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On the positivity of semigroups of operators

Roland Lemmert, Peter Volkmann

Abstract. In a Banach space E, let U(t) (t > 0) be a C0-semigroup with generating
operator A. For a cone K ⊆ E with non-empty interior we show: (⋆) U(t)[K] ⊆ K

(t > 0) holds if and only if A is quasimonotone increasing with respect to K. On the
other hand, if A is not continuous, then there exists a regular cone K ⊆ E such that A

is quasimonotone increasing, but (⋆) does not hold.
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1. Introduction

In Section 2 below we shall prove the result mentioned in the first two phrases
of the abstract, and this in the more general context of a Hausdorff topological
vector space E: By a wedge we mean a non-empty, closed, convex set K in E
satisfying λK ⊆ K for λ ≥ 0. Then θ ∈ K follows, θ denoting the zero-element
of E. The wedge K is called a cone, if

(1) K ∩ (−K) = {θ}.

In any case, for x, y ∈ E we set

(2) x ≤ y ⇐⇒ y − x ∈ K; x ≪ y ⇐⇒ y − x ∈ IntK.

Further notations are E⋆ for the topological dual of E and

K⋆ = {ϕ|ϕ ∈ E⋆, ϕ(x) ≥ 0 (x ∈ K)}.

Here E is supposed to be a real space, which is not a serious restriction: If E is a
complex space, we consider ER (i.e. we restrict the scalars to R), and we use the
formula

(ER)
⋆ = {Re ϕ|ϕ ∈ E⋆}.

Now let D be a linear subspace of E and let A : D → E be linear. This operator
is called quasimonotone increasing with respect to the wedge K ⊆ E (cf. [10]), if
the following holds true:

(3) x ∈ D ∩ K, ϕ ∈ K⋆, ϕ(x) = 0 =⇒ ϕ(Ax) ≥ 0.
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In Section 3 we consider ordered Banach spaces E, where the order cone K is
normal (in the sense of M. Krĕın [8]) and solid (i.e., IntK 6= ∅). In the final
Section 4 we construct counter-examples: Look at (3) with a cone K in a Banach
space E. If ϕ 6= 0, then x ∈ D is a support-point of K. Therefore, if K has no
support-points x 6= 0 in D, then (3) holds for arbitrary linear operators A : D →
E, i.e., any such operator is quasimonotone increasing with respect to K.

To carry out our construction, we were searching in an incomplete normed
space D for a bounded, closed, convex set C 6= ∅ without support-points. In 1985,
Borwein and Tingley [3] conjectured that such a C exists in every incomplete D.
So we asked Professor Borwein by e-mail on recent progress on this conjecture.
He answered immediately that Fonf [4] had given a positive solution. We highly
appreciate Professor Borwein’s quick reaction.

There exists an extensive literature on positive semigroups of operators; cf.,
e.g., Arendt [1] or Arendt et al. [2]. Concerning recent research in this direction
we refer to [5]. For some notions occurring in the present paper, cf. also the books
of Krasnosel’skĭı [7] and S. Krĕın [9], respectively.

2. Considerations in topological vector spaces

Let E be a Hausdorff topological vector space, and let K be a wedge in E; the
relations ≤ and ≪ are defined by (2). Furthermore, let A : D → E be a linear
operator, where D ⊆ E. If x ∈ D, we consider the initial value problem

(4) u(0) = x, u′ = Au

for differentiable functions

(5) u : [0, T )→ D

(0 < T ≤ ∞).

Theorem 1. (A) For any x ∈ D ∩ K suppose (4) to have a solution

(6) u : [0, T )→ K

(where T > 0 may depend upon x). Then A is quasimonotone increasing.

(B) If

(7) D ∩ IntK 6= ∅,

A is quasimonotone increasing, and x ∈ D ∩ K, then (6) is true for any solution
(5) of (4).

