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Absolute countable compactness

of products and topological groups

Yan-Kui Song

Abstract. In this paper, we generalize Vaughan’s and Bonanzinga’s results on absolute
countable compactness of product spaces and give an example of a separable, countably
compact, topological group which is not absolutely countably compact. The example
answers questions of Matveev [8, Question 1] and Vaughan [9, Question (1)].

Keywords: compact, countably compact, absolutely countably compact, hereditarily ab-
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§1. Introduction

By a space, we mean a topological space. Matveev [7] defined a space X to
be absolutely countably compact (= acc) if for every open cover U of X and
every dense subspace D of X , there exists a finite subset F ⊆ D such that
St(F,U) = X , where St(F,U) =

⋃
{U ∈ U : U ∩ F 6= ∅}. He also defined a space

X to be hereditarily absolutely countably compact (= hacc) if all closed subspaces
of X are acc. Obviously, all compact spaces are hacc and all hacc spaces are acc.
Moreover, it is known ([7]) that all acc spaces are countably compact (cf. also [5]).
For an infinite cardinal κ, a space X is called initially κ-compact if every open
cover of X with the cardinality ≤ κ has a finite subcover. The purpose of this
paper is to prove Theorem 1 and Theorem 2 below.

Theorem 1. Let κ be an infinite cardinal. Let X be an initially κ-compact T3-
space, Y a compact T2-space with t(Y ) ≤ κ and A a closed subspace of X × Y .
Assume that A∩(X×{y}) is acc for each y ∈ Y and the projection πY : X×Y → Y
is a closed map. Then, the subspace A is acc.

Vaughan [11] proved that

(i) if X is an acc T3-space and Y is a sequential, compact T2-space, then
X × Y is acc, and

(ii) if X is an ω-bounded, acc T3-space and Y is a compact T2-space with
t(Y ) ≤ ω, then X × Y is acc.

Further, Bonanzinga [2] proved that the above theorems (i) and (ii) remain true
if “acc” is replaced by “hacc”. In Section 2, we prove Theorem 1 and show
that Vaughan’s theorems (i), (ii) and Bonanzinga’s theorems are deduced from
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Theorem 1. Matveev [8] asked if there exists a separable, countably compact,
topological group which is not acc. Vaughan [10] asked the same question and
showed that the answer is positive if there is a separable, sequentially compact
T2-group which is not compact. Form this point of view, he also asked if there ex-
ists a separable, sequentially compact T2-group which is not compact. Theorem 2
below, which is a joint work with Ohta, answers the former question positively
and show that the latter question has a positive answer under extra set theoretic
assumptions. The latter question remains open in ZFC. Let s denote the split-
ting number, i.e., s = min{κ : the power 2κ is not sequentially compact} (cf. [3,
Theorem 6.1]).

Theorem 2 (Ohta-Song). There exists a separable, countably compact T2-group
which is not acc. If 2ω < 2ω1 and ω1 < s, then there exists a separable, sequen-

tially compact T2-group which is not acc.

It was shown in the proof [3, Theorem 5.4] that the assumption that 2ω < 2ω1

and ω1 < s is consistent with ZFC. Theorem 2 will be proved in Section 3.

Remark 1. Matveev kindly informed Ohta that a similar theorem to Theorem 2
above was proved independently by W. Pack in his Ph. D. thesis at the University
of Oxford (1997).

For a set A, |A| denotes the cardinality of A. As usual, a cardinal is the initial
ordinal and an ordinal is the set of smaller ordinals. Other terms and symbols
will be used as in [4].

§2. Proof of Theorem 1 and corollaries

Throughout this section, κ stands for an infinite cardinal. For a set A, let
[A]≤κ = {B : B ⊆ A, |B| ≤ κ} and [A]<κ = {B : B ⊆ A, |B| < κ}. Let A
be a subset of a space X . Arhangel’skii [1] defined the κ-closure of A in X by

κ-clXA = ∪{clXB : B ∈ [A]≤κ}. A subset A is said to be κ-closed in X if
A = κ-clXA. By the definition, κ-clXA is κ-closed in X . We omit an easy proof
of the following lemma.

Lemma 3. Let X be a space. Then, t(X) ≤ κ if and only if every κ-closed set
in X is closed.

Lemma 4. Let X and Y be spaces such that πY : X × Y → Y is a closed map.
Then, πY (A) is κ-closed in Y for each κ-closed set A in X × Y .

