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Productivity of coreflective classes of topological groups

Horst Herrlich, Miroslav Hušek

To George Strecker — inspiring mathematician and wonderful friend.

Abstract. Every nontrivial countably productive coreflective subcategory of topological
linear spaces is κ-productive for a large cardinal κ (see [10]). Unlike that case, in uniform
spaces for every infinite regular cardinal κ, there are coreflective subcategories that are
κ-productive and not κ+-productive (see [8]). From certain points of view, the category
of topological groups lies in between those categories above and we shall show that the
corresponding results on productivity of coreflective subcategories are also “in between”:
for some coreflections the results analogous to those in topological linear spaces are true,
for others the results analogous to those for uniform spaces hold.
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A nonzero cardinal κ is called measurable if there exists a nontrivial κ-additive
two-valued measure on κ being zero on points (κ-additivity of µ means that
µ(

⋃
I Ai) =

∑
I µ(Ai) for every disjoint family {Ai}I with |I| < κ). The first

measurable cardinal m0 equals to ω0 and the second one m1 is the Ulam measur-
able cardinal (all cardinals less than m1 are called Ulam nonmeasurable).
The first cardinal that admits a nontrivial R-valued ω1-additive measure is

denoted by mR. It is known (see [13]) that the consistencies of the theories
{ZFC + (∃m1)}, {ZFC + (∃mR)} and {ZFC + (∃mR ≤ 2ω)} are equivalent.
Also, either mR ≤ 2ω or mR = m1. The second case occurs, e.g., if MA holds
or, more generally, if R satisfies the Baire category theorem for less than 2ω open
dense sets — see [4].
By s (sequential cardinal) we denote the first cardinal such that there exists a

noncontinuous sequentially continuous map 2s → R; it is shown in [9] that s is the
first cardinal such that there exists a noncontinuous uniformly sequentially con-
tinuous map 2s → R, or the first cardinal such that there exists a noncontinuous
sequentially continuous homomorphism from Z

s (or from Z
s

2) into a topological
group, or a noncontinuous sequentially continuous pseudonorm on Z

s (or on Z
s

2).
It was proved by Balcar (see [2]) that s is the first cardinal admitting a Maharam
submeasure (a sequentially continuous nontrivial submeasure — see Section 2 for
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more details). Certainly, s ≤ mR, and the famous Keisler-Tarski problem asks
whether the equality holds. Under some set-theoretical assumptions (like CH,
MA) one has s = mR = m1. In any case, s is a large cardinal.
We say that a subcategory C of a category K is κ-productive if every product

(in K) of less than κ members of C belongs to C; finite (or countable) productivity
is another expression for ω- (or ω1- , resp.) productivity. A class C is called exactly
κ-productive if it is κ-productive and not κ+-productive (such a cardinal κ must
be regular). In topological vector spaces it means that the class is κ-productive
and that no product of at least κ many spaces from C having nontrivial separated
modifications, belongs to C. We shall see later that in our case of topological
groups, the situation is not so simple.

1. Coreflectivity in topological groups

In this paper we shall consider productivity of coreflective subcategories C of
topological groups. The coreflectivity is considered with respect to a surreflective
subcategory K of TopGr (i.e., the reflection maps are onto maps, or equivalently, K
is productive and hereditary in TopGr); we shall always suppose that Z ∈ K.
Basic examples of K are TopGr, TopAbGr or their separated reflections. In the
last section we shall deal with yet another example.
Unlike topological and similar non-algebraic structures, descriptions of core-

flective subcategories of (topological) groups are more complicated. We shall
concentrate on two kinds only, namely the monocoreflective and bicoreflective
subcategories. Realize that monomorphisms in K are exactly one-to-one continu-
ous homomorphisms. By a quotient in K we mean a homomorphism h onto, the
range of which is endowed with the finest topology in K making h continuous.

Proposition 1. A subcategory C of K is monocoreflective in K iff it is closed
under quotients and sums in K.

