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On locally r-incomparable families

of infinite-dimensional Cantor manifolds

Vitalij A. Chatyrko

Abstract. The notion of locally r-incomparable families of compacta was introduced by
K. Borsuk [KB]. In this paper we shall construct uncountable locally r-incomparable
families of different types of finite-dimensional Cantor manifolds.

Keywords: Cantor manifolds, countable-dimensional, weakly infinite-dimensional,
strongly infinite-dimensional

Classification: 54F45

0. Introduction

Throughout this note we shall consider only separable metrizable spaces. By
dimension we mean the covering dimension dim.
A subset L of a space X is a partition in X if there exist two non-empty open

in X subsets U and V such that L = X \ (U ∪ V ). We say in this case that X is
separated by L.
An infinite-dimensional Cantor manifold is an infinite-dimensional compact

space which cannot be separated by any finite-dimensional subspace.
There exist different types of infinite-dimensional Cantor manifolds. In particu-

lar, there exist countable-dimensional Cantor manifolds [Ch1], [O], weakly infinite-
dimensional Cantor manifolds which cannot be separated by any countable-dimen-
sional subspace (as recently showed by E. Pol [EP]) and even strongly infinite-
dimensional Cantor manifolds which cannot be separated by any weakly infinite-
dimensional subspace.
The last type of infinite-dimensional Cantor manifolds can be obtained as fol-

lows. It is well known that every strongly infinite-dimensional compact space
contains an hereditarily strongly infinite-dimensional closed subset (see for exam-
ple [R-S-W]). Every hereditarily infinite-dimensional compact space contains an
infinite-dimensional Cantor manifold ([T]). Thus every strongly infinite-dimen-
sional compact space contains hereditarily strongly infinite-dimensional Cantor
manifold. Note that every hereditarily strongly infinite-dimensional Cantor man-
ifold cannot be separated by any weakly infinite-dimensional subspace.
We shall call two compact spaces A, B injectively different if A does not embed

into B and vice versa. A family A of compacta is injectively different if every two
different elements A, B ∈ A are injectively different.
E. Pol proved the following
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Theorem 0.1 ([EP]). There exists an injectively different family A (|A| = 2ℵ0)
of hereditarily infinite-dimensional Cantor manifolds.

Remark 0.1. The proof of Theorem 0.1 is based on the existence of hereditarily
infinite-dimensional compact spaces. The existence of weakly infinite-dimensional
hereditarily infinite-dimensional compact spaces is an open question ([RP1]). If
we use in the proof of Theorem 0.1 an hereditarily strongly infinite-dimensional
compactum (which exists) we shall obtain that the family A consists of heredita-
rily strongly infinite-dimensional Cantor manifolds.

Two compact spaces A, B are locally r-incomparable if any non-empty open
subset of A does not embed into B and vice versa. A family A of compacta
is locally r-incomparable if every two different elements A, B ∈ A are locally
r-incomparable.
This notion was introduced by K. Borsuk. It is well known that for every

n = 1, 2, . . . there exists an uncountable locally r-incomparable family of n-
dimensional AR-compacta (see for example [KB]). Recently this fact was used
in order to define a fractional dimension function satisfying Menger’s axioms in
the class of finite-dimensional locally compact spaces ([T-H]).
It is clear that every locally r-incomparable family of compacta is injectively

different.
In this paper we shall construct uncountable locally r-incomparable families of

named above types of infinite-dimensional Cantor manifolds.

1. Terminology and notation

The necessary information about notions and notations we use can be found in
[A-P] and [E].
A space X is countable-dimensional (shortly c.d.) if X can be represented as

a countable union of 0-dimensional subspaces.
A Cantor trInd-manifold of class α, α < ω1, is a compact space which cannot

be separated by any partition L with trIndL < α.
It is known that for every α < ω1 there exists a c.d. Cantor trInd-manifold of

class α ([Ch1], see also part 2).
A spaceX is A-weakly infinite-dimensional (shortly A-w.i.d.) if for each infinite

sequence (A1, B1), (A2, B2), . . . of pairs of disjoint closed subsets of X there exist
partitions Li between Ai and Bi in X such that

⋂
∞

i=1 Li = ∅.
A space X is hereditarily A-w.i.d. if every subspace of X is A-w.i.d.
A space X is A-strongly infinite-dimensional (shortly A-s.i.d.) if it is not A-

w.i.d.
Remind that each c.d. space is A-w.i.d. Moreover, a space which is the union

of countably many c.d. (A-w.i.d.) subspaces is c.d. (A-w.i.d.).
If a space X is compact then one say that X is weakly infinite-dimensional

