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A retractible non-locally connected dendroid

Alejandro Illanes

Abstract. A retractible non-locally connected dendroid is constructed.
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A continuum is a compact connected metric space. A continuum X is re-
tractible if for every subcontinuum A of X there exists a retraction r : X → A.
Retractible continua were introduced by J.J. Charatonik in [1], where he posed
the following problem:

Problem. Give a structural (internal) characterization of retractible continua.

In the same paper, this problem is partially solved by showing that a locally
connected continuum is retractible if and only if it is hereditarily locally connected.
A different approach for attacking this problem is to add requirements to the

retractions. A continuum X is said to be d-retractible (resp., sd-retractible, m-
retractible, c-retractible, o-retractible), provided that for each subcontinuum A
of X , there exists a deformation (resp. strong deformation, monotone, confluent,
open) retraction from X onto A. In [2], G.R. Gordh and L. Lum proved that a
continuum is m-retractible if and only if it is a dendrite. Recently, the author has
shown the following results:

Theorem ([3]). If X is a continuum, then the following assertions are equivalent:

(a) X is a dendrite,
(b) X is d-retractible and,
(c) X is sd-retractible.

Theorem ([4]). If X is a pathwise connected c-retractible continuum, then X is
hereditarily locally connected.

Theorem ([4]). If X is a pathwise connected continuum, then the following
assertions are equivalent:

(a) X is o-retractible and,
(b) X is homeomorphic to an interval or to a simple closed curve.

In [1] and [5], J.J. Charatonik and L. Lum, respectively, asked the following
question:
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Question. Does there exist an arcwise connected retractible continuum which is
not locally connected?

In [5, p. 337], L. Lum mentioned that A. Lelek had a candidate for answering
this question in the positive.
In this paper, we answer the question in the positive by constructing a non-

locally connected retractible dendroid.
In a recent private communication with J.J. Charatonik, A. Lelek told him

that his example had a similar construction as the example presented here and
that his example was never written for publication.

Preliminary constructions

Given two points p and q in the Euclidean plane R2, denote by 〈p, q〉 the
segment joining them, if p �= q and 〈p, q〉 = {p}, if p = q. For a point p = (x, y) ∈
R2, define p′ = (−x, y). Given a subset B in R2, define B′ = {p′ ∈ R2 : p ∈ B}.
The origin in R2 is denoted by Θ. Let π1 : R2 → R be the projection on the
first coordinate. We will define, inductively, a sequence A0, . . . , An, . . . of subsets
of R2 such that, for each integer n > 0, An is a polygon joining Θ to a point
an = (un, vn). Let a0 = Θ.
Let A0 = {Θ}, A1 =

〈
Θ, (1,−14)

〉
. Suppose that A0, . . . , An have been defined

and n ≥ 1. Define bn = an + a′n−1 and An+1 = An ∪ (an + A′
n−1) ∪ (bn + An).

See Figure 1.
It is easy to prove the following:

Assertion 1. For each n > 0, An is a polygon, vn < 0, An ⊂ (0, n]×[vn, 0]∪{Θ},
un = n, an+1 = 2an + a′n−1 and An = an − An.

Given points p and q in An, 〈〈p, q〉〉 will denote the subarc in An joining p and
q, if p �= q and 〈〈p, q〉〉 = {p}, if p = q.

Assertion 2. For each n > 0, there exists a homeomorphism αn : An → An+1
such that αn(Θ) = Θ, αn(an) = an+1 and, for each p ∈ An, |π1(p)− π1(αn(p))|
≤ 2.
Proof: We proceed by induction. Define α1 : A1 → A2 by α1(p) = 2p. Define
α2 : A2 → A3 by sending homeomorphically the segment A1 ⊂ A2 onto the arc
A2 ∪ (a2 + A′

1) in such a way that α2(Θ) = Θ and then sending linearly the
segment a1 +A1 onto b2 + A2. Suppose that α1, . . . , αn, have been constructed,
define αn+1 : An+1 → An+2 by:

