of all points x ∈ DA

such that |Ax| < τ .
Clearly, X is Tychonoff. It is easy to see that X is pseudocompact, but not

compact. Therefore, X is not Lindelöf.
To see that X is linearly Lindelöf, take any uncountable subset B of X such

that |B| is a regular cardinal number. Clearly, the weight of X is not greater
than τ . Therefore, since τ is not regular, we only have to consider the case when
|B| < τ . It is shown in [5] that then there exists a compact subspace K of X such
that |K ∩B| = |B|. Now it is clear that B has a point of complete accumulation
in K. Thus, X is linearly Lindelöf.
Now we will construct the space H ; here we use an idea of R. Haydon [7].
Let I be the closed unit interval of the real line, and Z = X × I. We denote

by π the natural projection of Z onto I. Let us consider the following condition
consistent with ZFC:
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(A) 2ω = 2τ for τ = ℵω.

We are going to show that if (A) is satisfied, then there exists a subspace H
of Z such that the restriction of π to H is a one-to-one mapping of H , and the
other projection maps H onto X .
We shall do this by transfinite recursion along the ordinal number 2ω. In the

construction τ stands for ℵω. Let P be the family of all compact subspaces K
of Z such that π(K) is uncountable. The weight of Z is τ = ℵω; therefore, the
cardinality of P is not greater than 2τ (see [8]). From (A) it follows that |P| ≤ 2ω.
Thus, we can represent P in the form:

P = {Kα : α < 2
ω}.

Assume now that for some α < 2ω and every β < α a point zβ = (xβ , yβ) ∈ Kβ is
already chosen. Note that |π(K)| = 2ω for every K ∈ P . Indeed, if K ∈ P , then
π(K) is an uncountable compact subspace of the interval I; therefore |π(K)| = 2ω.
Thus, |π(Kα)| = 2ω. We putMα = {yβ : β < α}. Since |Mα| < 2ω, we can choose
a point zα = (xα, yα) ∈ Kα such that yα ∈ π(Kα) \Mα.
Let H be the set of the points of the transfinite sequence {(xα, yα) : α < 2

ω}
defined in this way. Clearly, the restriction of π to H is a one-to-one continuous
mapping of H into I. Therefore the space H is hereditarily realcompact (see [6]).
Let us show that H is linearly Lindelöf. Let A be any uncountable subset of H

of regular cardinality. If |A| > ℵω, then, since the weight of H is ℵω, there exists
a point of complete accumulation for A in H .
It remains to consider the case when |A| < ℵω. Let p be the projection mapping

of Z onto X . There are two possibilities:

Case 1. |p(A)| < |A|. Then, since |A| is regular, there is x ∈ X such that
|({x} × I) ∩A| = |A|.

Case 2. |p(A)| = |A|. Since |p(A)| < ℵω and |p(A)| is regular, there is
a compact subspace B of X such that |B ∩ p(A)| = |p(A)| = |A|. Then B × I is
a compact subspace of Z such that |(B × I) ∩A| = |A|.

Thus, in any case there exists a compact subspace F of Z such that |F ∩A| =
|A|. Since A ⊂ H , π is one-to-one on A; therefore, the set L1 = π(F ∩ A) is an
uncountable subset of I. Let C be the set of all points of complete accumulation
of L1 in I. Clearly, C is an uncountable compact subspace of I, and C ⊂ π(F ).
Take any c ∈ C, and consider S = {z ∈ F : π(z) = c}. Since the restriction of

π to F is a perfect mapping, at least one point of the set S must be a point of
complete accumulation of the set A1 = A ∩ F . Therefore, the set K of all points
of complete accumulation of A1 in F satisfies the following condition:

π(K) = C.

It follows that π(K) is uncountable. Clearly, K is a compact subset of Z. Thus,
K ∈ P . Then, by the definition of H , H ∩ K 6= ∅, and any point of H ∩ K is
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a point of complete accumulation of A. Therefore, H is linearly Lindelöf. The
space X is a continuous image of H , since {x} × I ∈ P . Since X is not Lindelöf,
it follows that H is not Lindelöf.

It is easy to modify H in Example 15 in such a way that the image of H under
the projection π would coincide with I (just fix a ∈ X and add to H the subset
E of {a} × I such that π(E) = I \ π(H)). Therefore, we have:

Proposition 16. Under the assumption (A), there is a Tychonoff topology T
on the closed unit interval I such that the space (I, T ) is Tychonoff, hereditarily
realcompact, linearly Lindelöf and not Lindelöf.

Note that we cannot prove Proposition 16 in ZFC, since under (CH) every
linearly Lindelöf topology on I containing the usual topology of I is obviously
Lindelöf.

Question 6. Can one add to the properties of (I, T ) in Proposition 16 local
compactness (and local metrizability or, at least, first countability)?

Question 7. Is every locally compact ω1-Lindelöf Hausdorff space of countable
tightness Lindelöf (in ZFC)?

Note that if there were a consistent example of a non-metrizable compact Haus-
dorff space without ω1-accessible diagonal (that is, with a small diagonal)— which
would provide an answer to a famous problem of M. Hušek (see [9]), — then the
answer to Question 7 would be in negative.
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