(shortly w.i.d.) or strongly infinite-dimensional (shortly s.i.d.) respectively.
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It is known that there exists a w.i.d. compact space P which cannot be sepa-
rated by any hereditarily A-w.i.d. subspace ([EP]). Note that P cannot be sepa-
rated by any countable-dimensional subspace. In particular P is not c.d. Remind
that the first example of a w.i.d. compactum which is not c.d. was given by R. Pol
[RP2].
A compact space X is hereditarily infinite-dimensional, shortly h.i.d. (heredi-

tarily strongly infinite-dimensional, shortly h.s.i.d.), if each nonempty closed
subset of X is either 0-dimensional or infinite-dimensional (strongly infinite-
dimensional).
The first example of h.i.d. compactum was given by D. Henderson [H1].
In [H2] D. Henderson has constructed a c.d. AR-compactum Hα with

trIndHα = α for every α < ω1. Remind this construction.

Let HI = I = [0, 1], p1 = {0}. Assume that for every β < α the compacta Hβ

and the points pβ ∈ Hβ have already been defined. If α = β + 1, then we set

Hβ+1 = Hβ × I and pβ+1 = (pβ , 0). If α is a limit ordinal, then Kβ is the union

of the Hβ and a half-open arc Aβ such that Aβ ∩Hβ = {pβ} = {endpoint of the
arc Aβ}, β < α. Let us define Hα as the one-point compactification of the free
sum

⊕
β<α Kβ and let pα be the compactification point.

It is well known that every ordinal α may be represented in the form α =
p(α) + n(α), where p(α) is a limit ordinal and n(α) < ω.
Note that the compactum Hα, where n(α) ≥ 1, α < ω1, cannot be separated

by a point.
A dimension function d is monotone if for any space X and any subset A ⊂ X

closed in X , dA ≤ dX .

2. Variation of Fedorchuk’s construction

Let R be the real line, Q ⊂ R be the rational numbers, Irr ⊂ R be the irrational
numbers and I = [0, 1]. The notation Z ≃ Y will mean that spaces Z and Y are
homeomorphic.
We shall follow [Ch2] as a variation of [F1], [F2]. Remind some definitions.
A continuous mapping f : X → Y is called fully closed if for any point y ∈ Y

and any finite covering {Ui : i = 1, 2, . . . , s} of f−1y by sets open in X , the set

{y} ∪ (
⋃s

i=1 f#Ui) is open in Y . Here f#U = Y \ f(X \ U).
A continuous mapping f : X → Y is called ring-like if for any point x ∈ X

and arbitrary neighbourhoods Ox and Ofx, the set f#Ox contains a partition
between the point fx and the set Y \ Ofx in the space Y .
A continuous mapping f : X → Y is called monotone if for any point y ∈ Y

the set f−1y is connected.
A continuous mapping f : X → Y is called irreducible if for any non-empty

open subset O ⊂ X we have f#O 6= ∅.

Consider a continuum Y with a countable everywhere dense subset
P = {a1, a2, a3, . . . } ⊂ Y and fix an embedding Y ⊂ I∞. Define a mapping
f : (0, 1]→ I∞ as follows. Namely
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f |[1/(i+1),1/i]: [1/(i+ 1), 1/i]→ I∞ is a path between

the points ai+1 and ai in 1/i-neighborhood of Y , i = 1, 2, . . . .

The mapping f satisfies the following conditions:

(a) for every open neighborhood O of the continuum Y in I∞ there exists a
natural number n such that f(0, 1/n] ⊂ O;

(b) for every non-empty open subset U ⊂ Y and every natural number n there
exists a number m ≥ n such that f(1/m) ∈ U .

2.a Particular case

Define a mapping g : [−1, 1] \ {0} → I∞ by g(x) = f(| x |) and mappings

gt : [−1 + t, 1 + t] \ {t} → I∞ by gt(x) = g(x − t), where t ∈ R.

Consider the disjoint union B = ∪{Yt : t ∈ R}, where Yt is a point, if t ∈ R \ Q,
and Yt ≃ Y if t ∈ Q.

Let pt : Y → Yt be the homeomorphism above, where t ∈ Q.

Define the mapping π : B → R as follows, π(y) = t, if y ∈ Yt.

Let { Vn}∞n=1 be a base in R, and { Uk}
∞

k=1 be a base in I∞.

The topology τ on the set B we define as follows.

We take all sets π−1Vn, n = 1, 2, . . . , and O(Uk, t, Vn) = pt(Uk∩Y )∪π−1(g−1t Uk∩
Vn), where t ∈ Q∩Vn and m, n = 1, 2, . . . , as the basis sets of the topology on B.

