
Commentationes Mathematicae Universitatis Carolinae

Melvin Henriksen; Frank A. Smith
The Bordalo order on a commutative ring

Commentationes Mathematicae Universitatis Carolinae, Vol. 40 (1999), No. 3, 429--440

Persistent URL: http://dml.cz/dmlcz/119099

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1999

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/119099
http://project.dml.cz


Comment.Math.Univ.Carolin. 40,3 (1999)429–440 429

The Bordalo order on a commutative ring

Melvin Henriksen, F.A. Smith

Abstract. If R is a commutative ring with identity and ≤ is defined by letting a ≤ b
mean ab = a or a = b, then (R,≤) is a partially ordered ring. Necessary and sufficient

conditions on R are given for (R,≤) to be a lattice, and conditions are given for it to be
modular or distributive. The results are applied to the rings Zn of integers mod n for
n ≥ 2. In particular, if R is reduced, then (R,≤) is a lattice iff R is a weak Baer ring,
and (R,≤) is a distributive lattice iff R is a Boolean ring, Z3, Z4, Z2[x]/x2Z2[x], or a
four element field.
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1. Introduction

Throughout, R will denote a commutative ring with identity element 1. In
1986, in an unpublished paper [Bo], Gabriela Bordalo defined an order ≤ on R by
letting a ≤ b mean a = b or ab = a. In that paper, she observed that ≤ is a partial
order for any commutative ring R, derived some of its elementary properties, gave
some pertinent examples, and made this investigation possible. In her honor, we
call ≤ the Bordalo order on R. (An ancestor ≤′ has long been used in the study
of Boolean rings; a ≤′ b is defined to mean ab = a. This relation is reflexive if
and only if R is Boolean, and if R is a Boolean ring with identity element, then
(R,≤′) is a complemented distributive lattice. See [J, Chapter 8].)

In Section 2, we characterize those rings R for which (R,≤) is a lattice and
those for which it is a chain, and Section 3 is devoted to describing when it is a
modular or a distributive lattice. In case R is reduced, (R,≤) is a lattice if and
only if R is a weak Baer ring, (R,≤) is a chain if and only if R is a two or three
element field, and if R has more than 2 idempotents, then (R,≤) is a modular
lattice if and only if R is a Boolean ring (in which case (R,≤) is distributive).
The results are more complicated in case R has nonzero nilpotent elements, but
(R,≤) cannot be a lattice if R has a nilpotent of index 4 or more, or if it has
more than one nilpotent of index 2.

We are indebted to P. Dwinger for valuable discussions in which interesting
questions were raised.
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2. When (R,≤) is a lattice and when it is a chain

If a < b and a ≤ x ≤ b imply x = a or x = b, then b is said to cover a. If
a and b are incomparable, we write a q b. As usual, a ∨ b and a ∧ b will denote
the least upper bound and greatest lower bound of a and b when these latter are
defined. If ra = 0 implies a = 0, then r is called a regular element of R.

Observe that 0 ≤ x ≤ 1 for every x ∈ R.
The following technical lemma will be used in the sequel.

2.1 Lemma.

(a) If (1− x) ∨ (1− y) is defined, then x ∧ y = 1− (1 − x) ∨ (1− y). Dually,
if (1 − x) ∧ (1 − y) is defined, then x ∨ y = 1 − (1 − x) ∧ (1 − y). Thus
(R,≤) is a lattice if x ∨ y is defined for all x, y.

(b) If r 6= 1 is regular, then 1 covers r and 1− r covers 0. In particular, every
nonzero nilpotent covers 0.

(c) If xy = 0, then x = y or x ∧ y = 0.
(d) If x2 = 0 and yzx 6= 0, then 1 + zx covers yx.
(e) x and 1 + x are comparable if and only if x2 = 0 or x2 = 1.
(f) If x ∧ y is defined and regular, then x and y are regular, and either one
of x, y is 1, or x = y = x ∧ y.

Proof: (a) follows easily from the fact that a ≤ b if and only if 1− b ≤ 1− a.

(b) If r ≤ x ≤ 1, then r = x or rx = r. If the latter holds, then rx = r,
hence r(1 − x) = 0. Because r is regular, this implies x = 1, so 1 covers r. The
proof that 1 − r covers 0 is similar. The second assertion follows from the fact
that if 0 6= x is nilpotent, then 1− x is a unit and hence is regular.

(c) If x or y = 0, then x ∧ y = 0. If neither x nor y is 0, x 6= y, and t < x,
then tx = t. So 0 = txy = ty, and t < y implies y = 0. Thus, (c) holds.

