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A function related to the central limit theorem

Paul Bracken

Abstract. A number of properties of a function which originally appeared in a problem
proposed by Ramanujan are presented. Several equivalent representations of the function
are derived. These can be used to evaluate the function. A new derivation of an
expansion in inverse powers of the argument of the function is obtained, as well as
rational expressions for higher order coefficients.
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1. In this article, a number of results which pertain to a function of Ramanujan
are presented. The function originally appeared in a problem which was proposed
by Ramanujan ([1], [2]) and has received periodic attention in the literature ([3]).
In particular, this function ϑ(n) has a connection with the Poisson distribution
and the central limit theorem ([4]). The sum 1 + · · ·+ nn−1/(n − 1)! multiplied
by e−n represents the probability that a random variable with a Poisson distribu-
tion of mean n be less than n. By the Gaussian approximation of Poisson laws,
this probability is close to 1/2, and so Ramanujan’s observations give refinements
of this probabilistic consideration. The main results will be briefly summarized.
A number of equivalent representations are presented which allow for the evalua-
tion of the function easily for integer values, as well as for arbitrary positive values
of the argument. An expansion of the function in inverse powers of the argument
is derived. This has appeared before [3], but a new derivation is presented. In
addition to this expansion, several other properties of ϑ(n) are derived and pre-
sented in a concise way. It is also shown that ϑ(n) decreases monotonically as
the variable increases. The main advantage of the approach is that several new
proofs are given and the techniques which are employed are quite elementary in
nature.

2. Define the following series which are functions of the integer n

R(n) =
∞
∑

k=0

n!nk

(n+ k)!
(1)

Q(n) =

∞
∑

k=1

n!

(n − k)!nk
.(2)
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By reindexing these sums, these functions can be written in the form

R(n) =
n!

nn

(

en −
n−1
∑

k=0

nk

k!

)

,

Q(n) =
n!

nn

(

en −
∞
∑

k=n

nk

k!

)

=
n!

nn

n−1
∑

k=0

nk

k!
.

By forming the difference of these two series, the following expression is obtained

(3) R(n)− Q(n) =
n!

nn

(

en − 2
n−1
∑

k=0

nk

k!

)

.

Define the sequence ϑ(n) by means of the equation

(4)

n−1
∑

k=0

nk

k!
+

nn

n!
ϑ(n) =

1

2
en,

Solving for the sum on the left,

(5)

n−1
∑

k=0

nk

k!
=

en

2
− nn

n!
ϑ(n).

Substituting this into the right hand side of R(n)−Q(n), one obtains the following
simple relationship between the series defined in equations (1) and (2), and ϑ(n)

(6) 2ϑ(n) = R(n)− Q(n).

This provides a convenient way of calculating the function ϑ(n) for integer values
of n. When the function is generalized, other methods for calculating it will be
obtained.
By solving the defining equation for ϑ(n), the following expression for ϑ(n) can

be written down

(7) ϑ(n) = 1 +
1

2
en n!

nn − n!

nn (1 +
n

1!
+

n2

2!
+ · · ·+ nn

n!
).

This function can be defined in terms of integrals and in so doing, it can be
extended to a much larger domain, so that n need not be an integer. Also, it
could be taken as a more general definition of the function to start with. After
presenting the new definition, the following theorem will show that the definition
in terms of an integral agrees with that in (7) given above.
Define the function ϑ(n) in the following way

(8) ϑ(n) = 1 +
1

2
n en

(

∫ 1

0
tne−nt dt −

∫

∞

1
tne−nt dt

)

.
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Theorem 1. This definition agrees with equation (7) when n is a positive integer.

Proof: Beginning with the integral,

∫

∞

1
tne−nt dt =

1

nn+1

∫

∞

n
une−u du =

e−n

nn+1

∫

∞

0
(s+ n)n e−s ds,

the bracket (s+ n)n is expanded to obtain the following series of equations

∫

∞

1
tne−nt dt =

e−n

nn+1

n
∑

k=0

nn−k
(

n

k

)
∫

∞

0
ske−s ds =

e−nn!

nn+1

n
∑

k=0

nn−k

(n − k)!

=
e−nn!

nn+1
(1 +

n

1!
+ · · ·+ nn

n!
),

and
n!

nn+1 =

∫

∞

0
(te−t)n dt.

Comparing these results with the expression for ϑ(n), the proof is complete. �

The results which follow hold if n is positive.

Theorem 2.

ϑ(n) = 1 +
en

2nnΓ(n+ 1)−
∫

∞

0
e−s (1 +

s

n
)n ds.

