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Solutions to a perturbed critical semilinear

equation concerning the N-Laplacian in R
N

Elliot Tonkes

Abstract. The aim of this paper is to study the existence of variational solutions to a
nonhomogeneous elliptic equation involving the N-Laplacian

−∆Nu ≡ − div(|∇u|N−2∇u) = e(x, u) + h(x) in Ω

where u ∈ W 1,N
0
(RN ), Ω is a bounded smooth domain in R

N , N ≥ 2, e(x, u) is a critical

nonlinearity in the sense of the Trudinger-Moser inequality and h(x) ∈ (W 1,N
0
)∗ is a

small perturbation.

Keywords: variational methods, elliptic equations, critical growth

Classification: 35J20, 35J60, 35J65

1. Introduction

Let Ω be a smooth bounded set in R
N , N ≥ 2, and consider the problem

(1)
−∆Nu = e(x, u) + h(x)

u ∈W 1,N0 (Ω)

where e(x, u) is a critical function in terms of the Trudinger-Moser inequality and

h ∈ W−1,N ′

. Such a nonlinearity e(x, u) possesses the maximal growth in u which
permits a variational formulation of problem (1).

Solutions are sought in the Sobolev space W 1,N0 (Ω), defined as the completion

of C∞
0 (Ω) with respect to the norm ‖u‖ ≡ (

∫

Ω |∇u|N )
1

N . The dual space is

denoted W−1,N ′

, where N ′ is the Hölder conjugate of N , and has the associated
norm ‖ · ‖∗. Denote strong convergence by “→”, weak convergence by “⇀” and
convergence in the sense of measure (or distributions) as “⇀∗”. Unless otherwise
denoted, integration is performed over the domain Ω. Specific constraints on
e(x, u) and h(x) are described later, but we now present the main results:

Theorem 1.1. Suppose E(x, u) is a function of critical growth satisfying (7)
to (11).

(i) There exists h∗ > 0 such that for each h(x) with 0 < ‖h‖∗ < h∗, prob-
lem (1) possesses a solution at negative energy.
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(ii) If e(x, u) further satisfies (12) then there exists a number h∗∗ > 0, possibly
smaller than h∗ from (i), such that for each h(x) with 0 < ‖h‖∗ < h∗∗,
there exists another solution to (1).

Theorem 1.2. If the conditions of Theorem 1.1 hold and h(x) ≥ 0 (h(x) ≤ 0)
almost everywhere, then the solutions in (i) and (ii) are nonnegative (nonpositive).

Weak solutions of (1) correspond to critical points of the functional I:

(2) I(u) =
1

N

∫

Ω
|∇u|N dx−

∫

Ω
E(x, u) dx−

∫

Ω
hu dx

where E(x, u) =
∫ u
0 e(x, t) dt. At this stage we introduce an associated functional

I+(u) =
1

N

∫

|∇u|N −

∫

E+(x, u)−

∫

hu

where E+(x, u) corresponds with E(x, u) when u ≥ 0, but is otherwise set to zero.

Critical points of I+ correspond to solutions in W 1,N0 (Ω) of

(3) −∆Nu = e
+(x, u) + h(x).

It can be shown ([14]) that both I+(u) and I(u) ∈ C1(W 1,N0 ;R).
Publication [13] has considered problem (1) with h(x) ≡ 0. Much of the ge-

ometrical structure captured in this analysis still holds, and this paper includes
useful convergence lemmas. The geometry of the functional allows application of
the Mountain-Pass theorem of Ambrosetti-Rabinowitz, without the Palais-Smale
condition.
In [13], to prove that Palais-Smale sequences expose solutions, a weakly conver-

gent sequence is shown to converge to a nontrivial solution. This method elicits
no further information.
In this paper, analogous arguments may be made. For the unperturbed prob-

lem, u = 0 is a local minimum. For small ‖h‖∗, we anticipate a local minimum
solution near zero, and this is located via a local minimisation technique. A per-
turbed solution close to the non-trivial solution derived in [13] is also expected.
We derive a solution from a mountain pass technique, but the lack of a Palais-
Smale condition means that strong convergence is not assured. Indeed, the lack of
a (PS) condition resulting from a critical nonlinearity makes it difficult to prove
that these two solutions are not identical. To distinguish two solutions, a distinc-
tion result is achieved based on the difference in sequence energies and P.L. Lions’
theorem.
In a similarly perturbed problem, Deng and Li [7] show the existence of solu-

tions without a Palais-Smale condition, and a distinction between solutions, but
do not go so far as to allege strong convergence. The maximum principle is used
to show positivity of solutions, but this technique fails for the N -Laplacian case.
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The Trudinger-Moser [17], [12] inequality says that

exp
(

α|u|
N

N−1

)

∈ L1(Ω) ∀u ∈ W 1,N0 (Ω), ∀α > 0(4)

sup
‖u‖≤1

∫

Ω
exp

(

α|u|
N

N−1

)

≤ C(N) ∈ R if α ≤ αN(5)

where αN = Nω
1

N−1

N−1 and ωN−1 is the volume of the (N − 1) dimensional surface

of the unit sphere and C(N) is a constant depending only on N .
This result is stronger than the Sobolev embedding, which expresses that