(d) If x2 = 0, then yx(1 + zx) = yx, so yx ≤ 1 + zx. If yx = 1 + zx,
then 0 = (yx)x = (1 + zx)x = x, contrary to the assumption that yzx 6= 0. So
yx < 1 + zx. If there is a t ∈ R such that yx < t < 1 + zx, then (i) yxt = yx and
(ii) t(1 + zx) = t. Multiplying both sides of (ii) by y yields tzxy = 0, so by (i),
zyx = 0, in violation of the hypothesis. So, (d) holds.

(e) Clearly x(1 + x) = x if and only if x2 = 0 and x(1 + x) = 1 + x if and
only if x2 = 1.

(f) x and y must be comparable. For otherwise, (x∧y)x = (x∧y)y = (x∧y),
so x = y since x ∧ y is regular. If x ≤ y, then x = (x ∧ y) is regular and either
x = y or x < y = 1 by (b). If y ≤ x, interchanging the role of x and y in the last
sentence completes the proof. �

An immediate consequence of Lemma 2.1(b) follows. It shows that the order
≤ cannot distinguish between integral domains of the same cardinality. The next
result may also be found in [Bo].
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2.2 Proposition. If R is an integral domain, then (R,≤) is a lattice in which
x ∧ y = 0 and x ∨ y = 1 if x 6= y and neither is 0 or 1. See Figure 1.

1
· · · · · · · · · · · · · · · · · ·

0

Figure 1

2.3 Lemma. If (R,≤) is a lattice and x2 = 0, then 2x = 0.

Proof: Suppose 2x 6= 0. Applying Lemma 1(d) in case y = 2 and z = 1, and
in case y = 1 and z = 2 yields that both 1 + 2x and 1 + x cover both x and
2x. Because x q 2x, it follows that x and 2x cannot have a least upper bound,
contrary to assumption. So 2x = 0. �

For x ∈ R, A(x) = { y ∈ R : xy = 0} is called the annihilator of x.

2.4 Lemma. If x and y are incomparable elements of R, then the following are
equivalent:

(a) z = x ∨ y is defined in R;
(b) (1− z)R ⊂ A(x)

⋂
A(y) ⊂ A(z)

⋃
(1− z);

(c) z2 = z and A(x)
⋂

A(y) ⊂ A(z) = (1 − z)R or (1 − z)2 = 0 and
A(x)

⋂
A(y) = (1− z)R = {0, 1− z}.

Proof: Note first that since x q y, w is an upper bound of x and y if and only if
1− w ∈ A(x)

⋂
A(y); i.e., if and only if xw = x and yw = y.

If (a) holds, then the first inclusion in (b) holds because annihilators of
elements are ideals. If t ∈ A(x)

⋂
A(y), then x ≤ 1− t and y ≤ 1− t, so z ≤ 1− t

by definition of least upper bound. Thus z(1 − t) = z and hence t ∈ A(z), or
z = 1− t, in which case t = 1− z. So the second inclusion of (b) holds as well.

Assume next that (b) holds. If z2 = z, then 1− z ∈ A(z) = (1− z)R, so (b)
is equivalent to saying that A(x)

⋂
A(y) = A(z) = (1− z)R.

Assume (b) holds and z is not an idempotent. By (b), 1−z2 = (1−z)(1+z) ∈
A(z) or 1− z2 = 1 − z. This latter cannot hold because z2 6= z, so z3 = z. Also,
(1 − z)z ∈ A(z) or (1 − z)z = 1 − z. If the former holds, then z2 = z3 = z,
contrary to assumption. So the latter holds and (1 − z)2 = 0. If a ∈ A(z),
then 0 = a(1 − z)z = a(1 − z) = a, so A(z) = {0}. It follows from (b) that
(1− z)R = {0, 1− z} and (c) holds.

Assume finally that (c) holds. If A(x)
⋂

A(y) = {0, 1 − z}, then x < z and
y < z. If t is an upper bound for x and y, then (1− t) ∈ A(x)

⋂
A(y) = {0, 1−z}.

If 1 − t = 0, then t = 1, while if 1− t = 1 − z, then t = z. In either case, z ≤ t,
so x ∨ y = z. The proof that x ∨ y = z if A(z) = (1− z)R is an exercise. �

The following consequence of the last lemma will be used later.
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2.5 Lemma. If (R,≤) is a lattice, x q y for some x, y ∈ R, and z = x ∨ y, then:

(a) (z − z2)2 = 2(z − z2) = 0, and
(b) z − z2 = 0 or (1− z)2 = 2(1− z) = 1− z2 = 0.