Proof: If C is monocoreflective then it is (as every coreflective subcategory)
closed under sums. Let f : C → X be a quotient in K and C ∈ C. Since X is an
image of a member of C, a coreflection c : cX → X in C must be onto and, thus,
c is continuous and a group isomorphism. Since f is quotient, c is quotient, too.
Consequently, cX is isomorphic to X in K.
Suppose that C is closed under sums and quotients in K. For a given X take a

representative set of all pairs {(C, g) : C ∈ C, g is a monomorphism of C into X}
and construct the sum h : S → X of such pairs in K. Take the quotient of
h : S → X in TopGr, say h′ : S → Y (thus h = ih′ for some monomorphism
i : Y → X), and consider the reflection g : Y → rY of Y in K. Since i factors via
g, the map g must be a group isomorphism, thus we may regard rY as the same
group Y endowed with a coarser topology. Consequently, gh′ is a quotient in K,
therefore rY ∈ C, and rY → X is a requested coreflection of X in C. �

Corollary 1. Every subcategory of K has a monocoreflective hull in K.
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The monocoreflective hull in K of a subcategory S is formed by all quotients of
sums in K of objects from S. The obtained class is, clearly, closed under quotients.
It suffices to show that a sum of quotients is a quotient of a sum, which follows
from general results (associativity) of inductive (final) generation.
Of course, every coreflective subcategory is closed under sums, which implies

that it is also closed under finite products if we work in TopAbGr since the finite
sums in K and finite products coincide there. In TopGr, every finite product is a
nice quotient of a finite sum and that property transfers to K by reflections and
so we have:

Corollary 2. Every monocoreflective subcategory of K is finitely productive.

The example following Corollary 4 shows that coreflective subcategories of
TopGr need not be finitely productive.
Since the discrete group Z is a separator in K, it is easy to prove the following

characterization of bicoreflective subcategories (bicoreflective in this paper means
that the coreflection maps are group isomorphisms).

Proposition 2. A coreflective subcategory C of K is bicoreflective in K iff it
contains Z.

Corollary 3. A subcategory C of K is bicoreflective in K iff it is closed under
quotients and sums in K and contains Z.

Corollary 4. Every subcategory of K has a bicoreflective hull in K.

The preceding procedure implies that AbGr contains no nontrivial coreflective
subcategory containing Z. This phenomenon is well known (see e.g. [11] for a
more general result). Of course, TopAbGr contains many nontrivial bicoreflective
subcategories. The next example shows a variability of coreflective classes of
groups.

Example. Denote by C1 all the sums of the group Z2, by C2 the monocoreflective
hull of Z2, and by C3 the bicoreflective hull of Z2, everything in TopGr. Clearly,
C1 ⊂ C2 ⊂ C3. We shall show that C1 is coreflective (thus it is the coreflective hull
of Z2 in TopGr) and not finitely productive. All three classes are different.
For any topological group G the sum h : S → G of all the nonzero homo-

morphisms hi : Z2 → G has, clearly, the factorization property: for any sum
g : X → G of some homomorphisms gj : Z2 → G there exists a homomorphism
f : X → S such that g = h ◦ f . It suffices to show that such an f is unique. We
may suppose that X = Z2 and that we have a nonzero homomorphism f : X → S
with h ◦ f = 0. The only possibility for f is the canonical embedding of Z2 into
the sum S and, thus, its composition with h must coincide with some hi that was
nonzero. This contradiction proves the uniqueness of the above factorization.
It is clear that C1 is not productive; for instance, Z2 × Z2 is not isomorphic

to any sum of the groups Z2 in TopGr. Therefore, C1 differs from the finitely
productive class C2. To show that C2 6= C3, it suffices to realize that Z cannot
belong to C2 since every homomorphism of Z2 into Z is zero. �
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In the next sections we shall first look at bicoreflective subcategories of topo-
logical groups, where the results on productivity of coreflective subcategories are
analogous to those in topological linear spaces. Then we shall show that mono-
coreflective subcategories of topological groups behave, as for products, similarly
like coreflective subcategories of uniform spaces. In the last section we improve
the results from Section 2 for special topological groups (e.g., for compact groups).