Proof: Let A be a κ-closed set in X × Y . To show that πY (A) is κ-closed in Y ,
let y ∈ κ-clY πY (A). Then, there is B ∈ [πY (A)]

≤κ such that y ∈ clY B. Choose a

point 〈xz , z〉 ∈ A for each z ∈ B and let C = {〈xz , z〉 : z ∈ B}. Since C ∈ [A]≤κ

and A is κ-closed in X × Y , clX×Y C ⊆ A. Since πY (C) = B and πY is closed,
then y ∈ clY B = πY (clX×Y C) ⊆ πY (A). Hence, κ-clY (πY (A)) = πY (A). �
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Proof of Theorem 1: The proof is a slight variation of Vaughan’s proofs [11,
Theorems 1.3 and 1.4]. Suppose on the contrary that A is not acc. Then, there
exist an open cover U of A and a dense subset D of A such that A 6⊆ St(B,U)
for each B ∈ [D]<ω. Since X ×Y is initially κ-compact, A is initially κ-compact,
which implies that A 6⊆ St(B,U) for each B ∈ [D]≤κ. For each B ∈ [D]≤κ,
define FB = πY (A \ St(B,U)). Since πY is closed, FB is closed in Y . Thus,

F = {FB : B ∈ [D]≤κ} is a filter base of closed subsets in Y . By compactness of
Y , there exists a point y ∈

⋂
{FB : B ∈ [D]≤κ}. Let L = A ∩ (X × {y}). Then,

(1) L 6⊆ St(B,U) for each B ∈ [D]≤κ.

Further, let K = (κ-clX×Y D)∩ (X ×{y}). We show that K is not dense in L. To
show this, suppose that K is dense in L. Since L is acc by the assumption, there
is E ∈ [K]<ω such that L ⊆ St(E,U). For each p ∈ E, since p ∈ K ⊆ κ-clX×Y D,

there is Ap ∈ [D]≤κ such that p ∈ clX×Y Ap. Let B0 = ∪{Ap : p ∈ E}. Then,

B0 ∈ [D]≤κ and L ⊆ St(E,U) ⊆ St(B0,U), which contradicts (1). Hence, K is
not dense in L. Thus, we can find an open set V in X such that

(2) (V × {y}) ∩ A 6= ∅

and (V × {y}) ∩ (κ-clX×Y D) = ∅. Since X is a T3-space, we may assume that

(3) (clXV × {y}) ∩ (κ-clX×Y D) = ∅.

Let Z = πY ((clXV × Y ) ∩ (κ-clX×Y D)). Since πY is closed, it follows from
Lemma 4 that Z is κ-closed in Y . Since t(Y ) ≤ κ, Z is closed in Y by Lemma 3.
Moreover, y /∈ Z by (3). Hence, there is a neighborhood W of y in Y such that
W ∩ Z = ∅. By (2), there is a point 〈x, y〉 ∈ (V × {y}) ∩ A. Since

π−1
Y (W ) ∩ ((clXV × Y ) ∩ (κ-clX×Y D)) = ∅,

(V × W ) ∩ D = ∅. Since V × W is a neighborhood of 〈x, y〉 ∈ A, this contradicts
the fact that D is dense in A. �

The following corollary directly follows from Theorem 1.

Corollary 5. Let X be an initially κ-compact, acc (resp. hacc) T3-space and Y
a compact T2-space with t(Y ) ≤ κ. Assume that πY : X × Y → Y is a closed
map. Then, X × Y is acc (resp. hacc).

Since an acc space is countably compact (i.e., initially ω-compact), we have
the following corollary from Corollary 5:

Corollary 6. Let X be an acc (resp. hacc) T3-space and Y a compact T2-space
with t(Y ) ≤ ω. Assume that πY : X × Y → Y is a closed map. Then, X × Y is
acc (resp. hacc).
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It is known (cf. [4, Theorem 3.10.7]) that if X is countably compact and Y is
sequential, then πY : X × Y → Y is closed. Hence, we have the following corol-
lary, which is Vaughan’s theorem (i) stated in the introduction and Bonanzinga’s
theorem [2, Theorem 1.1]:
Corollary 7 (Vaughan [11] and Bonanzinga [2]). Let X be an acc (resp. hacc)
T3-space and Y a sequential, compact T2-space. Then, X ×Y is acc (resp. hacc).