W 1,N0 (Ω) →֒ Lt(Ω) compactly for all t ≥ 1, but not L∞(Ω).
Carleson and Chang [5] have shown that when Ω is a ball, the extremal func-

tion for this inequality is achieved in W
1,N
0 (Ω). Recently Lin [10], has extended

this result to general domains Ω ⊂ R
N . This contrasts with the case of critical

functions for the embeddings W
1,2
0 into the space L

2N
N−2 . The so-called Talenti

extremal functions are scale and translation invariant and rely on an unbounded
domain.
The Trudinger-Moser inequalities can be improved in a theorem by Lions [11]:

Theorem 1.3. Let {un : ‖un‖ = 1} be a sequence in W
1,N
0 converging weakly

to a nonzero function u. Then, for every p < (1 − ‖u‖N )
−1

N−1 we have

(6) sup
n

∫

Ω
exp

(

pαN |un|
N

N−1

)

dx <∞.

Theorem 1.3 improves the Trudinger-Moser inequality (5) by accounting for

the possibility of concentration. Suppose {un} ⊂W 1,N0 , ‖un‖ = 1, un ⇀ u0 6= 0.

If un 6→ u0 strongly, then ‖un‖N = ‖u0‖
N + ‖vn‖N + o(1) where vn ⇀ 0 but

limn→∞ ‖vn‖ > 0 contains the concentrations. Consequently, ‖u0‖ < 1 and (1 −

‖u0‖
N )

−1

N−1 > 1. Thus expression (6) improves (5) by allowing a larger exponent.

If un ⇀ 0 then the two results correspond. If un → u0 then (1−‖u0‖
N )

−1

N−1 =∞

and limn→∞
∫

exp(pαN |un|
N

N−1 ) <∞ for any p > 0.

1.1 Assumptions

The assumptions on the nonlinearity e(x, u) will be altered slightly from the ver-
sion in [13] to accommodate negative solutions. Essentially we impose symmetric
constraints on e(x, u). Of course, these can be lifted if we neglect interest in signs
of solutions, and a remark to this effect is made later.

Make the following assumptions on e(x, u):
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Assume e(x, u) is a critical function with exponent α0, so that

(7)

lim
|u|→∞

e(x, u)

exp(α|u|
N

N−1 )
= 0 for α > α0;

lim
|u|→∞

|e(x, u)|

exp(α|u|
N

N−1 )
=∞ for α < α0.

Assume the continuity and sign restrictions:

e(x, u) ∈ C(Ω× R;R);(8)

e(x, u) ≥ 0 on Ω× [0,∞), e(x, u) ≤ 0 on Ω× (−∞, 0].(9)

Assume there exists R > 0 and M > 0 such that for all |u| ≥ R and x ∈ Ω

(10) 0 < E(x, u) ≤M |e(x, u)|.

Further, make the assumption on E(x, u) that

(11) lim sup
u→0

NE(x, u)

|u|N
< λ1

where λ1 is the first eigenvalue of −∆Nu = λ|u|
N−2u characterised by

λ1 = inf

{
∫

|∇u|N : u ∈W 1,N0 ,

∫

|u|N = 1

}

.

As per [13], define

M = lim
n→∞

n

∫ 1

0
exp

[

n(t
N

N−1 − t)
]

dt ≥ 2.

Denote by d the inner radius of Ω. Introduce the condition that uniformly on Ω,

(12) lim
u→∞

ue(x, u) exp
(

−α0|u|
N

N−1

)

≥ β0 >

(

N

d

)N 1

MαN−1
0

.

Another condition which we shall find useful is that uniformly on Ω,

(13) lim
u→±∞

ue(x, u) exp
(

−α0|u|
N

N−1

)

≥ β0 >

(

N

d

)N 1

MαN−1
0

.

In publications such as [1], [2] and [15] restrictions imposed on e(x, u) are of
the form

∂e(x, t)

∂t
>
e(x, t)

t
.

Throughout this work, we discard this restriction in favour of the restraints posed
in [13]. The definition of a critical function e(x, u) (in (7)) compares e(x, u) with

exp(α|u|
N

N−1 ) at infinity when α < α0 and α > α0. Condition (12) fills in the gap

by comparing e(x, u) with exp(α0|u|
N

N−1 ).
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1.2 Direct results from assumptions

For a critical function e(x, u), for any β > α0, there exists C > 0 such that

|e(x, u)| ≤ C exp
(

β|u|
N

N−1

)

.

There is a C > 0 such that for |u| ≥ R, and all x ∈ Ω

(14) E(x, u) ≥ C exp

(

1

M
u

)

.

There is R0 > 0 and θ > N such that for |u| ≥ R0 and x ∈ Ω,

(15) θE(x, u) ≤ ue(x, u).

From these, we can deduce that for fixed q > N , fixed λ < λ1(N) and fixed
β > α0, there is some C > 0 such that

(16) E(x, u) ≤
1

N
λ|u|N + C|u|q exp

(

β|u|
N

N−1

)

.

