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Equations with discontinuous

nonlinear semimonotone operators

Nguyen Buong

Abstract. The aim of this paper is to present an existence theorem for the operator
equation of Hammerstein type x + KF (x) = 0 with the discontinuous semimonotone
operator F . Then the result is used to prove the existence of solution of the equations of
Urysohn type. Some examples in the theory of nonlinear equations in Lp(Ω) are given
for illustration.
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1. Introduction

Let X be a real Banach space and X∗ be its dual which are uniformly convex.
For the sake of simplicity, the norms of X and X∗ will be denoted by one symbol
‖ · ‖. We write 〈x∗, x〉 instead of x∗(x) for x ∈ X∗ and x ∈ X . Let F : X → X∗

be a bounded, discontinuous and semimonotone operator and K : X∗ → X a
bounded (i.e. image of any bounded subset is bounded), linear and nonnegative
operator.
Consider the nonlinear operator equation of Hammerstein type

(1.1) x+KF (x) = 0.

Integral equations of Hammerstein type with a nonlinear smooth operator F are
studied in [1]–[3], [6], [17]. When F is discontinuous, they are investigated in
[5], [7], [15], [16] by introducing a new concept of solution. But, throughout this
paper, the word ‘solution’ is meant in the classical sense. We shall prove an
existence theorem for solution for discontinuous F . Using this result, we get a
new result regarding the solvability of a class of nonlinear equations of Urysohn
type

(1.2) x+

m∑

j=1

KjFj(x) = 0,

where each Kj and Fj has the properties as K and F , respectively. Then, these
theoretical results are applied to study the nonlinear integral equations in the
spaces of type Lp(Ω). It should be mentioned that quasilinear elliptic equations
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with nonlinear discontinuous part are usually used to describe the state of the
systems with variable structure (see [10]). These equations are studied recently
(see [12]–[14]) and can be transformed to equations of Hammerstein type (see [12]).
Below, the symbols → and ⇀ denote convergence in norm and weak conver-

gence, respectively.

2. Main result

Definition 1 (see [13]). A point x ∈ X is called a point of h-continuity of the
operator G : X → X∗ if

∀ l ∈ X lim
t→0+

〈G(x + tl), l〉 = 〈G(x), l〉.

A point x ∈ X is called a point of discontinuity if x does not satisfy the
condition in Definition 1.

Definition 2. A point of discontinuity x of G is called regular if

∃ l ∈ X : lim
t→0+

〈G(x + tl), l〉 < 0.

Theorem 2.1. Assume that all the above conditions hold, all the points of dis-

continuity of F are regular and that there exists a positive constant r such that

〈F (x), x〉 > 0 if ‖x‖ > r.

Then equation (1.1) has a solution x.

Proof: As in [6], consider the regularized equation

(2.1) x+BnF (x) = 0, Bn = B + αnV,

where V is the standard dual mapping of X∗, i.e. V : X∗ → X ,

〈V (x∗), x∗〉 = ‖V (x∗)‖ ‖x∗‖ = ‖x∗‖2, ∀x∗ ∈ X∗,

and αn is a sequence of positive real numbers such that αn → 0 as n → +∞.
Then R(Bn) = X , B−1

n (0) = 0, B−1
n is an one-to-one mapping and B−1

n is
continuous (see [4]). Therefore, all the points of discontinuity of F are points

of discontinuity of B̃n + F and, conversely, all points of discontinuity of B̃n + F

are points of discontinuity of F , where B̃n(x) = −B−1
n (−x). Obviously, we can

rewrite equation (2.1) in the form

(2.2) B̃n(x) + F (x) = 0.
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By virtue of [17], equation (2.2) has a unique solution, henceforth denoted by xn.
Moreover, ‖xn‖ ≤ r, ∀n. As F is bounded, the sequence {F (xn)} is bounded,
too. Without loss of generality, assume that

xn ⇀ x0 and F (xn)⇀ y∗0.

From (2.1) it follows that

(2.3) x0 +By∗0 = 0.

Now, we have to prove that y∗0 = F (x0). Since F is semimonotone, we have
F = T + C, with a monotone operator T and a compact operator C. Therefore,

〈F (x) − C(x) − (F (xn)− C(xn)), x − xn〉 > 0, ∀x ∈ X.

Hence,

〈F (x) − C(x), x − xn〉 − 〈F (xn)− C(xn), x〉 ≥ 〈F (xn), BF (xn)〉
− 〈C(xn), xn〉+ αn〈F (xn), V F (xn)〉.

By passing n → +∞ in the last equality, because of
lim inf
n→∞

〈F (xn), BF (xn)〉 ≥ 〈y∗0, By∗0〉,
lim

n→+∞
αn〈F (xn), V F (xn)〉 = 0,

lim
n→+∞

〈C(xn), xn〉 = 〈C(x0), x0〉,

and (2.3) we obtain

〈F (x) − C(x), x − x0〉 − 〈y∗0 − C(x0), x〉 ≥ 〈y∗0 , By∗0〉 − 〈C(x0), x0〉.
Thus,

(2.4) 〈T (x)− (y∗0 − C(x0)), x − x0〉 ≥ 0.
Replacing x by x0 + tl for any l ∈ X and t > 0 in (2.4) we see that

〈F (x0 + tl)− (y∗0 + C(x0)), l〉 ≥ 0, ∀ l ∈ X.