Proof: (a) By Lemma 2.4(c), z − z2 = 0 = z(1 − z) or (1 − z)2 = 0. In either
case (z − z2)2 = z2(1− z)2 = 0, so 2(z − z2) = 0 by Lemma 2.3. So (a) holds.

(b) By Lemmas 2.4(c) and 2.3, if z − z2 6= 0, then 0 = (1− z)2 = 2(1 − z).
The last equation implies z2 = 1, so (b) holds. �

The next lemma is well known. Its proof is an exercise.

2.6 Lemma. If A(x) = eR and e2 = e 6= 0, then x is not nilpotent.

We are now ready to characterize those rings for which the Bordalo order is
a lattice order.

2.7 Theorem. (R,≤) is a lattice if and only if:

(a) there is at most one y ∈ R such that yR = {0, y} and y is nilpotent of
index 2, and

(b) if 0 6= x and xR 6= {0, x}, then either
(1) A(x) = eR for some idempotent e, or
(2) A(x) = (1−z)R = {0, 1−z} for some z such that (1−z)2 = 2(1−z) =
1− z2 = 0.

Proof: Suppose first that (R,≤) is a lattice. If there are distinct nilpotents y, z
of index 2 such that yR = {0, y} and zR = {0, z}, then by Lemma 2.1(b), y and z
cover 0, and hence y q z. Then yz is neither y nor z, so yz = 0 = y = z, contrary
to assumption. So (a) holds. If x = 0, then (1) holds, so we may assume x 6= 0.
We consider three cases: (i) A(x) = A(x2), (ii) there is a y ∈ A(x2) \ A(x) such
that xy = x, and (iii) for no y ∈ A(x2) \ A(x) is it true that xy = x.

Suppose first that A(x) = A(x2). If x3 = x or x3 = x2, then x2 is an
idempotent, and A(x) = A(x2) = (1− x2)R, so (1) holds. If x3 6= x and x3 6= x2,
then x q x2, so by Lemma 2.4, either there is z ∈ R such that z2 = z and A(x) =
A(x)∩A(x2) = (1−z)R, and (1) holds, or (1−z)2 = 0 and A(x) = A(x)∩A(x2) =
(1− z)R = {0, 1− z}, and by Lemma 2.5(b), (1− z)2 = 2(1− z) = (1− z2) = 0,
so (2) holds.

If there is a y ∈ A(x2) \ A(x), then 0 = x2y = x(xy) and y 6= xy 6= 0.
If xy = x as in case (ii), then 0 = x(xy) = x2, so 2x = 0 by Lemma 2.4. If
xR 6= {0, x}, there is a w ∈ R such that xw 6= x and xw 6= 0, and x(xw − x) = 0.
If x = xw − x, then 2x = xw = 0, contrary to assumption. Hence x q (xw − x).
Arguing as above using Lemmas 2.4 and 2.5, there is a z such that A(x)∩A(y) =
A(z) and one of conditions (1) or (2) holds. So, in case (ii), one of (a) or (b)
holds.

In case (iii), x q xy, and by Lemmas 2.4 and 2.5, A(x) = A(x) ∩ A(xy)
satisfies either condition (1) or (2).
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Assume next that (a) or (b) holds and x, y ∈ R with x q y. We need to show
that x ∨ y exists in R. To do this, we need to consider 5 cases: (i) (1) holds for
both x and y, (ii) (2) holds for both x and y, (iii) (1) holds for one of x, y and
(2) holds for the other; say (1) holds for x and (2) holds for y, (iv) (1) holds for
one of x, y and (a) applies to the other; say (1) holds for x and yR = {0, y}, and
(v) (2) holds for one of x, y and (a) applies to the other; say (2) holds for x and
yR = {0, y}.

(i) If A(x) = eR and A(y) = fR for idempotents e, f , it is easy to verify
that A(x) ∩ A(y) = efR. So x ∨ y = (1− ef) by Lemma 2.4.

(ii) Suppose A(x) = {0, 1− z} = (1− z)R and A(y) = {0, 1− z
′

} = (1− z
′

)R

as in (b). Then z = z
′

and A(x)∩A(y) = {0, 1−z} = (1−z)R, so x∨y is defined

by Lemma 2.4 or z 6= z
′

, in which case A(x) ∩ A(y) = {0}. If this latter holds,
the only common upper bound for x and y is 1.