2. Geometry of the functional

Throughout, we assume that the E(x, u) satisfies (7) to (11). From line to line,
constants are denoted C but may assume different values. This section has the
two-fold aim of analysing the geometry of I and I+.

Lemma 2.1. (i) There exists a number h∗ > 0 such that for each h(x) with
‖h‖∗ < h∗, there exists ρh > 0 such that the functional I satisfies

I(u) > 0 ∀u ∈W
1,N
0 , ‖u‖ = ρh.

Furthermore, ρh may be chosen such that ρh → 0 as ‖h‖∗ → 0.
(ii) The same result holds for I+(u).

Proof: (i) To develop the mountain ridge we estimate I(u) from below on a

ρ-ball in W 1,N0 . Fix λ < λ1 and β > α0. By implementing estimate (16),

I(u) ≥
1

N

∫

|∇u|N −
λ

N

∫

|u|N − C

∫

exp
(

β|u|
N

N−1

)

|u|q − ‖h‖∗‖u‖

≥
1

N

(

1−
λ

λ1

)
∫

|∇u|N − C

∫

exp
(

β|u|
N

N−1

)

|u|q − ‖h‖∗‖u‖.

Choose any r > 1. Then provided that

(17) ‖u‖ <

(

αN

βr

)
N−1

N
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it follows from the Trudinger-Moser inequality that for r−1 + s−1 = 1,

∫

exp
(

β|u|
N

N−1

)

|u|q ≤

[

∫

exp

(

βr‖u‖
N

N−1

∣

∣

∣

∣

u

‖u‖

∣

∣

∣

∣

N
N−1

)]

1

r (∫

|u|sq
)
1

s

≤ C

(
∫

|u|sq
)
1

s

.

Hence,

I(u) ≥
1

N

(

1−
λ

λ1

)

‖u‖N − C‖u‖q
sq − ‖h‖∗‖u‖.

Use the Sobolev embedding W 1,N0 →֒ Lt ∀ t ≥ 1, so C‖u‖ ≥ ‖u‖sq, to reveal

I(u) ≥ ‖u‖

[

1

N

(

1−
λ

λ1

)

‖u‖N−1 − C‖u‖q−1 − ‖h‖∗

]

.

With ‖u‖ = ρ, the functional is estimated from below on a ball

(18) I(u) ≥ ρ

[

1

N

(

1−
λ

λ1

)

ρN−1 − Cρq−1 − ‖h‖∗

]

.

Since q > N , it follows that if ‖h‖∗ is sufficiently small then there exists some

ρh > 0 such that I(u) > 0 on B(0, ρh) ⊂ W 1,N0 . As ‖h‖∗ becomes smaller,
expression (18) permits ρh to be chosen commensurately smaller. In particular,
ρh is sufficiently small to ensure that restriction (17) is fulfilled.

(ii) The proof in the case of I+ is identical. �

Lemma 2.2. (i) There exists η > 0 sufficiently small such that

inf
‖u‖≤η

I(u) < 0.

Furthermore, there exists η > 0 and u ∈W 1,N0 with ‖u‖ = 1 such that I(tu) < 0
for all 0 < t < η.
(ii) The same result holds for I+(u).

Proof: (i) Choose ũ ∈ W
1,2
0 (R

N ) with ‖ũ‖
W 1,N
0

= 1 and
∫

hũ > 0. For t > 0,

d

dt
I(tũ) = tN−1

∫

|∇ũ|N −

∫

e(x, tũ)ũ−

∫

hũ.

As e(x, ·) is continuous with e(x, 0) = 0, it follows that there exists η > 0 such

that d
dtI(tũ) < 0 for all t < η. Since I(0) = 0, it must hold that I(tũ) < 0 for all

0 < t < η.

(ii) The method of proof for I+ is identical. �
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Lemma 2.3. (i) There exists ub ∈W
1,N
0 with ‖ub‖ > ρh and

I(ub) < inf
‖u‖=ρh

I(u).

(ii) The same result holds for I+.

Proof: (i) From (14), for p > N , there are positive constants C and d such that
for all u ≥ 0,

E(x, u) ≥ Cup − d.

For any u ∈W
1,N
0 \ {0}, have

I(tu) ≤
1

N
tN
∫

|∇u|N − Ctp
∫

|u|p + t‖h‖∗‖u‖+ d.

As t→ ∞, I(tu)→ −∞ and the result follows.

(ii) For a nonlinearity E+(x, u), equation (14) becomes

E+(x, u) ≥ C exp

(

1

M
u

)

for all u ≥ R and x ∈ Ω. The method of proof for I+ then follows in an identical
manner. �

We define the sequence of Moser [12] functions Mn(x, x0, r) in W
1,2
0 (Ω). This

often utilised family provides a large value of
∫

exp(αN |Mn|
N

N−1 ), while maintain-
ing ‖Mn‖ = 1. In many applications, this particular sequences poses problems
as it is weakly convergent to zero. In fact [10], Mn converges in the sense of
distributions to a Dirac delta-function.