αn+1(p) =

⎧⎪⎨
⎪⎩

αn(p) if p ∈ An,

bn+1 − (αn−1(−p′ + b′n))′ if p ∈ an +A′
n−1 and,

bn+1 + αn(p − bn) if p ∈ bn +An.
It is easy to verify that αn+1 has the required properties. �
The key for proving the retractibility of the continuum presented in this paper

is the following:
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Assertion 3. For each n > 0 and for each q ∈ An, there exists a map σ : An →
An (which depends on q) such that:

(a) σ| 〈〈Θ, q〉〉 = Id〈〈Θ,q〉〉 (the identity map on 〈〈Θ, q〉〉);
(b) |π1(p)− π1(σ(p))| ≤ 2 for every p ∈ An;
(c) if q ∈ An−1, then σ−1(Θ) ∩ 〈〈q, an〉〉 �= ∅ : and if r is the first point in

σ−1(Θ)∩〈〈q, an〉〉 (in the natural ordering of 〈〈q, an〉〉 from q to an), then
σ 〈〈q, r〉〉 ⊂ 〈〈Θ, q〉〉 and σ(an) = an;

(d) if q ∈ An − An−1, then σ(An) ⊂ 〈〈Θ, q〉〉.
In order to prove Assertion 3, we will use the following assertion which is easy

to prove.

Assertion 4. If C and D are two arcs and α, β : C → D are maps such that α
is onto, then there exists p ∈ C such that α(p) = β(p).

Proof of Assertion 3: We apply induction. It is easy to prove the assertion
for n = 1, n = 2 and n = 3. Now, suppose that, for every i = 1, . . . , n and
for every q ∈ Ai, it is possible to construct σ and take n ≥ 3. Take a point
q ∈ An+1 = An∪(an+A′

n−1)∪(bn+An). For defining σ we consider seven cases,
in each one of which it is easy to check that the map defined has the required
properties. A geometric representation of Cases 2–6 is given in Figures 2 and 3.

Case 1. q ∈ An−1 ⊂ An. Apply the induction hypothesis to q and obtain the
corresponding map σ0 : An → An. Define σ : An+1 → An+1 by:

σ(p) =

{
σ0(p) if p ∈ An and,

p if p ∈ (an +A′
n−1) ∪ (bn +An).

Case 2. q ∈ An − An−1. The induction hypothesis implies the existence of
σ0 : An → An. Define α, β : an + A′

n−1 → An by α(p) = an − αn−1((p − an)′)
and β(p) = σ0(−(p−an)′+an). Applying Assertion 4, there exists q0 ∈ an+A′

n−1
such that α(q0) = β(q0).
Define σ : An+1 → An+1 by:

σ(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ0(p) if p ∈ An,

β(p) if 〈〈an, q0〉〉 ,

α(p) if 〈〈q0, bn〉〉 and,
an+1 − αn(an+1 − p) if p ∈ bn +An.

Case 3. q ∈ an+A′
n−2 ⊂ an+A′

n−1 and q �= an. Define q1 = (q−an)′ ∈ An−2 ⊂
An−1. Apply the induction hypothesis to q1 to obtain a map σ0 : An−1 → An−1.
Let r be the first point in 〈〈q1, an−2〉〉, in the ordering from q1 to an−2, such that
σ0(r) = Θ.
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Define σ : An+1 → An+1 by:

σ(p) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

p if p ∈ An,

an + (σ0((p − an)′))′ if p ∈ 〈〈
an, an + r′

〉〉
,

an − σ0((p − an)′) if p ∈ 〈〈
an + r′, bn

〉〉
and,

bn−1 + α−1
n−1(p − bn) if p ∈ bn +An.

