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Change-point estimator in gradually changing sequences

DANIELA JARUSKOVA

Abstract. Recently Huskovd (1998) has studied the least squares estimator of a change-
point in gradually changing sequence supposing that the sequence increases (or de-
creases) linearly after the change-point. The present paper shows that the limit behavior
of the change-point estimator for more complicated gradual changes is similar. The limit
variance of the estimator can be easily calculated from the covariance function of a limit
process.
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1. Introduction

In applications we often observe a sequence of variables that at some unknown
time point starts gradually changing its behaviour. Such series we encounter in
engineering problems as well as in ecology. Sometimes, we even know from our
experience how the series behaves before and after change point. The inference
about broken line regression considered by Hinkley (1969) or Siegmund and Zhang
(1994) belongs to such problems. Recently Huskovd (1998) has studied the model
where at an unknown time point a linear trend appears in the mean of an observed
time series {Y;,i=1,...,n}:

i—k*

Yi=p+da (=) +en

J’_
where a4 = max{a,0}, u, dp, k* are unknown parameters and {e;,i = 1,...,n}
are random errors. We show that her approach can be generalized to a case
of a gradual change in polynomial regression. We consider a sequence {Y;,i =
1,...,n} satisfying

(1 _[1\P i—k* m _
}/i:a0+a1(—)+...+o¢p(—) —0—5(( ) ) +e, i=1,...,n,
n n n /4

p =0,1,..., m > 1 are known integers, ap,...,dp, 5 € Ry and k* € N are

unknown parameters. The errors {e;} are i.i.d. satisfying Fe; = 0, Ee% = o2,

2

E|ei|2+6 < oo for some § > 0. The parameter o“ is supposed to be known and
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we can assume without loss of generality that it is equal to 1. The aim of this
paper is to estimate the change point k* and to find the limit distribution of this
estimator. Therefore, we suppose that 3 may depend on the sample size n and
may go to zero as n tends to infinity. Similarly as in Hugkovd (1998) we use the
least squares method. .

To present the least squares estimator £* in more apparent way it is convenient
to express the variables {Y;,i = 1,...,n} with the help of orthogonal vectors
oy = (65 (1), 05 (n))s... ¢ = ((bp( ), -+, @ (n))'. More precisely

i—k* m )
)+) +e, 1=1,...,n,

p=0,1,... and m > 1 are some known integers, o, ..., ap, Bn € Ry and k* € N
are unknown parameters. The errors {e; } have the same properties as given above.
The orthogonal vectors may be chosen so that

op(i)=1, i=1,...,n,

(1.1) n:%%m+m+%%m+m«

and for j=1,...,p
o5 (i) = (i)j +Cja0 ”)(i)j_l +--+Co(jin), i=1,....n
J n 7 ’ n ) ’ ) ) 10y
so that for every j # j/
n
PICHOEHOES
1=1
see Anderson (1971). The first few vectors are

oo (i) =1,

As n — oo, the functions {¢7([nt]),t € [0,1]}j = 0,...,p converge on [0,1] to
functions {¢;(t)}j = 0,...,p forming an orthogonal system, i.e., for j # j/

1

| aitteptar -
1, oy L
PGl RO

and
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The first few functions are

¢0(t) - ]-7
¢1(t) =t— %a
¢2(t) = t2 _t+ %7

Denote X the design matrix, i.e., X = (¢f, 47, ..., #p). It holds

1/ 324(e5 () 0 . 0
(X'x)"! = 0 1/ 35 (0 ()% .. 0
0 0 0

! 0 0 1/ S50

If we denote

Ck = (0,...,0, (%)m,.”’(n;kz)m)/,

then the least squares estimator k* of the change point k* can be expressed

e - (e;/ MY)? 'MY)2
(12) ’f*:min{kv(fich? = Jnax %}
T T psk<n—p Cp MCg

where the matrix M = I — X (X’X)~1X’. It is clear that if the variables {e;} are

distributed according to a normal distribution, then the estimator k* is the max-
imum likelihood estimator of £* in model (1.1) where all parameters ay, . .. ap, 8
are unknown.

The paper is organized as follows. Section 2 contains our main result. To prove
the assertion of the main theorem several auxiliary lemmas have to be stated and
proved. Section 3 presents three examples how to apply the main theorem to
obtain the limit distribution of &* in different situations.

2. Main result

The aim of this section is to derive asymptotic distribution of k*. First, for
n € N we introduce variables {S™(k),k =p,...,n—p—1} by

S"™(k) = Lck/Me -1 zn:(l — k)mei
i=k
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The covariance function of the sequence {S™(k),k = p,...,n —p—1} satisfies for
1<k
1L nyi—k\mi—I\m
(2.2) R™(k,1) = —ckol nZ( . ) ( . )
i=k
P 1S i—kym ,, \ (1 i—1 1<
S GR D a0) (G ) /(G wer)}
j= 1= i= 1=

Further, for n € N we define the processes {Y"(¢)} on [0, 1] by
Y"(t) = S™([nt]), ¢€][0,1].