Proof: Consider the expression

n

2

∫ 1

0
tnen(1−t) dt − n

2

∫

∞

1
tnen(1−t) dt.

It is useful to introduce a particular name for the variable t to the left of 1, and
another name to represent t to the right of 1. This is motivated by looking at
the graph of xe−x as a function of x. For x > 0, there is a maximum at x = 1
where the function equals e−1. Introduce the variable υ = t in the first integral
for 0 ≤ t < 1 and the variable ω = t for 1 < t < ∞ in the second integral to
obtain

n

2

∫ 1

0
υnen(1−υ) dυ − n

2

∫

∞

1
ωnen(1−ω) dω

=
n

2

∫

∞

0
υnen(1−υ) dυ − n

∫

∞

1
ωnen(1−ω) dω.
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Set x = n υ in the first integral and s = (ω − 1)n in the second integral,
en

2nn

∫

∞

0
xne−x dx − n

∫

∞

0
(1 +

s

n
)ne−s ds

n

=
en

2nnΓ(n+ 1)−
∫

∞

0
e−s(1 +

s

n
)n ds.

Let us define the function υ or ω implicitly as a function of some parameter t
by means of the general equation

e−t = ue1−u,

where u might either represent υ or ω. By taking the logarithm of this equation,
one obtains

t = u − 1− log(u).
Consequently, it is clear that, on the lower branch, as u → 0, one has t → ∞,

and as u → 1−, one can see that t → 0. Finally, on the upper branch, as u → ∞,
t → ∞, and as u → 1+, it is seen that t → 0. Consequently, as an integral over
the new variable t, ϑ(n) can be written

(9)

ϑ(n) = 1 +
n

2

∫ 0

∞

e−nt dυ

dt
dt − n

2

∫

∞

0
e−nt dω

dt
dt

= 1− n

2

∫

∞

0
e−nt

(dυ

dt
+

dω

dt

)

dt.

Differentiating the defining equation u e1−u = e−t with respect to t, one obtains

e1−u (1− u)
du

dt
= −e−t,

and solving for the derivative, one obtains
du

dt
=

u

u − 1 .

Consequently, on the lower branch, as t → ∞, it can be seen that υ → 0, and
therefore

lim
t→∞

dυ

dt
= 0,

and if one is on the upper branch, then ω → ∞ as t → ∞, so the derivative has
the limit

lim
t→∞

dω

dt
= 1.

It is especially useful to investigate how the first derivative behaves as t → 0,
which means that υ and ω go to 1 from above and below, respectively. This can
be seen by plotting t = u − 1 − log(u) as a function of u, then plotting u as a
function of t.

3. In order to determine the nature of the solutions υ and ω, and in particular,
their expansions about t = 0, consider the equation t = u − 1 − log(u) in the
following form

ξ2

2
= w − log(1 + w),
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where t = ξ2/2 and u − 1 has been replaced by the variable w. We first expand
about w = 0. This equation defines w as a function of the variable ξ, which could
be complex ([5]).
Now ξ, regarded as a function of w is two valued in the neighborhood of t = 0,

with its two branches given by

ξ = ±w
(

1− 2
3
w +

2

4
w2 − · · ·

)1/2
.

Each branch is an analytic function of w, which is regular when |w| < 1, with a
simple zero at w = 0.
Since each branch is an analytic function of w, regular when |w| < 1 with a

simple zero at w = 0, it follows from this that the equation

ξ = w
(

1− 2
3
w +

2

4
w2 − · · ·

)1/2

possesses a unique solution

w = ξ + a2ξ
2 + a3ξ

3 + a4ξ
4 + a5ξ

5 + a6ξ
6 + · · ·

regular in a neighborhood |ξ| < ρ of the origin. To obtain the ai, substitute the
series expansion for the function w into the equation

w − log(1 + w)− 1
2
ξ2 = 0.

Expanding this out and equating coefficients to zero, one finds the first six nonzero
ai which are given below.

a2 =
1

3
, a3 =

1

36
, a4 = − 1

270
,

a5 =
1

4320
, a6 =

1

17010
, a7 = − 139

5443200
.