Proof: (A) As in (3), suppose

x ∈ D ∩ K, ϕ ∈ K⋆, ϕ(x) = 0.
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To show
ϕ(Ax) ≥ 0,

take a solution (6) of (4). Then

ϕ(Ax) = ϕ(Au(0)) = ϕ(u′(0)) = lim
t↓0

ϕ(u(t))− ϕ(u(0))

t

= lim
t↓0

ϕ(u(t))− ϕ(x)

t
= lim

t↓0

1

t
ϕ(u(t)) ≥ 0,

the last inequality being a consequence of (6).

(B) Assume (7) to hold, and let A be quasimonotone increasing. Choose p ∈
D ∩ IntK, and choose λ > 0 such that

(8) Ap ≪ λp.

Suppose x ∈ D ∩ K, and let the function (5) be a solution of (4). Our aim is to
show

(9) u(t) ∈ K (0 ≤ t < T ).

For ε > 0 put

(10) wε(t) = u(t) + εeλtp (0 ≤ t < T ).

Then wε(0) = u(0) + εp ∈ IntK, hence

(11) θ ≪ wε(0).

Furthermore,

w′
ε(t)− Awε(t) = u′(t) + λεeλtp − Au(t)− εeλtAp

= εeλt(λp − Ap),

and therefore (8) implies

(12) θ ≪ w′
ε(t)− Awε(t) (0 ≤ t < T ).

A being quasimonotone increasing, the inequalities (11), (12) imply that wε can
be estimated from below by the trivial solution v(t) ≡ θ of the differential equation
in (4) (cf. [10]):

θ ≪ wε(t) (0 ≤ t < T ).

We substitute for wε(t) by (10); then ε ↓ 0 gives (9). �

Remark 1. If K is a cone, then in case (B) of Theorem 1 the initial value
problem (4) has at most one solution (for arbitrary x ∈ D): Consider a solution
u : [0, T ) → D of (4) with x = θ; (B) implies u(t) ∈ K and −u(t) ∈ K for
0 ≤ t < T , hence u(t) ≡ θ because of (1).

Remark 2. If E is a Banach space and A : E → E is linear, continuous (so
D = E), then (B) also is true without the hypothesis (7); i.e., the wedge K need
not to be solid in this case (cf. [11], [12]).
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3. Considerations in Banach spaces

We start with an example: Let E = R
3 be ordered by means of the cone

K =
{

(ξ, η, ζ)|ζ ≥
√

ξ2 + η2
}

.

The natural identification of E⋆ with E yields K⋆ = K, and then it is easy to
show that

A =





0 0 1
0 0 0
1 0 0





defines a quasimonotone increasing operator A : R3 → R
3. With I denoting the

identity on R
3, the inclusion

(13) (A+ λI)(K) ⊆ K

holds for no real λ. On the other hand, linear operators fulfilling (13) (for at least
one λ) are always quasimonotone increasing.

Now let E be an arbitrary Banach space, and let A : D → E be linear, D
being dense in E. Concerning the initial value problem (4), we formulate three
conditions (H0), (H1), (H2) (cf. S. Krĕın [9]):

(H0) For any x ∈ D, (4) has a solution u : [0,∞)→ D.

(H1) For any x ∈ D, (4) has a unique solution

u(·) = U(·)x : [0,∞)→ D.

(H2) Condition (H1) holds, and

(14) xn → θ in D =⇒ U(t)xn → θ (t > 0).

If (H1) holds, then the operators

U(t) : D → D (t > 0)

are linear. Under condition (H2) they are also continuous, hence there is a unique
linear, continuous continuation

(15) U(t) : E → E (t > 0)

of them. If (H2) holds with (14) uniformly satisfied on each finite interval (0, T ],
then the operators (15) form a C0-semigroup (cf. S. Krĕın, loc. cit.).
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Theorem 2. Suppose the Banach space E to be ordered by a solid, normal cone
K, and let A : D → E (D = E) be a linear, quasimonotone increasing operator
fulfilling (H0). Then (H2) is true, and (14) holds uniformly on each finite interval
(0, T ].