Note that in the case the mapping π is fully closed, ring-like, irreducible and
monotone.

Denote the subspace π−1[0, 1] of B via F (Y ).

Some properties of F (Y ).

(a) FY is a continuum which is the disjoint union of continua Yt, t ∈ [0, 1].

(b) F (Y ) \ ∪{Yt : t ∈ Q} ≃ Irr ∩ I.

(c) every non-empty open subset of F (Y ) contains a copy of Y .

(d) every subcontinuum of F (Y ) either embeds in Y or is equal to π−1[a, b], where
0 ≤ a < b ≤ 1.

(e) F(Y) is c.d. (w.i.d., h.s.i.d.) if Y is c.d. (w.i.d., h.s.i.d.).

Example of c.d. Cantor trInd-manifold of class (α+ 1), α < ω1.

Consider the path-connected compactum Z = F (Hα)× I/F (Hα)× {0}.

Denote the compactum Z2 via A(Hα). It is clear that A(Hα) is c.d. and every
non-empty open subset of Z contains Hα+1. One can prove (see [Ch1]) that for
every partition L in A(Hα) we have trIndL ≥ α+1. Hence the continuum A(Hα)
is a Cantor trInd-manifold of class (α + 1).
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2.b General case

Consider a continuum X and a countable subset L of X . Fix a point x ∈ L and
a sequence {Lx

i }
∞
i=1 of partitions in X such that

(a) Lx
i = X \ (Ux

i ∪ V x
i ), where Ux

i , V
x
i are disjoint non-empty open subsets of

the continuum X and x ∈ Ux
i for every i;

(b) Ux
i ∪ Lx

i ⊂ Ux
i−1, i = 2, 3, . . . ;

(c) {Ux
i }

∞
i=1 is a base in the point x.

Note that all partitions Lx
i , i = 1, 2, . . . are non-empty.

Define a mapping hx : V
x
1 ∪

⋃
∞

i=1 Lx
i → (0, 1] as follows

(a) hx(X \ Ux
1 ) = 1;

(b) hx(L
x
i ) = 1/i, i = 2, 3, . . . .

By qx : X \ {x} → (0, 1] we denote an extension of hx on X \ {x} such that
qx((U

x
i ∪ Lx

i ) \ Ux
i+1) ⊂ [1/(i+ 1), 1/i], i = 1, 2, . . . .

Put gx = f ◦ qx. The mapping gx satisfies the following conditions:

(a) for every open neighborhood O of the continuum Y in I∞ there exists a
natural number n such that gxUx

n ⊂ O;

(b) for every non-empty open subset U ⊂ Y and every natural number n there
exists a number m ≥ n such that gx(L

x
m) ⊂ U .

Consider the disjoint union B(X, Y, L) = ∪{Yx : x ∈ X}, where Yx is a point
if x ∈ X \ L and Yx ≃ Y if x ∈ L.
Let px : Y → Yx be the homeomorphism above, where x ∈ L.
Define the mapping π : B(X, Y, L)→ X by π(y) = x if y ∈ Yx.
Let { Vn}∞n=1 be a base in X , and { Uk}

∞

k=1 be a base in I∞.
We define the topology τ on the set B(X, Y, L) as follows.

We take all sets π−1Vn, n = 1, 2, . . . , andO(Uk, x, Vn) = px(Uk∩Y )∪π−1(g−1x Uk∩
Vn), where x ∈ L ∩ Vn and m, n = 1, 2, . . . , as the basis sets of the topology on
B(X, Y, L).
Note that in this case the mapping π is fully closed, ring-like, irreducible and

monotone.

Note some properties of B(X, Y, L).

Proposition 2.1. (a) B(X, Y, L) is a continuum which is the disjoint union of
continua Yx, x ∈ X .

(b) B(X, Y, L) \ ∪{Yx : x ∈ L} ≃ X \ L.

(c) Every non-empty open subset of B(X, Y, L) contains a copy of Y if L is an
everywhere dense subset of X .
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(d) Every subcontinuum C of B(X, Y, L) either embeds in Y or is equal to
π−1πC = B(πC, Y, L ∩ πC). Moreover in the last case either C lies in X \ L
if L ∩ πC = ∅ or C contains a copy of Y if L ∩ πC 6= ∅.

(e) B(X, Y, L) is c.d. (w.i.d., h.s.i.d.) if X, Y are c.d. (w.i.d., h.s.i.d.).