(iii) Suppose A(x) = eR as in (1) and A(y) = (1− z)R = {0, 1− z} as in (2),
and x q y. If also A(x) ∩ A(y) = {0}, and t is an upper bound for x and y, then
x(1 − t) = y(1 − t) = 0, so x ∨ y = 1. Otherwise, A(x) ∩ A(y) = {0, 1− z}, and
the existence of x ∨ y follows from Lemma 2.4.

(iv), (v) If y2 = 0, yR = {0, y} and x q y, then xy = y2 = 0. So (1 + y)
is an upper bound for both x and y. By Lemma 2.1(d), (1 + y) covers y, so
x ∨ y = (1 + y). �

Recall that a ring R is called von Neumann regular if for each x ∈ R, there is
an y ∈ R such that xyx = x, and is called a weak Baer ring if for each x ∈ R, there
is an idempotent e ∈ R such that A(x) = eR. Clearly every von Neumann regular
ring is a weak Baer ring, and the ring of integers witnesses that the converse is
false. (The terminology in this area is not standard. Most authors define a Baer
ring to be one in which the annihilator of each ideal is generated by an idempotent,
but in [ES], [K], [S1], and [S2], our weak Baer rings are called Baer rings. In [Be],
weak Baer rings are called weak Rickart ∗-rings.)

Let N2(R) = {x ∈ R : x2 = 2x = 0}. An immediate consequence of
Theorem 2.7 is:

2.8 Corollary. If N2(R) = {0}, then (R,≤) is a lattice if and only if R is a
weak Baer ring.

The next corollary will prove to be useful below.

2.9 Corollary. If (R,≤) is a lattice, then:

(a) R does not contain a nilpotent element x such that both A(x) and xR
have at least three elements;

(b) R contains at most one nilpotent of index 2;
(c) each nilpotent in R has index ≤ 3;
(d) if R contains a nilpotent x of index 3, then 8 = 0.



434 M.Henriksen, F.A. Smith

Proof: (a) If A(x) and xR have at least three elements, then, by Theorem 2.7,
A(x) = eR for some idempotent e 6= 0. By Lemma 2.6, this cannot happen if x is
nilpotent.

(b) If there are distinct nilpotents x, y of index 2. If xy = 0, then {0, x, y}
is a three element subset of A(x) ∩ xR, contrary to (a), while if xy 6= 0, then this
set contains {0, x, xy}; again contrary to (a).

(c) If xk+1 = 0 6= xk and k ≥ 3, then xk and xk−1 are distinct nilpotents of
index 2, contrary to (b).

(d) By Lemma 2.3, 2x2 = 0, so (2x)2 = 0 = 2(2x). Because {0, x2, 4} ⊂ A(x)
and {0, x, x2} ⊂ xR, (a) implies x2 = 4 or 0 = 4. Multiplying both sides of either
of these equations by 2 yields 8 = 0. �

The presence of a nilpotent of index 3 in a ring which is a lattice under the
Bordalo order restricts its nature considerably.

2.10 Theorem. If R has a nilpotent of index 3, (R,≤) is a lattice, and 4 6= 0,
then R is isomorphic to Z8.

Proof: Using Corollary 2.9 and Lemma 2.3 yields 8 = 0, (x2)2 = 2x2 = 0, and
(2x)2 = 2(2x) = 0. By Corollary 2.9(b), 2x = 0 or 2x = 4 = x2. If the former
holds, then A(2) ⊃ {0, x, 4} and 2R ⊃ {0, 2, 4}, contrary to Corollary 2.9(a) and
the fact that x is nilpotent of index 3. Thus 2x = 4, A(2) ⊃ {0, x − 2, 4}, and
Corollary 2.9(a) yields x = 2 or x = 6. Thus R contains an isomorphic copy S
of Z8. If there is a y ∈ R \ S, then (4y)2 = 0 and hence by Corollary 2.9(b),
(i) 4y = 0 or (ii) 4y = 4.

If (i) holds, then (2y)2 = 0, so by Corollary 2.9(a), 2y = 0 or 2y = 4. In
the first case, A(2) ⊃ {0, 4, y} and 2R ⊃ {0, 2, 4}, and Corollary 2.9(a) implies
y = 4 ∈ R. In the second case, repeating this last argument with y replaced by
y − 2 yields y = 6 ∈ R.

If (ii) holds, then note that 4(y − 1) = 0. So, repeating this last argument
yields (y − 1) ∈ R and hence y ∈ R. This contradiction shows that R = S and
completes the proof. �

Next, we determine when (R,≤) is a chain. The ring of integers will be
denoted by Z, and for each positive integer n, the ring of integers mod n will be
denoted by Zn. First, we need to establish a rather technical lemma.

