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On generalized games in H-spaces

Paolo Cubiotti, Giorgio Nordo

Abstract. We show that a recent existence result for the Nash equilibria of generalized
games with strategy sets inH-spaces is false. We prove that it becomes true if we assume,
in addition, that the feasible set of the game (the set of all feasible multistrategies) is
closed.

Keywords: H-spaces, generalized games, Nash equilibria, H-convexity, open lower sec-
tions, fixed points

Classification: 90D10, 90D06

1. Introduction

Let E be a topological space, and let FE be the family of all finite subsets of E.
Let {ΓA}A∈FE

be a given family of nonempty contractible subsets of E, such
that ΓA ⊆ ΓB whenever A ⊆ B. The couple (E, {ΓA}A∈FE

) is called an H-space
([3], [4], [5]). A set K ⊆ E is said H-convex if for every A ∈ FE , with A ⊆ K,
one has ΓA ⊆ K; K is said H-compact if for each A ∈ FE there is a compact
H-convex set D ⊆ K such that K ∪ A ⊆ D. Any Hausdorff topological vector
space T is an H-space with ΓA = conv(A); moreover, any convex subset of T
is H-convex and any nonempty compact convex subset of T is H-compact (see
[3]). If {(Ei, {ΓBi

}Bi∈FEi

)}i∈I (I = {1, . . . , N}) is a family of H-spaces, then

the product E :=
∏

i∈I Ei can be regarded as an H-space in the following way:
for each A ∈ FE , let ΓA =

∏

i∈I ΓAi
, where Ai denotes the image of A in the

projection of E onto Ei. If for each i ∈ I the set Di ⊆ Ei is H-convex [resp.,
H-compact], then the set

∏

i∈I Di is H-convex [resp., H-compact] (see [8]). We
refer to [3], [4], [5] for more details on H-spaces.
Now, let I = {1, . . . , N} be a set of N players. For each player i ∈ I, let Xi be

a nonempty set (the strategy space), and let X :=
∏

i∈I Xi, X−i :=
∏

j∈I,j 6=i Xj .

The elements of X are called multistrategies. For each i ∈ I, let Fi : X−i → 2
Xi a

multifunction (the constraint correspondence), ui : X → R a single-valued func-
tion (the utility function). The family of triples (Xi, Fi, ui)i∈I is called a general-
ized game (or an abstract economy). If x ∈ X is a given multistrategy, we denote
by xi ∈ Xi the i-th component of x, and by x−i := (x1, . . . , xi−1, xi+1, . . . , xN ) ∈
X−i the multistrategy x without its i-th component xi.
In this model, the multi-valued mappings Fi represent the constraints imposed

on each player from the other players’ action. That is, for each fixed i ∈ I, when
the other players choose their strategy x−i ∈ X−i, the player i can choose his
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strategy only in the set Fi(x−i), and not in the whole set Xi. A multistrategy
x ∈ X is said to be feasible if x−i ∈ Fi(x−i) for each i ∈ I. A multistrategy
x̂ = (x̂1, . . . , x̂N ) ∈ X is called a Nash equilibrium for the generalized game
(Xi, Fi, ui)i∈I if for each i ∈ I one has

x̂i ∈ Fi(x̂−i) and ui(x̂) ≥ ui(x̂−i, vi) for all vi ∈ Fi(x̂−i),

where (x̂−i, vi) denotes the multistrategy obtained from x̂ by replacing the i-th
component x̂i by vi. Therefore, the multistrategy x̂ is a Nash equilibrium for the
game if it is feasible and for each i ∈ I the strategy x̂i maximizes the function
ui(x̂−i, · ) over the set Fi(x̂−i). In the sequel, we shall denote by Σ the set of all
feasible multistrategies (the feasible set). That is, we put

(1) Σ =
{

x ∈ X : xi ∈ Fi(x−i) for all i ∈ I
}

.

The reader is referred, for instance, to [1], [7], [10] and to the references therein
for more details on generalized games. We also refer to [2], [9] for the basic facts
about multifunctions.
Recently, in [8], the following fixed point theorem for multi-valued mappings

in H-spaces has been established.

Theorem 1.1 ([8, Corollary 1]). Let (E, {ΓA}A∈FE
) be an H-space, X ⊆ E

a nonempty closed H-convex set, S : X → 2X a multifunction, D ⊆ X an H-
compact set. Assume that:

(i) S has open lower sections; that is, for each y ∈ X the set S−(y) = {x ∈
X : y ∈ S(x)} is open in the relative topology of X ;

(ii) for each x ∈ X , S(x) is a nonempty H-convex set;
(iii) S(x) ∩ D 6= ∅ for each x ∈ X \ D.