(f) Let C be a partition in B(X, Y, L). Then there exists a partition C1 in X such
that for each subspace Z of C1 the subspace Z \ L embeds into C. In particular,
if X is an infinite-dimensional Cantor manifold then B(X, Y, L) is the same.

Proof: (a)–(d) follow from the construction and the properties of π.

(e) We shall prove only that the continuum B(X, Y, L) is w.i.d. if the continua
X, Y are w.i.d. Consider a countable family {(Ai

j , B
i
j) : i = 0, 1, . . . ; j = 1, 2, . . . }

of pairs of disjoint closed subsets of B(X, Y, L). Let L = {l1, l2, . . . }. For every
i = 1, 2, . . . there exist partitions Li

j between Ai
j and Bi

j in B(X, Y, L) such that

(
⋂

∞

j=1Li
j)∩Yli = ∅. Denote the compactum

⋂
∞

i=1(
⋂

∞

j=1 Li
j) via A. Note that A ⊂

B(X, Y, L)\∪{Yx : t ∈ L} ≃ X \L and hence A is w.i.d. There exist partitions L0j
between A0j and B0j in B(X, Y, L) such that (

⋂
∞

j=1 L0j)∩A =
⋂

∞

i=0(
⋂

∞

j=1 Li
j) = ∅.

Hence the compactum B(X, Y, L) is w.i.d.

(f) Let C = B(X, Y, L) \ (U ∪ V ) where U, V are disjoint non-empty open subsets

of B(X, Y, L). Note that the subsets π#U, π#V of X are disjoint non-empty open

and the subset C1 = X \ (π#U ∪ π#V ) is a partition in X . It is clear that for
each subspace Z of C1 the subspace Z \ L embeds into C. Suppose that X is
an infinite-dimensional Cantor manifold and the partition C is finite-dimensional.
Therefore the subspace C1 \L is finite-dimensional and hence the partition C1 is
finite-dimensional too. It is a contradiction. �

Proposition 2.2. Let L be an everywhere dense subset of X and Y1, Y2 be injec-
tively different continua, which do not embed into X . Then continua B(X, Y1, L),
B(X, Y2, L) are locally r-incomparable.

Proof: Let U be an open non-empty subset of B(X, Y1, L). Suppose that g :
U → B(X, Y2, L) is an embedding. By Proposition 2.1 (c) U contains a copy of
Y1. By Proposition 2.1 (d) the image g(Y1) of the copy of Y1 either embeds into
Y2 (it is a contradiction) or is equal to π−1πg(Y1). In the last case g(Y1) either
lies in X \ L ⊂ X or contains a copy of Y2. It is a contradiction too. �

3. On E. Pol’s proposition

The following statement in fact was proved in [EP].

Proposition 3.1. Let A, B be two c.d. continua which cannot be separated by a
point and which are injectively different. Then there exists an injectively different
family {La : a ∈ {0, 1}∞} of c.d continua such that for every a ∈ {0, 1}∞, La

contains copies of A and B.

We repeat here the description from [EP].
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Choose two pairs of different points a1, a2 ∈ A and b1, b2 ∈ B. Let X1, X2, . . .
be a sequence of spaces such that Xi is a copy of A or B and xi

j = aj if Xi = A

and xi
j = bj if Xi = B, for j = 1, 2. Consider the equivalence relation E on the

free sum X =
⊕

∞

i=1Xi such that xEy iff x = y or x = xi
2 and y = xi+1

1 for some
i ∈ N .
Let Y = X/E be the quotient space and Z = Z(X1, X2, . . . ) be the one-point
compactification of Y . Then Z is a c.d. continuum. Let K be the class of all
spaces Z(X1, X2, . . . ) obtained in this way.
It was shown in [EP] that K contains an injectively different uncountable family
{La : a ∈ {0, 1}∞}. Namely, for a = {αk}

∞

k=1 ∈ {0, 1}∞, La = Z(Xa
1 , X

a
2 , . . . ),

where Xa
1 = A, Xa

2 = B and for k = 1, 2, . . . :

if ak = 0 then Xa
5k−3+l is A, for l = 1, 2; and it is B, for l = 3, 4, 5;

if ak = 1 then Xa
5k−3+l is A, for l = 1, 2, 3; and it is B, for l = 4, 5;

4. Two c.d. injectively different infinite-dimensional continua which

cannot be separated by a point

Let γ be an infinite ordinal with n(γ) ≥ 1. Remind that the compactum A(Hγ)
is a c.d. Cantor trInd-manifold of class (γ + 1). Put β = trIndA(Hγ) + 1 < ω1.

Note that n(β) ≥ 1. Continua A(Hγ) and Hβ cannot be separated by a point.