2.11 Lemma. If (R,≤) is a lattice and there is a nonzero x ∈ R such that
xR = {0, x} = A(x), then R is isomorphic to either Z4 or Z2[x]/x2Z2[x].

Proof: Clearly x2 = 2x = 0, so by Lemma 2.1(c), 2 = 0 or 2 = x and 4 = x2 = 0.
If 2 6= 0, then R contains an isomorphic copy S of Z4 that contains 0 and 1.
Suppose y ∈ R and a ∈ S. By assumption, 2(a+ y) = 0 or 2(a+ y) = 2. If the
former holds, then a+ y = 0 or a+ y = 2. In either case, y ∈ S. If 2(a+ y) = 2,
then 2(a+ y − 1) = 0, and the same argument yields y ∈ S.

If 2 = 0, then R contains a subring T isomorphic to Z2[x]/x2Z2[x] that
contains 0 and 1. Suppose y ∈ R \ T . Then x(1+ x+ y) = 0 or x(1+ x+ y) = x,
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so either 1 + x + y = x and y = 1, or x(x + y) = 0 and y = 0. It follows that
R = T . �

2.12 Theorem. (R,≤) is a chain if and only if R is isomorphic to Z2, Z3, Z4,
or Z2[x]/x2Z2[x].

Proof: If (R,≤) is a chain and 0 6= y ∈ R, then y and 1 + y are comparable, so
y2 = 0 or y2 = 1 by Lemma 2.1(e). If R is reduced, then y = 1 or −1, and R
is isomorphic to Z2 or Z3 according as −1 = 1 or not. If R fails to be reduced,
there is an x 6= 0 such that x2 = 0. If 0 6= y ∈ A(x), then y = x by Lemma 2.1(c),
so A(x) = {0, x}, and hence 2x = 0. For any z ∈ R, x(xz − x) = 0, so xz = x or
xz − x = xz + x = x. Thus, xz = x or xz = 0 and it follows that xR = {0, x},
and R is isomorphic to Z4 or Z2[x]/x2Z2[x] by Lemma 2.10.

It is routine to verify that each of these rings is a chain under the Bordalo
order. �

It is easy to see that a direct product of weak Baer rings is a weak Baer
ring. So Corollary 2.8 implies that if each member of a family of reduced rings
is a lattice under the Bordalo order, so is their direct product. It will be seen
next that this situation changes drastically in the presence of nonzero nilpotent
elements.

2.13 Lemma. If S is not reduced, then the direct product R ⊕ S is a lattice
under the Bordalo order if and only if R is an integral domain and S is a chain.

Proof: Assume first that (R⊕S,≤) is a lattice and observe that if (r, s) ∈ R⊕S,
then A((r, s)) = A(r)⊕A(s) and (r, s)(R ⊕ S) = rR ⊕ sS. If S is not reduced, it
contains an element s′ 6= 0 such that (s′)2 = 0, and if R is not an integral domain,
it contains nonzero elements r′, r′′ such that r′r′′ = 0. It follows that A((r′, s′))
contains the three element set {(0, 0), (r′′, 0), (0, s′)}, and (r′, s′)(R ⊕ S) contains
the three element set {(0, 0), (r′, 0), (0, s′)}. So, by Theorem 2.7, A((r′, s′)) =
(e, f)(R ⊕ S) = eR ⊕ fS for idempotents e ∈ R and f ∈ S. It follows easily from
Lemma 2.6 applied to the second summand that this cannot happen. So, R is an
integral domain.

Because A((1, s′)) = {0} ⊕ A(s′) and s′ 6= 0 is nilpotent, it cannot be gene-
rated by an idempotent. Also, (1, s′)(R ⊕ S) = R ⊕ s′S has more than the 2 ele-
ments, so A(s′) = {0, s′}. Suppose there is a w ∈ S such that s′w 6= 0 6= s′. Then
s′(s′w − s′) = 0 and A(s′) = {0, s′}, we must have s′w − s′ = s′ or s′w = 2s′ = 0
by Lemma 2.3. This contradiction yields s′S = {0, s′}, so by Lemma 2.11, S is
isomorphic to Z4 or Z2[x]/x2Z2[x].