Then there exists x∗ ∈ X such that x∗ ∈ S(x∗).

As an application of Theorem 1.1, an existence result for the Nash equilibria of
generalized games in H-spaces has been derived in [8, Theorem 3]. In that result,
a special concavity condition on the utilities ui was assumed ([8, Definition 3]),
which is stronger than other H-concavity conditions used in the theory of H-
spaces (see Definition 1 and Proposition 2 of [4]). As a matter of fact, in the
proof of Theorem 3 of [8] such condition was used only to ensure that for each
x ∈ X the level set

(2)
{

y = (y1, . . . , yN ) ∈
∏

i∈I

Fi(x−i) :
∑

i∈I

(ui(x) − ui(x−i, yi)) < 0
}

is H-convex. Therefore, we can paraphrase that result as follows.

Assertion 1.2 ([8, Theorem 3]). Let (Xi, Fi, ui) be a generalized game. For each
i ∈ I, assume that:

(i) Xi is a closed H-convex subset of the H-space (Ei, {ΓBi
}Bi∈FEi

);

(ii) Fi has open lower sections and nonempty H-convex values;
(iii) ui is continuous on X .
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Moreover, assume that:

(iv) for each x ∈ X the level set (2) is H-convex;
(v) there exist H-compact sets Di ⊆ Xi such that: for each x = (x1, . . . , xN )

∈ X \D (D :=
∏

i∈I Di), there exists y = (y1, . . . , yN ) ∈ D such that for
each i ∈ I one has

yi ∈ Fi(x−i) and ui(x) < ui(x−i, yi).

Then there exists a Nash equilibrium for the generalized game.

Unfortunately, the proof of the latter result given in [8] is not correct. In this
note we first show, by means of a simple counter-example, that Assertion 1.2 is
not true in general. Then we show that it becomes true if we assume, in addition,
that the feasible set Σ is closed. We also discuss in detail the mistake in the
original proof of Assertion 1.2.

2. The counter-example and the result

The following counter-example shows that Theorem 1.2 above is false.

Example 2.1. Let N = 2, X1 = X2 = [0, 1], u1(x1, x2) = u2(x1, x2) = x1 + x2,
and let

F1(x2) = ]0, 1[, F2(x1) = ]0, 1[ for all (x1, x2) ∈ [0, 1]× [0, 1].

It is immediate to check that all the assumptions of Assertion 1.2 are satisfied
(in particular, one can take D1 = D2 = [0, 1]). However, the conclusion of
Assertion 1.2 does not hold. In fact, choose any x = (x1, x2) ∈ Σ = ]0, 1[×]0, 1[ .
If we pick any v1 ∈ ]x1, 1[⊆ F1(x2) we get u1(v1, x2) > u1(x1, x2). Therefore, the
point (x1, x2) is not an equilibrium.

Consequently, Assertion 1.2 is not correct. Before analyzing the mistake in the
original proof of Assertion 1.2, let us observe the following fact. First, define a
multifunction F : X → 2X by putting

(3) F (x) :=
∏

i∈I

Fi(x−i).

It is immediate to observe that a multistrategy x ∈ X is feasible if and only if x
is a fixed point for F . That is, x ∈ Σ if and only if one has x ∈ F (x). It is a
well-known fact in game theory that a multistrategy x ∈ X is a Nash equilibrium
for the generalized game (Xi, Fi, ui)i∈I if and only if one has

x ∈ F (x) and
∑

i∈I

ui(x) ≥
∑

i∈I

ui(x−i, yi) for all y ∈ F (x)
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(a direct proof of this fact is also easy). Now we come to Assertion 1.2. The
gap in the original proof (see [8, proof of Theorem 3]) resides in the fact that
the technique used is not sufficient, in general, to ensure the existence of an
equilibrium. In fact, the original proof of Theorem 1.2 consists of the two following
steps.

First step. It is shown that F has a fixed point x0 ∈ F (x0).

Second step. The conclusion is proved by assuming that for each x ∈ X the
set h(x) = {y ∈ F (x) :

∑

i∈I ui(x) <
∑

i∈I ui(x−i, yi)} is nonempty and getting
a contradiction. But the gap is exactly here, since the fact h(x) = ∅ does not
imply, in general, that x is an equilibrium. In fact, we do not necessarily have
x ∈ F (x). In Example 2.1, for instance, we have h((1, 1)) = ∅, but (1, 1) is not
an equilibrium since (1, 1) /∈ Σ.