If this solution is called w1(ξ), the solution of the other branch is w2(ξ) =
w1(−ξ) which is regular in some neighborhood |ξ| < ρ. Setting w = u − 1
and ξ2 = 2t, one obtains the following expansions for the functions υ and ω
respectively

υ = 1− ξ + a2ξ
2 − a3ξ

3 + a4ξ
4 − a5ξ

5 + · · ·
= 1−

√
2t1/2 + 2a2t − 2

√
2a3t

3/2 + 4a4t
2 − 4

√
2a5t

5/2 + · · · ,

and

ω = 1 + ξ + a2ξ
2 + a3ξ

3 + a4ξ
4 + a5ξ

5 + · · ·
= 1 +

√
2t1/2 + 2a2t+ 2

√
2a3t

3/2 + 4a4t
2 + 4

√
2a5t

5/2 + · · · .
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Sufficiently close to t = 0, these series for υ and ω can be added together to obtain
the expansion for the function υ + ω, in terms of t,

υ + ω = 2 + 4a2 t+ 8a4t
2 + 16a6t

3 + 32a8t
4 + · · · ,

or in a more compact form,

υ + ω = 2 +

∞
∑

n=1

2na2ntn.

It now becomes clear that one can obtain an expression for ϑ(n) in powers of n−1

by integrating the integral in the expression for ϑ(n) by parts, and then evaluating
the large t limit from the derivatives in terms of υ or ω and the limit for small t
by using the small t expansion for υ + ω.
The following theorem will make this clear and provide an additional way of

calculating ϑ(n), such as evaluating the integrals numerically in Theorem 2, or
evaluating the series (6).

Theorem 3 (Ramanujan [2]).

(10) ϑ(n) =
1

3
+
4

135n
− 8

2835n2
− 1

2n2

∫

∞

0
e−nt h(4)(t) dt,

where
h(t) = υ(t) + ω(t).

Proof: Starting from the first derivative,

u(1) =
du

dt
=

u

u − 1

where we write the m-th derivative of u as u(m) in what follows, it is found that
the first four derivatives can be written down in the following form

u(2) = − u

(u − 1)3 , u(3) =
2u2 + u

(u − 1)5 , u(4) =
−6u3 − 8u2 − u

(u − 1)7 .

Inductively, and from the expression for u(1), it is clear that there is at least a

linear factor of u in the numerator of u(m) and the highest power of u in the
denominator, which goes like (u − 1) to a power, is at least one greater than in
the numerator. Hence, the derivatives are differentiable, rational functions of u

such that υ(m) → 0 as t → ∞ on the lower branch and ω(m) → 0 as t → ∞ on
the upper branch. The derivatives as t approaches zero can be found from the
series expansions. Moreover, this implies that all derivatives are bounded and
well defined on the interval of integration, and independent of the variable n.
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Now, to obtain the required expansion, start with the integral expression (9)

ϑ(n) = 1− n

2

∫

∞

0
e−nt h(1)(t) dt,

and integrating this by parts, one obtains

ϑ(n) =
1

3
− 1
2

∫

∞

0
e−nt h(2)(t) dt.

Since the limits on the derivatives can be evaluated in a straightforward way using
the previous remarks, this simple procedure can be continued arbitrarily many
times, in particular, to obtain (10). That is, since all of the derivatives of h(t)
are bounded and can be evaluated at the endpoints, this simple procedure can be
continued to arbitrarily high orders in n−1. An expansion of the following form
will result

ϑ(n) =

N
∑

k=0

bkn−k +O(n−N−1).

The first ten coefficients in this expansion are presented in Table 1. By continuing
the calculation to order twenty or more, the resulting expansion gives extremely
good numerical results for values of n greater than one. �

Theorem 4. The function ϑ(n) decreases monotonically from 1/2 to 1/3 as the
argument increases.

Proof: Begin with the expression for ϑ(n) in terms of the integrals

ϑ(n) = 1 +
1

2
nen

{

∫ 1

0
tne−nt dt −

∫

∞

1
tne−nt

}

dt.

Let the function y be defined implicitly by the equation ye−y = te−t. Using this
equation, the second integral from 1 to ∞ can be written as an integral from 0
to 1

∫

∞

1
tne−nt dt =

∫ 0

1
(ye−y)n

dt

dy
dy

where
dt

dy
=
(1− y)

y

t

(1− t)
,

and so ϑ(n) can be written in terms of a single integral

ϑ(n) = 1 +
1

2
nen

∫ 1

0
(ye−y)n

1− y

y
g(y) dy,

where

g(y) =
y

1− y

(

1 +
dt

dy

)

.
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Since
d

dy
(y e−y)n = n(y e−y)n

1− y

y
,

it is easy to integrate ϑ(n) in this form by parts to obtain

ϑ(n) = 1 +
1

2
g(1)− en

2

∫ 1

0
(ye−y)ng(1)(y) dy.