Suppose conversely that R is an integral domain and S is isomorphic to Z4 or
Z2[x]/x2Z2[x]. Then S contains a unique element s′ such that A(s′) = {0, s′} =
s′S. Since R is an integral domain, if (r, s) ∈ R ⊕ S, then A((r, s)) is generated
by an idempotent unless s = s′. In this case, A((1, s′)) = {(0, 0), (0, s′)} =
(0, s′)(R ⊕ S). So (R ⊕ S,≤) is a lattice by Theorem 2.7. �

We conclude this section by applying the above to determining for which
integers n > 1, the ring Zn is a lattice under the Bordalo order.
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2.14 Theorem. If n > 1 is an integer, then Zn is a lattice under the Bordalo

order if and only if either:

(a) n is square free,
(b) n = 4p for some prime p, or
(c) n = 4.

Proof: Clearly n =
∏t

i=1 pki

i is a product of distinct prime powers, if and only
if Zn is the direct product of the rings Z

p
ki

i

and n is square free if and only if Zn

is the direct product of the fields Zpi
and hence is a weak Baer ring. So, if n is

square free, then Zn is a lattice under the Bordalo by Corollary 2.8.
Assume next that n = p2m for some prime p, (Zn,≤) is a lattice, and n 6= 4.

If 2p = 0 in Zn, then p = 2 and m = 1, so n = 4, contrary to assumption. So
{0, p, 2p} is a three element subset of A(pm). By Corollary 2.9(a), pmZn has
cardinality 2. Thus, 2pm = p2m, so p = 2. Because Z4 is a chain, we may
conclude that if Zn is a lattice, then n is square free or n = 4m for some m ≥ 1.

If m is odd, then Z4m is isomorphic to Z4⊕Zm, so if it is a lattice under the
Bordalo order, the m is prime by Lemma 2.13. If m is even, then n = 2k+1 for
some k ≤ 2. by Corollary 2.9. By Lemma 2.11, Z4 is a chain. For n = 8, every
nonzero element except for 2 and 4 has annihilator {0}, 42 = 0, while 4Z8 = {0, 4},
and A(2) = (1− 5)Z8 = {0,−4}, so (Z8,≤) is a lattice by Theorem 2.7. �

Some additional properties of a ring for which the Bordalo order is a lattice
follow. We begin a lemma whose proof is an exercise:

2.15 Lemma. If x < y, then xz ≤ y for any z ∈ R.

If 0, 1 are the only idempotents of a ring R, then it is said to be connected.
Note that any integral domain and any ring with a unique maximal ideal (e.g.,
the rings Zpk for any prime p and integer k) are connected.

2.16 Lemma. Suppose (R,≤) is a lattice and a, b are incomparable in R, then:

(a) (a ∧ b)3 = (a ∧ b)2, and hence (a ∧ b)2 is idempotent, and
(b) if R is connected, then (a ∧ b)2 = 0.

Proof: (a) Because a q b, (a ∧ b) < a and (a ∧ b) < b,so by Lemma 2.15,
(a ∧ b)2 ≤ (a ∧ b). Thus (a ∧ b)2 = (a ∧ b) or (a ∧ b)2 = (a ∧ b)2(a ∧ b) = (a ∧ b)3.
In either case, the conclusion holds.

(b) Because R is connected, (a ∧ b)2 = 1 or (a ∧ b)2 = 0 by (a). The first
case cannot hold by Lemma 2.1(f), so (a ∧ b)2 = 0. �

Next, we give some more examples pertinent to the results of this section.

2.17 Examples. A. By Theorem 2.14, (Z8,≤) is a lattice that witnesses the
existence of a ring with nilpotents of index 3 in which 0 = 8 6= 4 that is a lattice
under the Bordalo order.
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B. By Theorem 2.12, if D is an integral domain of characteristic 0, then (D⊕Z4,
≤) is a lattice. Note that (0, 2) is the only nonzero nilpotent in D ⊕ Z4 and that
n(1, 1) is not (0, 0) if n ≥ 1 is in Z. So the requirement in the hypothesis of
Corollary 2.9(d) that there be a nilpotent of index 3 may not be omitted.

C. A connected ring S of characteristic 4 such that (S,≤) is a lattice. Moreover,
S has cardinality 8 and has a nilpotent of index 3.

Let R = Z4[x], let I = x3R + 2xR + (x2 − 2)R, and let S = R/I. We may
regard S as {0, 1, 2, 3, x, 1 + x, 2 + x, 3 + x}, where x3 = 2x = x2 − 2 = 0. The
following assertions are easily verified: A(0) = S, A(1) = A(3) = A(1 + x) =
A(3 + x) = {0}. Because 4 = 2x2 = 0, 2S = {0, 2} and 22 = 0, while A(x) =
A(2+x) = {0, 1−3}. By Theorem 2.7, (S,≤) is a lattice, and x3 = 2x2 = 0 6= x2.
Clearly (a+ bx)2 = a2, so S is connected. Thus, S has the indicated properties.