Using the limit theorem for random processes, see Theorem 15.6 of Billingsley
(1968), the processes {Y"(t)} converge in distribution on D[0,1] to a process

1
(2.3) Y (t) :/ (z—t)™ dW (2)

—Z{(/ oy ) ([ ave) /([ eere)} reo,

where {W(t), t > 0} denotes Wiener process. The covariance function of the
process {Y (t)} satisfies

1
(2.4) R(t,s) = /t (z—t)™(z—s)"dz

—Z{</ (z—t)"9j(2)d )(/Sl(Z—S)msbj(Z)d2>/(/01(¢j(z))2dz)}, s <t

Moreover, for n € N we introduce a sequence {S™(k),k =p,...,n—p—1} by

(2.5) $n (k) = —%ém(i;k)m_lei
B o) () (0

and processes {Y"(t)} by

Yn(t) = Sn([nt]), teo,1].
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The processes {Y"(t)} converge in distribution on D[0,1] to the process

(2.6) V(1) / m(z — ™1 aw(2)

+Z{</m o eseras) ([ s@awa) /([ oieza) ),

that is the derivative of the process {Y(¢)}.

In the main theorem given below it is stated that under certain conditions
on the limit behavior of 3, the asymptotic distribution of k* is normal with the
variance which may be computed from the covariance function of the process

{Y ()}
Theorem. Let random variables {Y;,i =1,...,n} satisfy the properties of model
(1.1) with k* = [n6*] for some 6* € (0,1). Let
2n
(2.7) fBn=0() and —"— — 00 as n — o0
(Inlnn)?2
Then, as n — oo,
e — k>
(2.8) o VA[T) - N(O,1),
n

where A(P") :(%%Z_S))tzsze* - (a—Rﬁ)iS:G*/R(G*,Q*),

PROOF: Similarly as in Huskova (1998), the estimator k* can be defined as the
solution of the following maximization problem

(2.9) max Dj = max {(Ck/MY)2 ~ (ck*/My)z}'

p<k<n—p p<k<n—p Ck/MCk Ck*/MCk*

Under the assumptions that the variables {Y;,i = 1,...,n} satisfy model (1.1),
the variables Dy can be expressed as follows:

(2.10) Dy, = B2C), + 2B, By, + Ay,

where

(BMEEN)? s
Ch —n(W—R (k*, k )),
By = va( TR0 0y oy e

P ) S G )
Rk k) RP(k% k)
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We consider a sequence {ry,} such that

Balv/i

Ty — 00,
rpInlnn

Q.

To prove the main result, we have to verify the validity of two assertions

(2.11) P( max Dj= max Dp)—1 as n—oo
p<k<n-—p 18nl \k:/f*\grn

and uniformly for |8, (k — k*)|//n < rn

(2.12)
a=n(0(A5) o5 5)) +o(BE).
(2.13) o - e -
k_\/ﬁ<z(5,;)—1)s (k) + 8" (k) == +0p( NG )
(2.14)
Ak—OP(|k\_/ﬁk*|),

where Q(t, s) = (R(t, s))2/R(t, t) and Z(t,s) = R(t,s)/R(t,t).
The proof of (2.12, 2.13, 2.14) follows from the following lemmas.

Lemma 1. It holds uniformly in |Bn(k — k*)|//n < rn

(2.15)
(o) - £9) - (B e ) 55D
() () )

PROOF: For every integer ¢ > 0, j > 0 and k < k* it holds:

[ G-Eysee=L (S5 g ro(b)
1=k

k/n
* k*—1 .
[ B e 13 (5 g0+ o H2),
Clearly for arbitrary integer k and k*
(5 5) - —ofl) wa a(EE)wor-ofl)
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Moreover
(55 () ~o(E5ED), - o E51)

Using the equality

- ) () ) e ()

it can be proved that

(R(E, k—*) —R(E, E)) _ (R"(k,k*) —R"(k,k)) - O(M).

n n n n n2

Notice that all the equalities above hold uniformly for k£ < k*. The assertion of
Lemma 1 is their consequence. 0

Lemma 2. For k* < k, uniformly in |Bp(k — k*)|/+/n < rn, we have

(2.17) L ; (i;k)meizop(k_k*),

The analogous result holds for k < k*.