Mn(x, x0, r) = ω
− 1

N
N−1























(log n)
N−1

N if 0 ≤ |x− x0| ≤
r
n

log
���x−x0

r

���−1
(log n)

1

N
if r

n ≤ |x− x0| ≤ r

0 if |x− x0| ≥ r.

For completeness, we reproduce Lemma 3 from [13].

Lemma 2.4. Assume that e(x, u) satisfies (12). Then there exists n ∈ N such
that

max
t≥0

tN

N

∫

|∇Mn|
N −

∫

E(x, tMn) <
1

N

(

αN

α0

)N−1

.

Remark 2.5. By construction, Mn(x) ≥ 0 on Ω and so E(x, tMn(x)) ≡
E+(x, tMn(x)) on Ω. Lemma 2.4 holds for E replaced with E

+.

The following is a simple consequence of taking the negative half of e(x, u), the
negative limit in (13) and implementing Lemma 2.4.
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Corollary 2.6. Suppose e(x, u) satisfies (13). Then there exists n ∈ N such that

max
t≥0

tN

N

∫

|∇Mn|
N −

∫

E(x,−tMn) <
1

N

(

αN

α0

)N−1

.

These results still hold with a perturbation. Using the known results from
Lemma 2.4 and Corollary 2.6 upper bounds on energy levels for the functional
I follow easily. This proof relies upon the limit in (13) tending to positive or
negative infinity.

Lemma 2.7. (i) If e(x, u) satisfies (12) and h(x) ≥ 0 almost everywhere then

there exists ũ(x) ∈ W 1,N0 such that

I+(tũ), I(tũ) <
1

N

(

αN

α0

)N−1

for all t ≥ 0.
(ii) If e(x, u) satisfies (13) and h(x) is of any sign then

I(tũ) <
1

N

(

αN

α0

)N−1

for all t ≥ 0.

Proof: (i) Let n > 0 be the integer from Lemma 2.4. Since
∫

hMn > 0 then

there is nothing further to prove as E(x, tMn) = E
+(x, tMn) and

I+(tMn) = I(tMn) =
tN

N
‖Mn‖ −

∫

E(x, tMn)− t

∫

hMn

≤
tN

N
‖Mn‖ −

∫

E(x, tMn) <
1

N

(

αN

α0

)N−1

.

(ii) Suppose that
∫

hMm < 0 for all m > n. Consider the sequence

tN

N

∫

|∇Mm|N −

∫

E(x,−tMm).

Using Corollary 2.6, for sufficiently large m ∈ N,

max
t≥0

I(−tMm) = max
t≥0

{

tN

N
‖tMm‖ −

∫

E(x,−tMm) + t

∫

hMm

}

≤ max
t≥0

{

tN

N
‖tMm‖ −

∫

E(x,−tMm)

}

<
1

N

(

αN

α0

)N−1

. �
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Remark 2.8. It appears possible to surmount technical difficulties and margin-
ally improve on Lemma 2.7 by demanding only that e(x, u) satisfy (12) irrespective
of the sign of h(x). The key to this proposal is to use the fact that Mn ⇀ 0 in

W 1,N0 , and hence the perturbation term
∫

hMn becomes arbitrarily small with
large n.

By the continuity of I(u), it follows from Lemmas 2.1 and 2.2 that

(19) −∞ < c0 ≡ inf{I(u) : u ∈W 1,N , ‖u‖ ≤ ρh} < 0.

Later we prove that this infimum is achieved and elicits a solution.
In order to invoke the forthcoming convergence results, we require a tighter

bound on the maximal energy of the functional than the expressions in Lemma 2.7.
To control the magnitude of I(u) along a mountain-pass path, the size of ‖h‖∗ is
restricted.

Lemma 2.9. (i) Assume that e(x, u) satisfies (12) and h(x) ≥ 0; or
(ii) that h(x) is indefinite in sign and e(x, u) satisfies (13).

There exists h∗∗ > 0 such that for all 0 ≤ h(x) ∈ W−1,N ′

with 0 < ‖h‖∗ < h∗∗

there is some ũ(x) ∈W
1,N
0 with the property that for (i)

I+(tũ), I(tũ) < c0 +
1

N

(

αN

α0

)N−1

for all t ≥ 0, while for (ii),

I(tũ) < c0 +
1

N

(

αN

α0

)N−1

.

Proof: When h ≡ 0, Lemma 2.1 shows that the origin forms a local minimum
of the functional I. Let ρ > 0 be chosen such that J(u) = 1

N ‖u‖ −
∫

E(x, u) > δ

for all ‖u‖ = ρ. Perturbing the functional J(u) by the term −
∫

hu, we see that

I(u) will remain positive for all ‖u‖ = ρ if ‖h‖∗ <
δ
ρ .