In the next section, we examine the properties of the lattice (R,≤) when R
is a lattice under the Bordalo order.

3. What kind of lattice is (R,≤)?

3.1 Definition. Suppose r, s, t are distinct elements of R different from 0 or 1.

(a) If r∨s = r∨ t, r∧s = r∧ t, and s < t, then {r, s, t} is called a nonmodular
triple.

(b) r ∨ s = r ∨ t = s ∨ t and r ∧ s = r ∧ t = s ∧ t, then {r, s, t} is called a
nondistributive triple.

The first part of the next lemma appears as Theorem 8.4 in [J].

3.2 Lemma. Suppose (R,≤) is a lattice.

(a) (R,≤) is modular if and only if it fails to contain a nonmodular triple.
(b) (R,≤) is distributive if and only if it fails to contain either a nondistribu-
tive or a nonmodular triple.

(c) If {r, s, t} is a triple of distinct regular elements none of which is 1, then
R is not distributive. In particular if {r, s} is a pair of distinct regular
elements neither of which is 1 such that rs 6= 1, then R is not distributive.

Proof: (a) and (b) are just restatements of the well-known fact that a lattice
is modular if and only if it fails to contain the five element lattice illustrated on
p. 435 of [J] and that a lattice is distributive if and only if it fails to contain either
this lattice or the six element lattice in the same illustration.

(c) Not both rs and rt can be 1; say rs 6= 1, and let w = r ∧ s. Then
rw = w or r = w, in which case r ≤ s. Because r 6= s, rs = r and s = 1,
contrary to assumption. Hence wr = w. The same argument shows that ws
= w and hence that wrs = w or w < rs. Thus, if R is distributive, then
r = r ∧ 1 = r ∧ (s ∨ rs) = (r ∧ s) ∨ (r ∧ rs) = w ∨ (r ∧ rs) = (r ∧ rs), so r ≤ rs.
This latter is impossible because rs /∈ {1, r}. �
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3.3 Theorem. Suppose (R,≤) is a lattice.

(a) If R is not connected, then (R,≤) is modular if and only if R is a Boolean
ring. So, if R is not connected, then (R,≤) is modular if and only if it is
distributive.

(b) If R is connected, then (R,≤) is distributive if and only if R is a chain
or a four element field.

Proof: (a) Suppose R is modular, e2 = e /∈ {0, 1}, and there is a regular
element x such that ex 6= e (in which case x 6= 1). Then (ex)e = ex, so ex < e.
A series of routine arguments using this and the fact that 1 covers x together
imply {x ∧ e, ex, e} is a nonmodular triple. Thus, (R,≤) is not modular by
Theorem 3.2(a), contrary to the hypothesis. We conclude that ex = e for every
nontrivial idempotent e and regular element x. Because (1−e) = (1−e)2, (1−e) =
(1−e)x = x−ex = 0. This contradiction shows that 1 is the only regular element
of R, and because −1 and 1 are regular, this implies 2 = 0. Because 1 + y is
invertible for every nilpotent element y, R is reduced.

Suppose a ∈ R is not idempotent. By Theorem 2.7, there is an idempotent
e such that A(a) = eR. Now a < 1 + e since a 6= 1 − e = 1 + e. Let K denote
{1 + a, a, 1 + e}. It is easy to see that 0 < a < 1 + e < 1, and 0 < 1 + a < 1. If
z = a ∨ (1 + a), then az = z and (1 + a)z = 1 + a, and hence z = 1. Similarly,
a ∧ (1 + a) = 0. So (K,≤) is a nonmodular triple, and hence (R,≤) fails to be
modular by Theorem 3.2(a). This contradiction shows that R is a Boolean ring.
As noted in the introduction, (R,≤) is distributive and hence modular if R is a
Boolean ring. So (a) holds.

(b) Suppose (R,≤) is distributive and R is connected. If R is reduced, then
by Corollary 2.8, A(x) = {0} whenever x 6= 0. So R is an integral domain, and
must contain at least three regular elements other than 1 if R has at least 5
elements. So, by Theorem 3.2(c), R fails to be distributive unless R has no more
than 4 elements and hence must be Z2, Z3, or a 4 element field. Hence R is a
chain. If xR 6= {0, x}, there is a w ∈ R such that 0 6= xw 6= x, so {1 + x, 1 + xw}
is a pair of regular elements satisfying the hypothesis of Theorem 3.2(c), contrary
to the assumption that (R,≤) is distributive. If there is a y ∈ R such that y2 = 0
and y 6= x, then {1 + x, 1 + y, 1 + x+ y} would be a nondistributive triple, again
contrary to the hypothesis. Thus, xR = {0, x} = A(x) for a unique x ∈ R, and it
is an exercise to show that R is isomorphic to Z4 and hence a chain. �

Next, we describe a class of rings that are modular but not distributive
lattices under the Bordalo order.