2. Productivity of bicoreflective subcategories of topological groups

The next result corresponds to the one for topological linear spaces, where produc-
tivity of coreflective subcategories can be checked by means of powers of scalars
(see [5], [6] and [14]).

Theorem 1. A bicoreflective subcategory C of K is κ-productive iff Z
λ ∈ C for

every λ < κ.

Proof: We must prove that if, for some λ ≥ ω, the power Z
λ ∈ C and {Xα : α <

λ} ⊂ C, then ΠλXα ∈ C. This task is equivalent to showing that every continuous
homomorphism f on cΠλXα into any member M of K is continuous on ΠλXα.
Since every topological group is initially generated by homomorphisms into metric
right-invariant groups, we may assume that M is such a group endowed with a
right-invariant metric d (its neutral element will be denoted by e).
First we shall assume that λ = ω, i.e., we shall show that C is countably

productive provided Z
ω ∈ C. To prove that, it suffices to show that our f :

Πn∈ωXn → M can be uniformly approximated by continuous maps. For every
ε > 0 we shall find k ∈ ω such that d(f(x), e) < ε whenever the point x from
ΠXn has the first k coordinates equal to the neutral elements — then one may
take a continuous homomorphism g as the composition of f with the canonical
embedding of Πn≤kXn into ΠωXn and with the projection ΠωXn → Πn<kXn

(the composition is continuous because the canonical embedding factorizes via
c(ΠωXn)); it is clear that d(f(y), g(y)) < ε for every y ∈ ΠωXn.
Suppose that there exists an ε > 0 such that for every k we can find xk ∈

ΠXn having the first k coordinates equal to the neutral elements and such that
d(f(xk), e) ≥ ε. Denote by xk,m the point of ΠωXn having the i-th coordinate
equal to that of xk provided i < m and equal to the neutral elements otherwise.
Clearly, {xk,m} → xk in ΠωXn when m → ∞; we want to show that the con-
vergence holds also in c(ΠωXn). Indeed, taking the continuous homomorphisms
φm : Z → Xm with φ(1) = prm(xk) and their product φ : Z

ω → ΠωXm (that
factorizes via c(ΠωXm)), we see that φ maps the points ym having only the first
m coordinates nonzero and equal to 1, to xk,m, and the point y having all the
coordinates equal to 1, to xk . Since ym → y in Z

ω, our assertion follows. Con-
sequently, for every k we can find a point zk = xk,mk

having a finite support,
such that d(f(zk), e) > ε/2. Taking a convenient subsequence, we may assume
that the supports Sk of zk’s are disjoint. Then we may define another continuous
product homomorphism ψ = Πψk : Z

ω → ΠkΠSk
Xn where ψk(1) equals to the

restriction of zk to its support Sk. The points in Z
ω having just one coordinate
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nonzero, converge to 0 and, thus, the points zk converge to the neutral element
in c(ΠωXn). Consequently, f(zk) converges to e in M , which contradicts our
assumption.

Suppose now that λ > ω. We shall show that our f depends on a countable
set J ⊂ λ, i.e., that it factorizes via ΠJXα as g prj ; since ΠJXα belongs to C, the
map g is continuous on ΠJXα and, thus, f is continuous on ΠλXα.
Denote by J the set {j ∈ λ : ∃xj : f(xj) 6= e, prλ\{j}xj = e}. For every

j ∈ J we have a homomorphism hj : Z → Xj defined by hj(1) = prjxj (xj is

the point from the definition of the set J), and for the other elements of λ let

the homomorphism hj be zero. The corresponding product map Z
λ → ΠλXα

of hj ’s factorizes via cΠλXα (because Z
λ ∈ C) and composed with f forms a

continuous homomorphism of Z
λ into M . Such a continuous homomorphism

depends on countably many coordinates (since, e.g., it is uniformly continuous),
and the smallest such a set of coordinates equals to J . So, |J | ≤ ω.
Take now a point x ∈ ΠλXα such that prJx = e. We want to show that

f(x) = e. Take the product homomorphism g : Z
λ → ΠλXα mapping the α’s

coordinate of {1} to the α’s coordinate of x. Then the characteristic functions
ξF of finite sets F ⊂ λ converge to the point {1} ∈ Z