Case 4. q ∈ an +A′
n−1 − (an +A′

n−2). Define q1 = (q − an)′ ∈ An−1 − An−2.
Apply the induction hypothesis to q1 to obtain a map σ0 : An−1 → An−1.
Define σ : An+1 → An+1 by:

σ(p) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p if p ∈ An,

an + (σ0((p − an)′))′ if p ∈ an +A′
n−1,

an − (σ0(−(p − (bn + an−1))))′ if p ∈ bn +An−1,
an − αn−2((p − (bn + an−1))′) if p ∈ bn + an−1 +A′

n−2 and,
bn−1 + p − (bn + bn−1) if p ∈ bn + bn−1 +An−1.

Case 5. q ∈ bn+An−2 ⊂ bn+An. Define q1 = q− an − a′n−1 ∈ An−2 ⊂ An−1.
Apply the induction hypothesis to q1 to obtain a map σ0 : An−1 → An−1. Let
r be the first point in 〈〈q1, an−1〉〉, in the ordering from q1 to an−1, such that
σ0(r) = Θ.
Define σ : An+1 → An+1 by:

σ(p) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p if p ∈ An ∪ (an +A′
n−1),

bn + σ0(p − bn) if p ∈ 〈〈bn, bn + r〉〉 ,

bn − (σ0(p − bn))′ if p ∈ 〈〈bn + r, bn + an−1〉〉 ,

an − αn−2((p − (bn + an−1))′) if p ∈ bn + an−1 +A′
n−2 and,

bn−1 + p − (bn + bn−1) if p ∈ bn + bn−1 +An−1.

Case 6. q ∈ (bn + An−1) − (bn + An−2). Define q1 = q − bn ∈ An−1 − An.
Apply the induction hypothesis to q1 to obtain a map σ0 : An−1 → An−1. Define
α, β : bn+an−1+A′

n−2 → bn+An−1 by: α(p) = bn+an−1−αn−2((p−bn−an−1)′)
and β(p) = bn + σ0(an−1 − (p − bn − an−1)′). From Assertion 4, there exists
p0 ∈ bn + an−1 +A′

n−2 such that α(p0) = β(p0).
Define σ : An+1 → An+1 by:

σ(p) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p if p ∈ An ∪ (an +A′
n−1),

bn + σ0(p − bn) if p ∈ bn +An−1,
β(p) if p ∈ 〈〈bn + an−1, p0〉〉 ,

α(p) if p ∈ 〈〈p0, bn + bn−1〉〉 and,
bn − (p − bn − bn−1)′ if p ∈ bn + bn−1 +An−1.
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Case 7. q ∈ (bn+An)− (bn+An−1). Define q1 = q − bn ∈ An −An−1. Apply
the induction hypothesis to q1 to obtain a map σ0 : An → An.
Define σ : An+1 → An+1 by:

σ(p) =

{
p if p ∈ An ∪ (an +A′

n−1), and
bn + σ0(p − bn) if p ∈ bn +An.

This completes the construction of σ and the proof of Assertion 3. �

For each n > 1, define Cn = (0, 1
2n−2 ) + {(xn , −y

2nvn
) ∈ R2 : (x, y) ∈ An} and

Bn = Cn ∪
〈
(0, 1
2n−2 ),Θ

〉
∪ 〈Θ, (1, 0)〉. Given points p and q in Bn, 〈〈〈p, q〉〉〉 will

denote the subarc in Bn joining p and q if p �= q and 〈〈〈p, q〉〉〉 = {p} if p = q.

Assertion 5. For each n ≥ 2 and q ∈ Cn there exists a retraction φ : Bn →
〈〈〈q, (1, 0)〉〉〉 (which depends on q) such that |π1(p)− π1(φ(p))| ≤ 3

n for all p ∈
Bn.

Proof: Let λ : An → Cn be the homeomorphism defined by λ(x, y) = (0, 1
2n−2 )+

(xn , −y
2nvn
). Let q0 = λ−1(q) ∈ An. Let σ : An → An be as in Assertion 3 applied

to q0. Define σ1 : Cn → Cn by σ1 = λ ◦ σ ◦ λ−1. We consider two cases. In both
cases, it is easy to check that φ has the mentioned properties.