Hence, x0 is a point of h-continuity of T . Consequently, from (2.4) and Minty’s
lemma (see [17]) T (x0) = y∗0 − C(x0), i.e. y∗0 = F (x0). �

Now, consider equation (2.1). Let the following conditions hold:

• Kj : X
∗ → X are linear and bounded operators satisfying the condition:∑m

j=1〈Kjx
∗

j , x
∗〉 ≥ 0, x∗ =∑m

i=1 x∗i , x
∗

i ∈ X∗,

• Fj : X → X∗ are bounded, discontinuous and semimonotone, and

• 〈Fj(x), x〉 ≥ aj‖x‖2 − bj‖x‖ − cj , aj , bj , cj > 0 (see [8]).

Operator equation (1.2) is investigated in [8]–[9], [11] with some smoothness
property of Fj . Here, applying Theorem 2.1, we can prove the following result.
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Theorem 2.2. Under the above conditions on Kj and Fj , equation (1.2) has a
solution in X .

Proof: Denote Z = X × · · · × X (m times). For z = (x1, . . . , xm) ∈ Z, let

‖z‖ =
( m∑

j=1

‖xj‖2
)1/2

.

Then, Z is uniformly convex Banach space with respect to this norm with dual
Z∗ = X∗ × · · · × X∗. (x1, . . . , xm) means the column vector (x1, . . . , xm)

T . Let
K : Z∗ → Z and F : Z → Z∗ be defined as follows

(2.5) K =




K1 K2 . . . Km

K1 K2 . . . Km
...

...
. . .

...
K1 K2 . . . Km


 , F =




F1 0 . . . 0
0 F2 . . . 0
...

...
. . .

...
0 0 . . . Fm


 .

Consider the Hammerstein equation

(2.6) z +KF (z) = 0, z ∈ Z

with K and F from (2.5). It is easy to see that K is a linear, bounded and
nonnegative operator on Z∗ and F is a semicontinuous operator on Z. Moreover,

〈F (z), z〉 =
m∑

j=1

〈Fj(xj)〉 ≥
m∑

j=1

(
aj‖xj‖2 − bj‖xj‖ − cj

)

≥ a‖z‖2 − b‖z‖ − c,

where a = min aj , b =
√

mmax bj and c = max cj . Therefore, there exists a
positive constant R such that 〈F (z), z〉 > 0, if ‖z‖ > R. By virtue of Theorem 2.1,
equation (2.6) has a solution z∗ = (x1∗, . . . , xm∗). Consequently, equation (1.2)
has a solution x = x1∗ (= x2∗ = · · · = xm∗). �

3. Application

a. Consider the nonlinear integral equation of second kind

(3.1) x(s) +

∫

Ω
k(s, t)F (x(t)) dt = 0,

where the kernel function k(s, t) is such that the operator K defined by

(Kx)(s) =

∫

Ω
k(s, t)x(t) dt
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is bounded, nonnegative and K acts from Lq(Ω) into Lp(Ω) with Ω ⊂ R
n mea-

surable and p−1 + q−1 = 1. The nonlinear function f(t) satisfies the following
conditions:

(a) f(t)t ≥ a0|t|p + b0|t|γ + c0, a0 > 0, b0 < 0, c0 < 0, γ < p (see [14]),
(b) f(t) is nondecreasing, rightcontinuous and at any point of discontinuity t0

f(t0 − 0) < 0, f(t0) < 0,
(c) |F (t)| ≤ a1 + b1|t|p−1, ∀ t ∈ R1, a1 + b1 > 0, a1 ≥ 0, b1 ≥ 0.
By virtue of (c) we can define the operator F : X = Lp(Ω)→ X∗ = Lq(Ω) as

F (x)(t) = F (x(t)), ∀x(t) ∈ Lp(Ω).

Then equation (3.1) can be rewritten in the form (1.1), where the defined operator
F possesses all the properties from Section 1. Indeed, condition (a) guarantees
the existence of r in Theorem 2.1, the monotone property and the regularity
of all points of discontinuity of F follows from (b) (see [13]) and the remaining
properties are verified on the base of (c). Therefore, equation (3.1) has a solution,
and this solution is unique if one of the operators K, F is strictly monotone.

b. Consider the nonlinear integral equation

(3.3) x(t) +
m∑

j=1

∫

Ω
kj(t, s)fj(x(s)) ds = 0.

If the operators Kj and Fj defined by

(Kjx)(t) =

∫

Ω
kj(t, s)x(s) ds,

(Fjx)(t) = fj(x(t)),

have the same properties as K and F in a., where only instead of the nonnege-
tiveness of K we assume that

m∑

i=1

∫

Ω
xi(t)

∫

Ω

m∑

j=1

kj(t, s)xj(s) ds dt ≥ 0,

then (3.3) can be rewritten in the form (1.2). Therefore, equation (3.3) is solvable
by Theorem 2.2.
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