λ, f(g(ξF )) is the neutral
element for every finite set F (because of the definition of J), and g({1}) = x.
Consequently, f(x) = e and f depends on J . �

The case λ = ω can be simplified for K ⊂TopAbGr (we may use a product
homomorphism h : Π∞n=1Z

n−1 → Π∞n=1Xn, where we regard the Z
n−1 as the sum

of Z’s (see the second paragraph of the proof of Theorem 2)).

Corollary 5. A bicoreflective subcategory C of K is κ-productive provided it
contains a κ-productive bicoreflective subcategory of K.

In topological linear spaces, every countably productive coreflective subcate-
gory is κ-productive, where κ is a sequential cardinal (or Ulam measurable car-
dinal if we deal with locally convex spaces). So, for instance, there is no exactly
ω1-productive coreflective subcategory of topological linear spaces or of locally
convex spaces. We shall now prove that the situation for bicoreflective subcate-
gories of topological groups is completely analogous.
For the purpose explained in the preceding paragraph, we shall define higher

sequential cardinals. Our approach will not go via generalization of sequentially
continuous maps but via a measure approach, which is enabled by a recent result
of Balcar that the sequential cardinal s admits a nontrivial Maharam submeasure.
For that reason, our large cardinals will be called submeasurable. We shall then
prove the following result:

Theorem 2. A bicoreflective subcategory of K is either productive or it is exactly
κ-productive for some submeasurable cardinal κ.

We recall that a submeasure µ on κ is a real-valued mapping defined on all
subsets of κ having the following properties:
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µ(∅) = 0,
µ(A) ≤ µ(B) for A ⊂ B ⊂ κ,
µ(A ∪B) ≤ µ(A) + µ(B) for A,B ⊂ κ.

A mapping f between topological spaces is said to be κ-continuous if it pre-
serves limits of well-ordered nets of lengths less than κ (it is easy to show that a
submeasure is κ-continuous iff µ(Aα)→ 0 for {Aα}α<λ ց 0, where λ < κ).

Definition 1. A cardinal κ is said to be submeasurable if there exists a nonzero
κ-continuous submeasure on κ having zero values at the points.

Clearly, the first submeasurable cardinal equals ω. The above mentioned result
from Balcar says that the second submeasurable cardinal equals the Mazur-Noble
sequential cardinal s defined in the introduction.
One can find basic properties of submeasurable cardinals in [3]. We shall here

state some of them which may clarify some situations or which will be needed in
the sequel. Recall that a pseudonorm p on a group G is a nonnegative real-valued
function satisfying p(e) = 0, p(x−1) = p(x), p(xy) ≤ p(x) + p(y) for the neutral
element e of G and for arbitrary x, y ∈ G; the topology of a topological group G
is generated by all continuous pseudonorms on G.

(1) Every submeasure on κ is a pseudonorm on Z
κ
2 .

(2) If p is a pseudonorm on Z
κ
2 then µ(A) = sup{p(B) : B ⊂ A} is the smallest

submeasure on κ greater than p. This operation preserves discontinuity and κ-
continuity.

(3) If a submeasure µ is κ-continuous, then it is κ-subadditive (i.e., µ(
⋃

I Ai) ≤∑
I µ(Ai) for |I| < κ). The converse assertion does not hold even for bounded

submeasures.