Proof: D = E and IntK 6= ∅ imply (7). Then Remark 1 implies (H1), and (B)
of Theorem 1 implies

(16) U(t)[D ∩ K] ⊆ K (t > 0).

We choose p ∈ D∩ IntK. The normality of K implies the boundedness (in norm)
of the order-interval

[−p, p] = {x|x ∈ E,−p ≤ x ≤ p}.

This set is also closed, convex, symmetric, and we have θ ∈ Int[−p, p]. Therefore
(after equivalent renorming of E, if necessary) we can assume that [−p, p] is the
closed unit ball of E:

(17) [−p, p] = S(θ; 1) = {x|x ∈ E, ‖x‖ ≤ 1}.

For 0 < T < ∞ the sets {U(t)p|0 < t ≤ T } are bounded, so there are numbers
R = R(T ) > 0 such that

(18) U(t)p ∈ S(θ;R) = [−Rp, Rp] (0 < t ≤ T ).

Then

(19) ‖U(t)x‖ ≤ R (x ∈ D, ‖x‖ ≤ 1, 0 < t ≤ T ),

and therefore (14) holds uniformly on (0, T ]. To show (19), consider x ∈ D,
‖x‖ ≤ 1; (17) implies

−p ≤ x ≤ p,

then (16) yields

−U(t)p ≤ U(t)x ≤ U(t)p (t > 0),

and because of (18) we get (19). �

Remark 3. For the operators (15) we can write (16) in the following form:

U(t)[K] ⊆ K (t > 0).
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4. Construction of counter-examples

Again let E be a Banach space, and let A : D → E be linear, where

D 6= D = E,(20)

A 6= λI|D (λ ∈ R).(21)

We suppose (H0) to be satisfied.
We shall construct a cone K ⊆ E having the following two properties:

(I) A is quasimonotone increasing with respect to K;
(II) there is a solution u : [0,∞) → D of (4) satisfying u(0) ∈ K, but such

that the inclusion {u(t)|t ≥ 0} ⊆ K does not hold.

Observe that from (H0) and (21) we get the existence of a solution u : [0,∞)→ D
of (4), such that for (at least) one t > 0

a = u(0) and b = u(t)

are linear independent elements of D. If some cone K satisfies

(22) a ∈ K, b /∈ K,

then (II) holds.

(20) implies D to be an incomplete normed space. Let C be a nonvoid,
bounded, closed, convex subset of D without support-points (cf. Fonf [4]). The
points a, b of D being linearly independent, we can suppose

(23) a ∈ C, C ∩ Rb = ∅.

Denote by C the closure of C in E. Then

(24) K =
⋃

λ≥0

λC

is a cone in E (which is regular in the sense of Krasnosel’skĭı [6]), and because of
(23) we have (22), hence (II). Property (I), i.e. the quasimonotonicity of A with
respect to the cone (24), follows from the considerations in Section 1.

Remark 4. Let E be a Banach space, and suppose A : D → E to be a densely
defined closed, linear operator, which generates a C0-semigroup. There are two
possibilities:

1. D 6= D: Then A is not continuous and (20), (21), (H0) hold, hence there exists
a cone K ⊆ E having the properties (I), (II).

2. D = D: Then A : E → E is continuous, and there is no wedge K ⊆ E having
the properties (I), (II) (cf. Remark 2 above).
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[2] Arendt W., Grabosch A., Greiner G., Groh U., Lotz H.P., Moustakas U., Nagel R., Neubran-
der F., Schlotterbeck U., One-parameter semigroups of positive operators, Lecture Notes
in Math., vol 1184, Springer, Berlin, 1986.

[3] Borwein J.M., Tingley D.W., On supportless convex sets, Proc. Amer. Math. Soc. 94 (1985),
471–476.

[4] Fonf V.P., On supportless convex sets in incomplete normed spaces, Proc. Amer. Math.
Soc. 120 (1994), 1173–1176.

[5] Herzog G., Lemmert R., On quasipositive elements in ordered Banach algebras, Studia
Math. 129 (1998), 59–65.
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