Since trIndHβ = β > trIndA(Hγ), Hβ does not embed into A(Hγ).

We shall prove that A(Hγ) does not embed into Hβ .

Remind that Hβ is the union of countably many finite-dimensional compacta.
Assume that A(Hγ) embeds into Hβ . Hence A(Hγ) is the union of countably
many finite-dimensional compacta at least one of which contains a non-empty
open subset of A(Hγ). But every non-empty open subset of A(Hγ) contains a
copy of Hγ with trIndHγ = γ ≥ ω. It is a contradiction. Hence A(Hγ) does not

embed into Hβ .
Note that both compacta A(Hγ) and Hβ containHγ . Now with help of Propo-

sition 3.1 the following statement is evident.

Proposition 4.1. For every ordinal γ < ω1 there exists an injectively different
family {La : a ∈ {0, 1}∞} of c.d continua such that for every a ∈ {0, 1}∞, La

contains a copy of Hγ .

5. Main results

Here we shall construct uncountable locally r-incomparable families of named in
the introduction types of infinite-dimensional Cantor manifolds.
First we need the following evident (see the separation theorem for dimension

0 ([E, p. 11])

Lemma 5.1. Let A be a 0-dimensional subset of a compactum Z. Assume that
trIndQ < α for every compactum Q ⊂ Z \ A. Then trIndZ ≤ α.
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In particular, if trIndZ ≥ β + 1, then there exists a compactum Q ⊂ Z \ A such
that trIndQ = β.

Theorem 5.1. For every α < ω1 there exists a locally r-incomparable family A
(|A| = 2ℵ0) of c.d. Cantor trInd-manifolds of class α.

Proof: Fix an ordinal α < ω1. Denote A(Hα) via X . Note that X is a c.d.
Cantor trInd-manifold of class (α+ 1). Let γ = trIndX + 1. By Proposition 4.1
there exists an injectively different family {La : a ∈ {0, 1}∞} of c.d continua such
that for every a ∈ {0, 1}∞, La contains a copy of H

γ . Remind that trIndHγ = γ
([H2]) and the dimension trInd is monotone. Hence for every a ∈ {0, 1}∞, La

does not embed into X .
Let L be an everywhere dense countable subset of X .
By Propositions 2.1 (e), (f), 2.2 and Lemma 5.1 the family {B(X, La, L) : a ∈
{0, 1}∞} is locally r-incomparable and it consists of c.d. Cantor trInd-manifolds
of class α. �

Now we need the following evident

Lemma 5.2. Let X be a A-s.i.d. space and Y be a 0-dimensional subspace of X .
Then the subspace X \ Y is A-s.i.d.

Theorem 5.2. There exists a locally r-incomparable family A (|A| = 2ℵ0) of
w.i.d. Cantor manifolds which cannot be separated by any hereditarily A-w.i.d.
subspace.

Proof: Denote the w.i.d. compactum P from part 1 via X . Let dimwX = α <
ω1, where dimw is Borst’s transfinite extension of the covering dimension dim
([PB]). Put γ = α + 1. By Proposition 4.1 there exists an injectively different
family {La : a ∈ {0, 1}∞} of c.d continua such that for every a ∈ {0, 1}∞, La

contains a copy of Hγ . Remind that dimwHγ = γ ([PB]) and the dimension
dimw is monotone. Hence for every a ∈ {0, 1}∞, La does not embed into X . Let
L be an everywhere dense countable subset of X . By Propositions 2.1 (e), (f), 2.2
and Lemma 5.2, the family {B(X, La, L) : a ∈ {0, 1}∞} is locally r-incomparable
and it consists of w.i.d. Cantor manifolds which cannot be separated by any
hereditarily A-w.i.d. subspace. �

Theorem 5.3. There exists a locally r-incomparable family A (|A| = 2ℵ0) of
h.s.i.d. Cantor manifolds.

Proof: By Theorem 0.1 (see also Remark 0.1) there exists an injectively different
family {La : a ∈ {0, 1}∞} of h.s.i.d. Cantor manifolds. Put X = L(0,0,... ) and

M(b1,b2,... ) = L(1,b1,b2,... ) for every (b1, b2, . . . ) ∈ {0, 1}∞. Note that for every

b ∈ {0, 1}∞, Mb does not embed into X . Let L be an everywhere dense countable
subset of X . By Propositions 2.1 (e), (f) and 2.2 the family {B(X, Mb, L) : b ∈
{0, 1}∞} is locally r-incomparable and it consists of h.s.i.d. Cantor manifolds.

�
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