(4) A cardinal κ is submeasurable iff there exists a noncontinuous sequentially
continuous pseudonorm on Z

κ
2 (or on Z

κ, resp.) having κ-additive null sets (i.e.,
the submeasure from (2) is κ-additive on its null sets).

(5) A cardinal κ is submeasurable iff there exists a noncontinuous κ-continuous
homomorphism on Z

κ
2 (or on Z

κ, resp.) into a topological group (iff there exists
a noncontinuous κ-continuous real-valued map on 2κ).

Proof of Theorem 2: Take the first cardinal κ such that Z
κ does not belong

to our bicoreflective subcategory C of K. If such a cardinal does not exist then
C is productive. If it exists, we shall show that it is submeasurable by the above
property (4). Indeed, there is a pseudonorm p on Z

κ that is not continuous but it
is continuous on the coreflection of Zκ in C. We must prove that p is sequentially
continuous and has κ-additive null sets. We may assume that κ > ω.
Take a sequence {zn} in Z

κ converging to zero. We shall construct a continuous
homomorphism φ : Zω → Z

κ and a sequence {un} in Z
ω converging to zero such

that φ(un) = zn for each n. For each n define An = {α ∈ κ : prα(zn) 6=
0, prα(zk) = 0 ∀k > n}. The sets An are disjoint. Define now a homomorphism

φn : Z
n → Z

An by φ({ri}) =
∑
riprAn

(zi). Let φ be the countable product of
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all φn. The sequence {un} is defined as follows: the restriction of the point uk

from ΠωZ
n to Z

n has at most one nonzero coordinate, namely on the k-th place
with the value φn(uk) = prAn

(zk). Since φ factors via the coreflection of Z
κ in

C, zn converges to zero in the coreflection and the p-image must converge to zero
in R. Thus p is sequentially continuous.
It remains to show the κ-additivity of null sets. Take disjoint subsets Aα, α ∈ λ

of κ for some λ < κ, such that p(x) = 0 for every x with support in Aα. Take

now z ∈ Z
κ with support in

⋃
λAα. Define a homomorphism φα : Z → Z

Aα by
φα(1) = prAα

(z). The composition ψ of the product φ of all φα, α < λ with the

embedding of Z
∪Aα into Z

λ is continuous and factors via the coreflection of Z
κ

in C, so the composition of p with ψ is continuous. The point x of Z
∪Aα having

all the coordinates equal to 1 is mapped by ψ to z, and it is the limit of the points
xβ , β < λ having all the coordinates up to β equal to 1 and to 0 for the remaining
coordinates. The point ψ(xβ) has support contained in

⋃
α<β Aα. Using trans-

finite induction (we know from the preceding paragraph that p(xω) = 0) we get
that all p(xβ) = 0 and, thus, also the limit p(z) must be zero. �

We shall now show that there are bicoreflective classes C that are not countably
productive but contain any prescribed product of some nice topological groups.
Thus we cannot define “exact κ-productivity” as in the case of topological linear
spaces.

Example. Let C be the bicoreflective hull of {Z,Zκ
2 ,R

κ} in TopAbGr. Then C
contains the κ-power of a torsion group and the κ-power of a divisible group but
not the countable power of Z (since every homomorphism into Z from a torsion
or a divisible group is zero). �

3. Productivity of monocoreflective subcategories of topological

groups

The situation for monocoreflective subcategories of topological groups differs dras-
tically from that for bicoreflective subcategories. We shall express our result in
the next theorem.

Theorem 3. For every infinite regular cardinal κ there exists a monocoreflective
subcategory of TopAbGr that is exactly κ-productive.