Case 1. q0 ∈ An−1.
Let r ∈ 〈〈q0, an〉〉 be the first point, in the ordering from q0 to an, such that

σ(r) = Θ. Choose a homeomorphism δ : [0, 1n ] →
〈〈〈
(0, 1
2n−2 ), (

1
n , 0)

〉〉〉
such

that δ(0) = (0, 1
2n−2 ) and δ( 1n ) = (

1
n , 0).

Define φ : Bn → 〈〈〈q, (1, 0)〉〉〉 by:

φ(p) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

p if p ∈
〈〈〈
(0, 1
2n−2 ), (1, 0)

〉〉〉
,

σ1(p) if p ∈
〈〈〈
(0, 1
2n−2 ), λ(r)

〉〉〉
,

(π1(σ1(p)), 0) if p ∈ 〈〈〈λ(r), λ(an)〉〉〉 ∩ (π1 ◦ σ1)−1([ 1n , 1]) and,

δ(π1(σ1(p))) if p ∈ 〈〈〈λ(r), λ(an)〉〉〉 ∩ (π1 ◦ σ1)−1([0, 1n ]).

Case 2. q0 ∈ An − An−1.
In this case define φ : Bn → 〈〈〈q, (1, 0)〉〉〉 by:

φ(p) =

{
p if p ∈

〈〈〈
(0, 1
2n−2 ), (1, 0)

〉〉〉
and,

σ1(p) if p ∈ Cn.

�
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The example

Define X =
⋃{Bn : n ≥ 2} = 〈Θ, (0, 1)〉 ∪ 〈Θ, (1, 0)〉 ∪ (⋃{Cn : n ≥ 2}).

Clearly, X is a non-locally connected dendroid. The continuum X is illustrated
in Figure 4.

In order to prove that X is retractible, define J = 〈Θ, (1, 0)〉 and take a sub-
continuum A of X . We may assume that A ∩ J �= ∅ and A � J . Since A is a
retract of A ∪ J , we only have to prove that there is a retraction ρ : X → A ∪ J .
Let N ≥ 2, be such that A ∩ Cn �= ∅ for every n ≥ N and A ∩ Cn = ∅ for every
n ≤ N . Notice that, for each n ≥ 2, Cn is an arc in R2 which joins (0, 1

2n−2 ) and

(1, 1
2n−2 − 1

2n ). For each n ≥ N , let qn be the last element in Cn, in the ordering

from (0, 1
2n−2 ) to (1,

1
2n−2 − 1

2n ), such that qn ∈ A. Then there exists a retraction

φn : Bn → 〈〈〈qn, (1, 0)〉〉〉, such that |π1(p)− π1(φn(p))| ≤ 3
n . Finally, let p0 be

the last point in 〈Θ, (0, 1)〉, in the ordering from Θ to (0, 1), such that p0 ∈ A.
We are ready to define ρ.
Define ρ : X → A ∪ J by:

ρ(p) =

⎧⎪⎨
⎪⎩

p0 if p ∈ 〈p0, (0, 1)〉 ∪ (
⋃{Cn : n < N}),

p if p ∈
〈
(0, 1
2N−2 ), p0

〉
and,

φn(p) if p ∈ Bn for some n ≥ N.

Then ρ is a retraction.

Therefore, X is retractible.

A dendroid is called a fan provided that it has exactly one ramification point.
A continuum is said to be rational provided that each of its points has arbitrarily
small neighborhoods with countable boundaries. Shrinking in the constructed
dendroid X the arc 〈Θ, (0, 1)〉 to a point, i.e., applying a monotone mapping
μ : X → Y such that μ(〈Θ, (0, 1)〉) is a singleton, while the partial mapping
μ|(X −〈Θ, (0, 1)〉) is a homeomorphism, we get a rational plane fan Y that keeps
the main property of X of being retractible.

Acknowledgment. The author wishes to thank the referee for his suggestions.
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Figure 1

�
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Figure 2
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