PROOF: Assertion (2.17) follows from the law of iterated logarithm, see Theo-
rem 3, Chapter 7, par. 3 of Petrov (1971). For k* < k, uniformly in |8, (k —

K|/ < T

L i (i—k)me' _ (%Zf:k*(lzk)mez> (k_k*)m—i-l/Q
\/ﬁi:k* n g (k—_nk*)%;ﬂ

_ op (I (A Y (R Ry SO i)ty

“\ n 571/2711/4 n

n

Assertion (2.18) follows from the obvious fact that, uniformly in |3, (k—k*)|/v/n <

Tn, . ' .
S () o =o(((55)M),
i=k*
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Lemma 3. It holds uniformly for |Bn(k — k*)|/v/n <y,

k— k> k- k*
n _Qn(p*y — n(x

(2.19) S (k) = S (") = S(k)+0p( — )

Proor: For k > k* we have

57(0) = 8"(K) = = () e - 2 3 ()

)

The result follows from Lemma 2 and the expansion
i—k\m i —k*\m i —k*\m-1,/k —k* k—k*
(=) - (=) =) ()=o)
n n n n n

Assertion (2.12) follows from Lemma 1, assertion (2.13) from Lemma 1 and
Lemma 3 and assertion (2.14) from Lemma 2 and Lemma 3. The proof of (2.11)
follows the same pattern as in Huskové (1998).

O

Now,

(8Q§; S))t:s:G* =9

2 S , S ok 2 , S
(5D v =)/ 7000~ (5557 )

(8Z(‘(;;S))t:s:9* _ (8Rétt, S))t:S:(,*/R(Wﬁ*)-
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Hence, uniformly in |8, (k — k*)|/v/n < 7,

De= k(") 5 (%55 e

vn o/ 2\ o2
—k* 110Z(s,t) . |k — k*|

- S™(E*) + S™(k* .
NG (( ot )t:s:@* (K + 5% )) +OP( NG )
Similarly as in Huskovd (1998), regarding the definition of ?, the variable

Bn k*\;ﬁk* A(6*) has the same limit distribution as the variable

k
+20n

0Z(t,s) .
) Sn k* Sn k*
(T8 )i 8" 576
that is asymptotically normal with the limit variance A(6*). Thus the asymptotic
distribution of 3, k*\/}f* A(#*) is standard normal. O

Remark 1. It is clear that the exact form of A(6*) depends on the value m
and p.

Remark 2. If 02 is known but not equal to 1, then
B k> —
o \/n

If 02 is unknown it can be replaced by its usual estimator based on residual sum
of squares obtained by least squares method.

A7) 2 N(0,1) as n — oo.

3. Examples
Example 1 (Huskovd). We consider variables {Y;,i =1,...,n}:

Yi:,u‘f'ﬁn(

where u, B, € Ry, k* € N are unknown parameters, k* = [n6*] for some 6* €
(0,1). The errors {e;} are iid. satisfying Fe; = 0, Ee? = o2, Ele;|?t9 < oo for
some § > 0. As n — oo, the parameter 3, satisfies condition (2.7).

The limit process Y (¢) has the form

1
Y(t):/t (z —t)dW (2) —

and its covariance function

i—k*

) +e, 1=1,...,n,
+

(1-t)?
2

(1—t)? 1-t)? (1-s)?1-1)?
_ — <t.
g T8 1 , s<t
The limit distribution of k* is given by:
B k% —k* [6%(1 = 6%)
o n 1+ 36%

R(t,s) =

2, N©,1).
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Example 2. We consider variables {Y;,i =1,...,n}:

) i — k* .
S/Z:/J‘—’—a(_)—’—ﬁn( ) + €4, 7’:17"'7n7
n +
where p,a, 8, € Ri, k* € N are unknown parameters, k* = [nf*] for some

6* € (0,1). The errors have the same properties as in Example 1. As n — oo, the
parameter (3, satisfies condition (2.7).
The limit process Y (¢) has the form

1 a2 1
Y(t):/t (- —tyaw(z) - & 2” W(l)—(l—t)2(1+2t)/0 (= 3) W)

and its covariance function is

_ )3 _ A2
R(t,s) = u —i—(t—s)(th)
(1—s)21—-1t)2 (Q—-1)>21—s)21+2t)(1+2s) oy
4 12 o S=t
The limit distribution of k* is given by:
T*x _ 1% [px(1 _ p*
Bu b=k JOHA =07 D g 1y,

o n 4

Example 3. We consider variables {Y;,i =1,...,n}:

Y; Zu—i-a(—) +ﬁn((i_nk*)+)2+ei, i=1,...,n,

1
n

where u,a, 08, € R1, k* € N are unknown parameters, k* = [n6*] for some
6* € (0,1). The errors have the same properties as in Example 1. As n — oo, the
parameter (3, satisfies condition (2.7).

The limit process Y (¢) has the form

1
Y(t) = /t (z—t)2dW (z) —

— IZ(Al(z—t)z(z— %) dz) (/Ol(z— %) dW(z))

and its covariance function is

(1—3t)3W(1)

R(t,s) = @"’_(t_s)#—i—(t—s)z(l;tﬁ B (1—5):;(1—15)3
_((1_t)4+(t_%)(lto)t)3)((1;5)4+(S_%)(1_35)3), st

The limit distribution of &* is given by:

B k* = k* (6%)3(1 — 6*)3(4 + 50)
o n\ 34 156% +45(6%)2 + 45(6%)3

2, N©,1).
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