It is possible to raise the lower bound for c0 by reducing ‖h‖∗. By Lemma 2.1,
ρh → 0 as ‖h‖∗ → 0. Consequently, the infimum of I(u) on B(0, ρh) is increasing
and c0 → 0 as ‖h‖∗ → 0.
For part (i) use Lemma 2.7(i) and for part (ii) use Lemma 2.7(ii) to see that

I+(tũ), I(tũ) < [ 1N (
αN
α0
)N−1 − ǫ] for some ǫ > 0. Defining h∗∗ sufficiently small

enforces c0 > −ǫ and the results follow. �

3. Convergence properties of sequences

The development of the Palais-Smale levels leads to the construction of a sequence

which is not necessarily strongly convergent in W
1,N
0 . Instead, weak convergence

to a nontrivial weak solution is achieved for certain energies.
The following lemma is attributed to de Figueiredo et al [8]:
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Lemma 3.1. Let {un} ⊂ L1(Ω) such that un → u in L1(Ω) and e(x, u) be
continuous. Then e(x, un)→ e(x, u) in L1(Ω) provided that e(x, un) ∈ L1(Ω) for
all n and

∫

|e(x, un(x))un(x)| ≤ C1.

Lemma 3.2. For a (PS)c sequence {un} for I or I+ at any level c, there is a

subsequence relabelled {un} and u ∈W
1,N
0 such that

e(x, un)→ e(x, u) in L1(Ω);(20)

E(x, un)→ E(x, u) in L1(Ω);(21)

|∇un|
N−2∇un ⇀ |∇u|N−2∇u weakly in (L

N
N−1 (Ω))N .(22)

Proof: This entire proof works in an identical manner for I and I+. The
following details concern I, but replacing E and e with E+ and e+ provides the
analogous result.
Suppose {un} is a Palais-Smale sequence at level c, so

1

N

∫

|∇un|
N −

∫

E(x, un)−

∫

hun → c(23)

∫

|∇un|
N−2∇un.∇v −

∫

e(x, un)v −

∫

hv → 0 ∀ v ∈ W
1,N
0 .(24)

Step 1: Show {un} bounded in W
1,N
0 .

From (23) and (24) have that
∣

∣

∣

∣

(

θ

N
− 1

)

‖un‖
N −

∫

[θE(x, un)− une(x, un)]− (θ − 1)

∫

hun

∣

∣

∣

∣

≤ C + ǫn‖un‖

where ǫn → 0 as n→ ∞. Thus,

(25)

∣

∣

∣

∣

[(

θ

N
− 1

)

‖un‖
N−1 − (θ − 1) ‖h‖∗

]

‖un‖ −

∫

[θE(x, un)− une(x, un)]

∣

∣

∣

∣

≤ C + ǫn‖un‖.

Using (25) with (15), we have that {un} is bounded in W
1,N
0 (Ω). From this,

un ⇀ u weakly in W 1,N0
un → u in Lq ∀ q ≥ 1

un(x)→ u(x) a.e. in Ω.

Step 2: Claim {un} has a subsequence such that (20) holds.
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Justification of (20) follows from Lemma 3.1. To see the applicability of this
lemma, note that ‖un‖ ≤ K, so

−K‖h‖∗ ≤

∫

hun ≤ K‖h‖∗

then applying this to (23) and (24),

(26)

∫

E(x, un) ≤ C; and

∣

∣

∣

∣

∫

e(x, un)un

∣

∣

∣

∣

≤ C.

Further, e(x, un) ∈ L1(Ω) for all n by the Trudinger-Moser inequality:

|e(x, un)| ≤ C exp(β|un|
N

N−1 ) ∈ L1(Ω) for each un ∈W 1,N0 .

Step 3: Claim (21) holds.

By condition (10), there exists E > 0 such that

E(x, u) ≤ E +Me(x, u).

Now,
∫

E(x, un)un ≤

∫

Eun +M

∫

e(x, un)un.

The first term is bounded as un → u in L1(Ω), and the second term is bounded
by (26). Consequently, the requirements are satisfied to invoke Lemma 3.1 on
E(x, u) to prove (21).

Step 4: Claim {un} has a subsequence such that (22) holds.

Note that un satisfies convergence weakly to a measure:

|∇un|
N ⇀∗ µ in D(Ω)

|∇un|
N−2∇un ⇀ V weakly in (L

N
N−1 )N

where µ is a regular finite measure and D(Ω) are the distributions on Ω.
Clearly Aσ = {x ∈ Ω : µ(Br(x) ∩Ω) ≥ σ} is a finite set, say {x1, x2, . . . , xm},

for otherwise µ(Aσ) =∞ contradicting µ(Aσ) = limk→∞

∫

Aσ
|∇un|N ≤ C.

Assertion 1. If we choose σ > 0 such that σ
1

N−1 β < αN , then e(x, un)un →
e(x, u)u in L1(K) where K ⊂ Ω ∩Aσ is compact.

To prove the assertion, let x0 ∈ K and r0 > 0 be such that µ(Br0 ∩ Ω) < σ.
Define a function φ ∈ C∞(Ω) which assumes the value zero when x ∈ Ω\Br0 and
the value one when x ∈ Br0/2 ∩ Ω and has range [0, 1]. Then

lim
n→∞

∫

Br0 (x0)∩Ω
|∇un|

Nφ =

∫

Br0 (x0)∩Ω
φdµ

≤ µ(Br0(x0) ∩ Ω) ≤ σ.
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By the assumptions on σ, there exists some q > 1 such that

qβσ
1

N−1 < αN

and hence ∫

Br0/2(x0)∩Ω
|e(x, un(x))|

q ≤ C.