Proof: The assertion is trivial for κ = ω — it suffices to take all discrete Abelian
groups as the coreflective subcategory.
In [12] Shelah constructed an Abelian group S of cardinality κ having trivial

continuous endomorphisms only, for every uncountable regular cardinal κ (i.e.,
the zero one, the identity and its finite sums). Define T to be the subgroup of
Sκ generated by the set {{xα} ∈ Sκ : card {xα} < κ}. Similarly as in Herrlich’s
paper [7] we can show that the only continuous homomorphisms from powers of
S to S are the zero morphism, the projections and their sums. It follows that
every continuous homomorphic image of Sλ, for λ < κ, in Sκ is contained in T .
Consequently, the monocoreflective hull C of {Sλ : λ < κ} does not contain Sκ.
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It remains to prove that C is κ-productive. Take some λ < κ and Xα ∈ C for
α ∈ λ. We want to prove that ΠλXα ∈ C. We know that every Xα is a quotient
in TopAbGr of some ψα :

∑
Iα
Sλi → Xα for some λi < κ and some sets Iα — we

may and shall assume that those last sets coincide with a set I. Denote by m the
coreflection monomorphism c(ΠλXα)→ ΠλXα.

At first we shall show that m is surjective, i.e., that every x ∈ ΠλXα is an
image of some y ∈ Sλ under a continuous homomorphism. For each α < λ we
can find zα ∈

∑
I S

λi with ψα(zα) = prα(x). Denote by Jα the support of zα
and by ψ′

α the restriction of ψα to
∑

Jα
Sλi = ΠJα

Sλα for some λα < κ. Then

ψ = Πλψ
′
α : S

λ′

= ΠλΠJα
Sλα → ΠλXα, λ

′ < κ, and the image of ψ contains x.

Now we prove that m is a homeomorphism, i.e., that every homomorphism
f : ΠλXα → (M,d), a right-invariant metric group, is continuous provided it is
continuous on the coreflection c(ΠλXα). We shall proceed in a similar way as in
the proof of Theorem 2.

At first we suppose λ = ω and prove that f can be uniformly approximated by
continuous maps. Assume that there exists a positive ε such that for every k ∈ ω
we can find xk ∈ ΠωXn having the first k coordinates equal to the neutral elements
and such that d(f(xk), e) > ε. It follows from the preceding part that pri(xk) is

an image of a point yk,i ∈ Sλk,i . We may assume that all the λk,i coincide with
some µ < κ. Moreover, we assume that yk,i = 0 whenever pri(xk) = 0. Thus the
points yk = {yk,i}i ∈ (S

µ)ω converge to 0. Consequently, their continuous images
xk must converge to 0, too, which contradicts our assumption d(f(xk), e) > ε.

Thus for every ε > 0 there exists some k ∈ ω such that d(f(x), f(y)) ≤ ε
whenever the first k coordinates of x, y coincide. Defining g(x) = f(pr≤k(x))
we get a continuous function on ΠωXn such that d(f(x), g(x)) ≤ ε for every
x ∈ ΠωXn.

Coming back to arbitrary λ < κ, it suffices to show that our map f depends
on countably many coordinates. Define the set J = {α : there exists some xα

with prλ−{α}(xα) = 0, f(xα) 6= 0}. The set J must be countable since otherwise

d(f(xα), 0) ≥ ε for some positive ε and countably many indices α ∈ T , and every

xα is an image of some yα under a continuous homomorphism ψα : S
λα → Xα

— if we embed every yα, α ∈ T , canonically into ΠTS
λα , then {yα}T → 0 and,

thus, f(xα) = f(ΠTψα(yα))→ 0, too, which contradicts our assumption.

It remains to prove that f depends on J . Take some x ∈ ΠλXα with prJ(x) = 0.
There are yα ∈ Sµ, µ < κ, and continuous homomorphisms ψα : S

µ → Xα

mapping yα into prα(x) (we may suppose that yα = 0 for α ∈ J). For fi-
nite C ⊂ λ \ J let zC,α = yα if α ∈ C, zα = 0 otherwise. Then the net
{{zC,α}α}C converges to {yα}, thus the continuous image f(Πψα(zC)) converges
to f(Πψα(yα)) = f(x). Since ψα(zC) = prα(x) for α ∈ C and C is finite and lies
outside J , f(Πψα(zC)) = 0. Consequently, f(x) = 0, which is what we had to
prove. �
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4. Special coreflective subcategories of topological groups