If it can be shown that g(1)(y) < 0 on the domain of integration then since the
inequality (ye1−y)n+1 < (ye1−y)n holds, one obtains the inequality

−en+1

2

∫ 1

0
(ye−y)n+1g(1)(y) dy < −en

2

∫ 1

0
(ye−y)ng(1)(y) dy,

which implies that ϑ(n+1) < ϑ(n). This means that ϑ(n) decreases monotonically
as n → ∞. Differentiating g(y) with respect to y, one finds that

g(1)(y) =
1− y

y

( y

(1− y)3
+

t

(1− t)3

)

.

To investigate the behavior of this function, introduce the variable, or function of
y, called s(y) such that t = ys(y). Substituting this into the equation te−t = ye−y,
one has se−ys = e−y. Solving for y as a function of s, one has

y =
log(s)

s − 1 ,

and s is restricted to the interval 1 ≤ s < ∞. From g(1)(y) it must be shown that

y

(1− y)3
≤ t

(t − 1)3 .

In terms of s,
1

(s − 1− log(s))3 ≤ s

(s log(s)− s+ 1)3
.

Since s − 1 − log(s) and s log(s) − s + 1 are both positive for s ∈ (1,∞), this
inequality can be written as

log(s)

s − 1 ≤ 1 + s1/3

s+ s1/3
.

This in fact can be shown to hold for s in the given interval. It remains to calculate
the limiting values of ϑ(n).



A function related to the central limit theorem 773

To calculate the limiting values of ϑ(n), expand y in powers of (s − 1) near
s = 1 in the form

log(s)

s − 1 = 1−
1

2
(s − 1) + 1

3
(s − 1)2 − 1

4
(s − 1)3 + · · · .

Then, it is easy to show that

lim
y→1

g(y) = −4
3

,

and so the integral in terms of y is given by

ϑ(n) =
1

3
− en

2

∫ 1

0
(ye−y)ng(1)(y) dy.

In particular, one has

ϑ(0) =
1

3
− 1
2

∫ 1

0
g(1)(y) dy =

1

3
+
1

2
(g(0)− g(1)).

As w → 0, one has t → ∞, hence g(0+) = −1, and so

ϑ(0) =
1

2
.

Clearly,

ϑ(∞) = 1
3

,

and so the function ϑ(n) decreases monotonically from 1/2 to 1/3. �

Theorem 5. Define the function α(n) in terms of the function ϑ(n) as follows

(11) ϑ(n) =
1

3
+

4

135 (n+ α(n))
,

and the function β(n) also in terms of ϑ(n) through the equation

(12) ϑ(n) =
1

3
+
4

135n
− 8

2835(n2 + nβ(n))
.

Then both functions α(n) and β(n) are continuous over the entire interval [0,∞),
and have expansions in powers of n−1. The first few terms in each of these

expansions are given as follows

α(n) =
2

21
+
32

441n
− 50752

4584195n2
− 27070592

1251485235n3
+

243682048

26281189935n4
+ · · ·

(13)

β(n) = −2
3
+
3104

4455n
− 4544

11583n2
+
28248448

258011325n3
− 4265809664

41868201375n4
+ · · · .

(14)
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These equations (13) and (14) imply that the following limits hold

lim
n→∞

α(n) =
2

21
, lim

n→∞

β(n) = −2
3

.

Proof: Consider α(n) first. Solving the defining equation (11) for α(n), one
obtains

α(n) =
4

135 (ϑ(n)− 13 )
− n.

This implies that α(n) is continuous on [0,∞) since ϑ(n) is continuous on [0,∞),
and with ϑ(0) = 1/2 from Theorem 4, one has α(0) = 8/45. Substituting the
asymptotic expansion for ϑ(n) with the bk given in Table 1 into the equation for
α(n), one can calculate the expansion (13) given above.
Similarly, by calculating β(n) as a function of n and ϑ(n) from (12), one has

β(n) = −2835n
2 ϑ(n)− 945n2 − 84n+ 8

2835n ϑ(n)− 945n− 84 .

This implies that β(0) = 2/21 when n = 0 is substituted into this equation.
Substituting the expansion for ϑ(n) into this equation for β(n) and expanding,
one obtains the expansion (14) for β(n). These expansions (13) and (14) imply
the stated limits as n → ∞. �

Table 1: Coefficients for the Expansion of ϑ(n) in Powers of n−1.

i bi

0
1

3

1
4

135

2 − 8

2835

3 − 16

8505

4
8992

12629925

5
334144

492567075

6 − 698752

1477701225

7 − 23349012224

39565450299375

8
1357305243136

2255230667064375

9
6319924923392

6765692001193125
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