Recall that a space X is κ-bounded if clXA is compact for each A ∈ [X ]≤κ. It is
known (cf. [9]) that all κ-bounded spaces are initially κ-compact, and Kombarov
[6] proved that if X is κ-bounded and t(Y ) ≤ κ, then πY : X × Y → Y is closed.
Hence, we have the following corollary, which generalizes Vaughan’s theorem (ii)
stated in the introduction and Bonanzinga’s theorem [2, Theorem 2.1].
Corollary 8. Let X be a κ-bounded, acc (resp. hacc) T3-space and Y a compact
T2-space with t(Y ) ≤ κ. Then, X × Y is acc (resp. hacc).

§3. Proof of Theorem 2

We give two lemmas before proving Theorem 2.

Lemma 9. Let X be a space and Y a space having at least one pair of disjoint
non-empty closed subsets. Assume that X × Y κ is acc for an infinite cardinal κ.
Then, X is initially κ-compact.

Proof: Let U = {Uγ : γ < κ} be an open cover of X . By the assumption, there
are disjoint non-empty closed subsets E and F of Y . Let D = {f ∈ Y κ : |{α < κ :
f(α) /∈ E}| < ω}; then D is dense in Y κ. Let V = Y \ E and I = Fκ. For each
A ∈ [κ]<ω , let VA =

⋂
α∈A π−1

α (V ), where πα : Y
κ → Y is the α-th projection.

Then, VA is an open neighborhood of I in Y κ. Let V = {VA : A ∈ [κ]<ω}.
Observe that, for each f ∈ D, f ∈ VA implies that A ⊆ {α < κ : f(α) /∈ E}.
This means that V is point-finite at each point of D. Enumerate the family V as
{Vγ : γ < κ} and let W = {Uγ × Vγ : γ < κ} ∪ {(X × Y κ) \ (X × I)}. Since
I ⊆ Vγ for all γ < κ, W is an open cover of X × Y κ. Since X × Y κ is acc,
there exists a finite subset M of X × D such that X × Y κ = St(M,W). Let
J = {γ < κ : (Uγ × Vγ) ∩ M 6= ∅}. Then, X × I ⊆

⋃
{Uγ × Vγ : γ ∈ J}. Since

V is point-finite at each point of D, J is finite. Hence, U has a finite subcover
{Uγ : γ ∈ J}. �

We consider 2 = {0, 1} the discrete group of integers modulo 2. Then, 2κ is a
topological group under coordinatewise addition. The following lemma seems to
be well known (see [9, 3.5] for the first statement), but we include it here for the
sake of completeness.

Lemma 10. There exists a separable, countably compact, non-compact subgroup

G1 of 2
c. If 2ω < 2ω1 and ω1 < s, then there exists a separable, sequentially

compact, non-compact subgroup G2 of 2
ω1 .

Proof: For each S ⊆ 2c, we define a subgroup G(S) of 2c as follows: Choose
an accumulation point xA of A in 2c for each A ∈ [S]ω. Define G(S) to be the
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smallest subgroup of 2c including the set S∪{xA : A ∈ [S]ω}. Note that if |S| ≤ c,
|G(S)| ≤ c. By transfinite induction, we can define Sα ⊆ 2c for each α < ω1 as
follows: Let S0 be a countable dense subset of 2

c. Now, assume that 0 < α < ω1
and Sβ has been defined for all β < α. If α is a limit, let Sα =

⋃
β<α Sβ . If

α = β + 1, let Sα = G(Sβ). Define G1 =
⋃

α<ω1
Sα. Then, G1 is a separable,

countably compact subgroup of 2c. Since |G1| = c, G1 is a proper dense subset
of 2c. Hence, G1 is not compact. Next, assume that 2

ω < 2ω1 and ω1 < s. The
construction of G2 is similar to that of G1. The only difference is in the definition
of xA. Since ω1 < s, 2ω1 is sequentially compact. Hence, we can choose xA as
a limit point of a sequence in A. Then, G2 =

⋃
α<ω1

Sα becomes sequentially

compact. Since |G2| = c and 2ω < 2ω1 , G2 is not compact. �

Proof of Theorem 2: Let G1 be the group in Lemma 10. Then, G1 × 2
c is a

separable, countably compact T2-group. Since G1 is not compact and w(G1) ≤ c,
G1 is not initially c-compact. Hence, it follows from Lemma 9 that G1 × 2

c is
not acc. Next, assume that 2ω < 2ω1 and ω1 < s, and let G2 be the group in
Lemma 10. Since ω1 < s, 2ω1 is sequentially compact. Hence, G2 × 2

ω1 is a
separable, sequentially compact T2 group which is not compact. Since w(G2) =
ω1, G2 × 2

ω1 is not acc by Lemma 9. �
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