As in topological linear spaces, we can find a reflective subcategory K0 of TopGr
such that substituting this subcategory for K in the above theorems, we can use
measurable cardinals instead of the submeasurable ones.
In [9] the following result is proved: Every sequentially continuous homomor-

phism on a product of less than m1 sequential groups into a compact group is con-

tinuous. It follows from its proof that the class of ranges (here compact groups)
can be extended to the class K0 of topological groups G such that every its
Abelian subgroup is projectively generated by topological Abelian groups having
the following property:

(⋆) for every sequence {xn} of nonzero elements there exist an infinite set S ⊂ N

and a sequence {kn} of integers such that
∑

S knxn does not converge.

K0 is a surreflective subcategory of TopGr. In the next K is a surreflec-
tive subcategory of K0 containing Z. Compact groups belong to K0 because
every its Abelian subgroup is contained in a compact Abelian group and that is
projectively generated by the group R/Z having (⋆).
We can now prove the following strengthening of Theorem 2 for our new

class K0.

Theorem 4. A bicoreflective subcategory C of K is either productive or it is
exactly κ-productive for some measurable cardinal κ.

Proof: Let κ be the first cardinal with Z
κ /∈ C. We shall prove that κ is mea-

surable; we may assume that κ > ω. There exists a continuous homomorphism
f : c(Zκ)→ G that is not continuous on Z

κ, for some G ∈ K0 (it follows from the
definition of K0 that we can find G to be Abelian having the property (⋆)). The
set J = {α ∈ κ : f(xα) 6= e for some xα having a one point support {α}} is finite.
Indeed, otherwise we can take an infinite sequence {xαn} from the definition of
J and find integers kn such that the series

∑
knf(x

αn) does not converge in G;
we shall get a contradiction by showing that f : Z

κ → G preserves convergence
of our sums (since the series

∑
knx

αn converges in Z
κ). To show that, it suffices

to construct a convenient continuous homomorphism g : Zω → Z
κ (realize that g

factors via c(Zκ)). The map g is a composition of the product of maps Z → Z

mapping 1 into the value of xαn at αn, for n ∈ ω, and of the natural embedding

of Z
{αn} into Z

κ.
The map f cannot depend on J because in that case f would be continuous

on Z
κ. Therefore there exists a point x ∈ Z

κ with support contained in κ \ J and
such that f(x) 6= 0 — we shall say that a subset of κ has the property (p) if there
exists a point x with its support contained in the subset and with f(x) 6= 0 (thus
κ \ J has (p)). We assert that there is a set K ⊂ κ \ J having (p) and containing
no two disjoint subsets having both (p). Indeed, otherwise we could construct a
disjoint sequence {Kn} of subsets of κ\J having (p), hence we could find xn with
support contained in Kn and f(xn) 6= 0. Then again

∑
knxn exists in Z

κ for any
choice of integers kn, which is not true for

∑
knf(xn).
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We can now define for A ⊂ K a value µ(A) to be 1 or 0 depending whether
A does or does not have the property (p). By the property from the last para-
graph, µ is a nontrivial finitely additive two-valued measure having zero values
at singletons. It remains to show that µ is κ-additive (that also gives |K| = κ
and, hence, κ is measurable). Take a disjoint system {Aα : α < λ}, λ < κ, of
subsets of K with µ(Aα) = 0; we must prove that µ(

⋃
λAα) = 0. Every x ∈ Z

κ

with support in
⋃

λAα is the limit of restrictions xα of x to
⋃

β<αAβ . Since

such a net {xα}α<λ is an image of a converging net in Z
λ along a continuous

homomorphism Z
λ → Z

κ (that factors via c(Zκ)), also the net {f(xα)} converges
to f(x) in G. When we proceed by transfinite induction, we have f(xα) = 0 for
all α and, consequently, f(x) = 0, which was to be proved. �
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