We point out that in Example 2.1 the feasible set Σ was not closed. As an-
nounced in the Introduction, we now prove that Assertion 1.2 becomes true if we
assume, in addition, that the feasible set Σ is closed. The following is our result.

Theorem 2.2. Let (Xi, Fi, ui) be a generalized game. For each i ∈ I, assume
that:

(i) Xi is a closed H-convex subset of the H-space (Ei, {ΓBi
});

(ii) Fi has open lower sections and nonempty H-convex values;
(iii) ui is continuous on X .

Moreover, assume that:

(iv) for each x ∈ X the level set (2) is H-convex;
(v) the feasible set Σ is closed;
(vi) there exists a nonempty H-compact set D ⊆ X such that:

(a) for each x ∈ X \ (D ∪ Σ) one has F (x) ∩ D 6= ∅;
(b) for each x ∈ (X \ D) ∩ Σ, there exists y ∈ F (x) ∩ D such that

∑

i∈I

(ui(x)− ui(x−i, yi)) < 0.

Then there exists a Nash equilibrium for the game.

Remark. It is easy to check that assumption (vi) of Theorem 2.2 is more general
than the corresponding assumption (v) of Assertion 1.2. We point out that it is
automatically satisfied if each set Xi is H-compact, by taking D = X .

Proof of Theorem 2.2: First, we observe that the multifunction F : X → 2X ,
defined as in (3), has open lower sections. To see this, let y ∈ X be fixed, and let
us show that the set F−(y) = {x ∈ X : y ∈ F (x)} is open in the relative topology
of X . By assumption (ii), for each i ∈ I the set F−

i (yi) = {x−i ∈ X−i : yi ∈
Fi(xi)} is open in the relative topology of X−i. For each i ∈ I, let hi : X → X−i

be defined by hi(x) = x−i. Therefore, we have

F−(y) =
⋂

i∈I

h−1i (F
−
i (yi)).



On generalized games in H-spaces 179

Since each hi is continuous, the set F−(y) is open in X , as claimed. Therefore,
F has open lower sections. Moreover, by (ii), each set F (x) is nonempty and H-

convex. Now, consider the multifunctions S : X → 2X and Ψ : X → 2X defined
by putting, for each x ∈ X ,

S(x) =
{

y ∈ X :
∑

i∈I

(ui(x)− ui(x−i, yi)) < 0
}

,

Ψ(x) = S(x) ∩ F (x).

By assumption (iv), each set S(x) is H-convex, hence each set Ψ(x) is H-convex.
Moreover we claim that Ψ has open lower sections. To see this, let z ∈ X be
fixed. Since by (iii) the function

gz : x ∈ X →
∑

i∈I

(ui(x)− ui(x−i, zi)) ∈ R

is continuous, the set S−(z) = g−1z ( ]−∞, 0[ ) is open in the relative topology of
X . Since F has open lower sections (hence F−(z) is open in X) and Ψ−(z) =
S−(z) ∩ F−(z), we have that Ψ−(z) is open in X . Consequently, Ψ has open

lower sections, as claimed. Now, let Φ : X → 2X be the multifunction defined by

Φ(x) =

{

F (x) if x ∈ X \ Σ

Ψ(x) if x ∈ Σ.

Since F and Ψ have open lower sections, by assumption (v) and Proposition 4.1
of [6] it follows that Φ has open lower sections (a direct proof of this fact is not
difficult). We claim that there exists x̂ ∈ X such that Φ(x̂) = ∅. On the contrary,
assume that Φ(x) 6= ∅ for all x ∈ X . Therefore, Φ has nonempty H-convex values.
Moreover, by assumption (vi), it is not difficult to check that one has Φ(x)∩D 6= ∅
for all x ∈ X \ D. Consequently, by Theorem 1.1, there exists x∗ ∈ X such that
x∗ ∈ Φ(x∗). Since Φ(x∗) ⊆ F (x∗), we get x∗ ∈ Σ, hence x∗ ∈ Ψ(x∗), which is
a contradiction by the definition of Ψ. Such an absurd implies that there exists
x̂ ∈ X such that Φ(x̂) = ∅. Since F (x) 6= ∅ for all x ∈ X , we get x̂ ∈ Σ and
Ψ(x̂) = ∅, hence we have

x̂ ∈ F (x̂) and
∑

i∈I

ui(x̂) ≥
∑

i∈I

ui(x̂−i, yi) for all y ∈ F (x).

Consequently, x̂ is a generalized Nash equilibrium for the game. The proof is
complete. �
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