Consequently, with all integration performed over the domain Br0/2(x0) ∩ Ω,
∫

e(x, un)un − e(x, u)u =

∫

(e(x, un)− e(x, u))u+

∫

e(x, un) (un − u) .

We know that e(x, un)→ e(x, u) in L1(Ω) and so the first term on the right hand
side tends to zero. Apply Hölder’s inequality to the second term to reveal

∣

∣

∣

∣

∫

e(x, un)(un − u)

∣

∣

∣

∣

≤ ‖e(x, un)‖q‖un − u‖q′ → 0.

Consequently
∫

Br0 (x0)∩Ω
(e(x, un)un − e(x, u)u) → 0. Since K is a compact set,

repeating the same procedure over a finite covering of balls gives the result.

Assertion 2.
∫

Ωǫ

(

|∇un|
N−2∇un − |∇u|N−2∇u

)

(∇un −∇u)→ 0 as n→ ∞

where ǫ is sufficiently small that B(xi, ǫ) ∩B(xj , ǫ) = ∅ for i 6= j and

Ωǫ =
{

x ∈ Ω : ‖x− xj‖ ≥ ǫ
}

.

That is, Ωǫ consists of Ω except for m ǫ-balls around {x1, . . . , xm}.
Let 0 ≤ ψǫ(x) ≤ 1 be a C∞(Ω) function set to be 1 on Ωǫ and 0 on

⋃m
i=1B(xi, ǫ/2).
From the Palais-Smale sequence (24):

∣

∣

∣

∣

∫

|∇un|
N−2∇un∇v −

∫

e(x, un)v −

∫

hv

∣

∣

∣

∣

→ 0.

Successively substitute v = ψǫun and v = ψǫu, then
[
∫

|∇un|
Nψǫ + |∇un|

N−2(∇un.∇ψǫ)un −

∫

e(x, un)unψǫ −

∫

hunψǫ

]

≤ ǫn‖ψǫun‖;
[

−

∫

|∇un|
N−2(∇un.∇u)ψǫ − |∇un|

N−2(∇un.∇ψǫ)u

+

∫

e(x, un)uψǫ +

∫

huψǫ

]

≤ ǫn‖ψǫu‖.



Solutions to a perturbed critical semilinear equation concerning the N-Laplacian in R
N 691

Combine these by addition, then
∫

ψǫ|∇un|
N−2∇un.(∇u −∇un) ≤

∫

|∇un|
N−2(∇un.∇ψǫ)(u − un)

+

∫

ψǫ|∇u|
N−2∇u(∇u−∇un)(27)

+

∫

ψǫe(x, un)(un − u) +

∫

hψǫ(un − u)

+ ǫn‖ψǫun‖+ ǫn‖ψǫu‖.

Make use of the convexity of the map v 7→ |v|N to establish that
(

|∇un|
N−2∇un − |∇u|N−2∇u

)

(∇un −∇u) ≥ 0

and to prove that the left hand side in (27) is nonnegative. Estimate each of the

integrals in (27) using the information that un ⇀ u0 in W
1,N
0 to show that

∫

Ωǫ

(

|∇un|
N−2∇un − |∇u|N−2∇u

)

(∇un −∇u)→ 0 as n→ ∞.

Since ǫ is arbitrary,
∇un(x)→ ∇u(x) a.e. in Ω

and using the boundedness of (|∇un|N−2∇un) in (L
N

N−1 )N , we have for a subse-
quence

|∇un|
N−2∇un ⇀ |∇u|N−2∇u in

(

L
N

N−1 (Ω)
)N

.

�

Corollary 3.3. It follows from Lemma 3.2 that any Palais-Smale sequence for I
or I+ is bounded and weakly convergent to a weak solution of (1) or (3) respec-
tively.

Proof: Again the proof is identical for I and I+.
Suppose {un} is a Palais-Smale sequence. Using the previous lemma and equa-

tion (24),
∫

|∇u0|
N−2∇u0.∇w −

∫

e(x, u0)w −

∫

hw = 0 for all w ∈ D(Ω)

and thus u0 is a weak solution. Since h(x) 6≡ 0, u0 6≡ 0. �

Remark 3.4. The case of h ≡ 0 is covered in [13]. There, convergence to
a nontrivial solution relies upon the energy of the sequence remaining below a
forbidden level,

1

N

(

αN

α0

)N−1

.
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Lemma 3.5. If {un} is a (PS)-sequence for I or I+ at any level with

lim inf
n→∞

‖un‖ <

(

αN

α0

)
N−1

N

then a subsequence converges strongly to a solution u0.