A ring in which every element is either regular or nilpotent will be called a
RON-ring. Clearly every RON -ring is connected. Note that every integral domain
and the rings Zpk (where p is a prime and k ≥ 1 is an integer) are RON -rings.

An example will be given below of a connected ring that is a lattice under the
Bordalo order and fails to be an RON -ring. Let r(R) denote the set of regular
elements or R other than 1.
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3.4 Lemma. If R is an RON -ring and (R,≤) is a lattice, then:

(a) (R,≤) contains no chain with more than 4 elements;
(b) if R is not reduced, then there is a unique element z that is nilpotent of
index 2 such that r ∧ s = z whenever r, s are distinct elements of r(R).

Proof: (a) If 0 < a < b < c < 1 is a chain in (R,≤), then, contrary to Lemma 2.1,
b is not regular since is not covered by 1, and is not nilpotent because it does not
cover 0, so 4 is the maximal length of a chain in this lattice.

(b) By assumption and Corollary 2.9(b), R contains a unique nilpotent el-
ement z of index 2. If 1 − z 6= r ∈ r(R), then A(zr) ⊃ {0, z, zr} and zrR ⊃
{0, zr, zr2}. By Corollary 2.9(a), not both of these sets contain 3 distinct ele-
ments, so zr − z = 0 or zr − zr2 = (zr − z)r = 0. Because r is regular, we
conclude that zr − z = 0 in either case, and we know that z < 1 − z. So the
conclusion follows. �

3.5 Theorem. If R is an RON -ring and (R,≤) is a lattice, then (R,≤) is mo-
dular.
Proof: If R is reduced, then R is an integral domain and the conclusion follows
immediately from Proposition 2.2. If R is not reduced, then it contains a unique
nilpotent z of index two such that r∧s = z whenever r 6= s ∈ r(R). If 1 > t > s >
0, then s cannot be regular by Lemma 2.1(b), and by the same lemma, t cannot
be nilpotent. Thus, t is regular and s is nilpotent. If r, s, and t are distinct, then
either r is regular and r ∧ t = z 6= 0, or r is nilpotent and r ∨ s = 1− z 6= 1. So,
{r, s, t} fails to be a nonmodular triple in R, and the conclusion follows. �

The next example shows that not every connected ring which is a lattice
under the Bordalo order is a RON -ring.

3.6 Example. A connected ring S that fails to be an RON -ring such that (S,≤)
is a lattice and S has a unique nonzero nilpotent element.

Let R = Z2[x, y], let I = x2R +(xy−x)R, and let S = R/I. Each element of
S may be written in the form a+bx+yp(y), where a, b ∈ Z2, p(y) ∈ Z2[y], x

2 = 0,
and xyp(y) = p(1)x. Thus, (a + bx + yp(y))(c + dx + yq(y)) = ac + (ad + bc +
bq(1)+ dp(1))+ (aq(y)+ cp(y)+ yp(y)q(y))y. Carrying out routine computations
will enable the reader to verify the following assertions: If p(y) 6= 0, then (1)
A(yp(y)) = {0} or {0, x} according as p(1) = 0 or 1, and A(1 + yp(y)) = {0}
or {0, x} according as p(1) = 1 or 0. (2) xS = {0, x}. (3) A(x + yp(y)) = {0}
or {0, x} according as p(1) = 1 or 0. (4) A(1 + x + yp(y)) = {0} or {0, x}
according as p(1) = 0 or 1. So, by Theorem 2.7, (S,≤) is a lattice. Because
(a+bx+yp(y))2 = a2+y2[p(y)]2, S is connected, and because (1+x+y)2 = 1+y2

and 1+ x+ y is not regular, S is not a RON -ring. It is clear from the above that
x is the only nonzero nilpotent in S.

It is not difficult to verify that if S is the ring of Example 3.6, then (S,≤) is
a modular lattice. Indeed, we wonder if it is true that whenever (R,≤) is a lattice,
R is connected, and has a nonzero nilpotent, it follows that (R,≤) is modular?
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We have neglected to include much about the geometry of the partially
ordered sets (R,≤). [Bo] contains some results about the length of chains in such
sets. This preprint together with the present paper should set the stage for further
study.
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