Proof: Again the proof for I and I+ is constructed in an identical manner.
Let {un} be such a sequence. Extract a subsequence, again relabelled as un

such that limn→∞ ‖un‖ = lim infn→∞ ‖un‖. Corollary 3.3 establishes that un

converges weakly to u0, a solution of (1). Let un = u0 + wn. Then wn ⇀

0 in W
1,N
0 and wn → 0 in Lt for all t ≥ 1. By the Brezis-Lieb lemma [4],

‖un‖N = ‖u0‖
N + ‖wn‖N + o(1). Since u0 ∈ W 1,N0 , Lemma 3.2 implies that

∫

e(x, un)u0 →
∫

e(x, u0)u0. This gives that

(I ′(un), un) = (I
′(u0), u0) + ‖wn‖

N −

∫

e(x, un)wn + o(1).

Since lim ‖un‖ < (
αN
α0
)

N−1

N , choose q > 1 such that

lim
n→∞

qα0‖un‖
N

N−1 < αN .

Now,
∫

|e(x, un)|
q ≤ C

∫

exp
(

qα0|un|
N

N−1

)

= C

∫

exp

(

qα0‖un‖
N

N−1

∣

∣

∣

∣

un

‖un‖

∣

∣

∣

∣

N
N−1

)

≤ C.

Thus
∫

e(x, un)wn ≤ ‖e(x, un)‖q‖wn‖q′ → 0. Consequently ‖wn‖ → 0 and the
result follows. �

A local semicontinuity result is expressed below.

Lemma 3.6. For any fixed ǫ > 0, let B be the ball in W
1,N
0 (Ω) centred at

the origin with radius (αN
α0
)

N−1

N − ǫ. The functionals I(u) and I+(u) are lower
semicontinuous on B.

Proof: Again the method of proof is the same for I and I+.
Let {un} ⊂ B. Then un ⇀ u0 ∈ B and

(28) I(un)− I(u0) =
1

N
‖un‖ −

1

N
‖u0‖ −

∫

E(x, un) +

∫

E(x, u0) + o(1).
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We now show that E(x, un)→ E(x, u0) in L
1 by invoking Lemma 3.1.

Equation (28) establishes that limn→∞
∫

E(x, un) <∞. From condition (10),

there exists E > 0 such that E(x, u) ≤ E +Me(x, u). Consequently,
∫

E(x, un)un ≤

∫

Eun +M

∫

e(x, un)un.

The first term is bounded as un → u0 in L
1(Ω).

Since un is bounded, I
′(un) must be bounded. Consequently

(I ′(un), un) = ‖un‖
N −

∫

e(x, un)un −

∫

hun ≤ C.

But ‖un‖
N and

∫

hun ≤ ‖h‖∗‖un‖ are both bounded and subsequently
∫

e(x, un)un ≤ C. Thus, Lemma 3.1 proves that
∫

E(x, un) →
∫

E(x, u0). As a
consequence, I(un)− I(u0) ≥ 0 by lower semicontinuity of norms. �

4. Generation of solutions

A solution can be obtained by local minimisation near the origin in W
1,N
0 (Ω). To

show the existence of this solution, we use Ekeland’s variational principle ([9]).
The number c0 is defined in (19).

Lemma 4.1. For h(x) ∈ W−1,N ′

with 0 < ‖h‖∗ ≤ h∗, there exists a minimum
type solution, u0, to (1) at energy c0 < 0. As ‖h‖∗ → 0, ‖u0‖ → 0.

Proof: Let ρh be the radius of the ball from Lemma 2.1. Consulting (17) in
the proof of Lemma 2.1, we see that h∗ > 0 has been chosen sufficiently small

that ρh < (
αN
α0
)

N−1

N . It follows that B(0, ρh) ⊂W
1,N
0 (Ω) forms a complete metric

space with metric d(u1, u2) = ‖u1−u2‖. On this set, I is lower semicontinuous and
bounded below. Ekeland’s principle ensures the existence of a (PS)c0-sequence
from a minimising sequence {un} for I in B(0, ρh) in the same way as [6]. Each
element of the sequence minimises

(29) inf
{

I(u) + δn‖un − u‖
W 1,N
0

: u ∈ B(0, ρh)
}

for some 0 < δn → 0 as n→ ∞. By Lemma 2.2, I(u∗) < 0 for some u∗ ∈ B(0, ρh)

so I(un) → c0 < 0. Condition (29) implies I
′(un) → 0 in W−1,N ′

providing
the Palais-Smale sequence. Lemma 3.5 guarantees that this sequence converges
strongly to the minimiser which must be a solution. �

Lemma 4.2. Suppose that (i) h(x) ≥ 0 almost everywhere and e(x, u) satis-
fies (12), or (ii) h(x) is indefinite in sign and e(x, u) satisfies (13). There exists a
number h∗∗ > 0 such that the mountain pass geometry reveals a solution, uM , to
(1) when ‖h‖∗ ≤ h∗∗.

Proof: Lemmas 2.3 and 2.7 verify that there exists some ũ ∈W
1,N
0 (Ω) such that

I(tũ) < 1
N (

αN
α0
)N−1 for all t ≥ 0 and I(tũ) < 0 for some large t > 0. Lemma 2.1

guarantees that a mountain ridge exists.
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Invoking the mountain pass theorem without a Palais-Smale condition ([3])
provides a Palais-Smale sequence. Although not required for this lemma, we
incidentally remark that for suitably small h∗∗, the energy of the sequence lies
below c0 +

1
N (

αN
α0
)N−1.

Corollary 3.3 assures that this (PS) sequence converges weakly to a weak so-
lution of (1).

�

Lemma 4.3. For suitably small h∗∗ the solutions derived in Lemmas 4.1 and 4.2
are distinct.

Proof: Let {un} be the minimising sequence and {vn} be the mountain pass
sequence, so that

un ⇀ u0 and vn ⇀ uM

I(un)→ c0 < 0 and I(vn)→ cM > 0

(I ′(un), un)→ 0 and (I ′(vn), vn)→ 0.

Suppose that u0 = uM . Then from Lemma 3.2

I(un) =
1

N
‖un‖

N −

∫

E(x, u0)−

∫

hu0 + o(1)→ c0

I(vn) =
1

N
‖vn‖

N −

∫

E(x, u0)−

∫

hu0 + o(1)→ cM

and subtracting one from the other, we have

(30) ‖un‖
N − ‖vn‖

N → N(c0 − cM ) < 0 as n→ ∞.

Since un and vn are both Palais-Smale sequences,

(

I ′(un), un
)

=

∫

|∇un|
N −

∫

e(x, un)un −

∫

hun → 0

(

I ′(vn), vn
)

=

∫

|∇vn|
N −

∫

e(x, vn)vn −

∫

hvn → 0

to give

(

‖un‖
N − ‖vn‖

N
)

−

∫

[e(x, un)un − e(x, un)vn + e(x, un)vn − e(x, vn)vn]

−

∫

[h(un − u0)− h(vn − u0)]→ 0 as n→ ∞.(31)

Since h ∈W−1,N ′

and un ⇀ u0 and vn ⇀ u0, the last term tends to zero.
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The second term may be written:
∫

e(x, un)(un − vn) +

∫

[e(x, un)− e(x, vn)] vn.

We have derived that for ‖h‖∗ in the range (0, h∗), the minimising sequence {un}

must satisfy ‖un‖ < (
αN
α0
)

N−1

N . Letting q be slightly larger than 1 it follows that

∫

|e(x, un)|
q ≤ C

∫

exp
(

qα0|un|
N

N−1

)

= C

∫

exp

(

qα0‖un‖
N

N−1

∣

∣

∣

∣

un

‖un‖

∣

∣

∣

∣

N
N−1

)

≤ C.

By the fact that (un − vn)⇀ 0 in W
1,N
0 ,

∫

e(x, un)(un − vn) ≤ ‖e(x, un)‖q‖un − vn‖q′ ≤ C‖un − vn‖q′ → 0.

It remains to show that

(32)

∫

[e(x, un)− e(x, vn)] vn → 0.

Let vn = u0 + wn, so wn ⇀ 0. However, since vn is a mountain pass sequence,
vn 6→ u0. Consequently, vn must concentrate and lim ‖wn‖ > 0. Now, (32) may
be expressed as

∫

[e(x, un)− e(x, vn)] u0 +

∫

[e(x, un)− e(x, vn)]wn → 0.

Lemma 3.2 establishes that e(x, un) and e(x, vn) both converge in L1(Ω) to
e(x, u0) and so the first term vanishes. Considering the second of these terms,

∫

[e(x, un)− e(x, vn)]wn =

∫

e(x, un)wn −

∫

e(x, vn)wn.

The minimising sequence un has the property that ‖un‖ < (αN
α0
)

N−1

N . Conse-
quently

∫

e(x, un)wn ≤ ‖e(x, un)‖q‖wn‖q′

≤

[

C

∫

exp

(

qα0‖un‖
N

N−1

∣

∣

∣

∣

un

‖un‖

∣

∣

∣

∣

N
N−1

)]

1

q

‖wn‖q′

≤ C‖wn‖q′ → 0.
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We are now left with only the term
∫

e(x, vn)wn.
By Lemma 2.9, the value of h∗∗ is sufficiently small that we are guaranteed

that for large n,

cM − c0 = I(vn)− I(un) + o(1) =
1

N
‖vn‖

N −
1

N
‖un‖

N + o(1)

=
1

N
‖vn‖

N −
1

N
‖u0‖

N + o(1) <
1

N

(

αN

α0

)
N−1

N

.

Thus there exists q > 1 such that for large n, ‖vn‖N − ‖u0‖
N < ( αN

qα0
)N−1. As a

direct implication,

(33)

qN−1
(

α0
αN

)N−1

<
1

‖vn‖N − ‖u0‖N

⇒ qα0‖vn‖
N

N−1 < αN

[

1−

∣

∣

∣

∣

∣

∣

∣

∣

u0
‖vn‖

∣

∣

∣

∣

∣

∣

∣

∣

N
]

−1

N−1

.

Define Un =
vn

‖vn‖
. Thus ‖Un‖ = 1 and Un ⇀ U0 =

u0
lim‖vn‖

. We have deduced

that vn concentrates and hence ‖U0‖ < 1.
Now,

∫

e(x, vn)wn ≤ ‖e(x, vn)‖q‖wn‖q′

but
∫

|e(x, vn)|
q ≤ C

∫

exp

(

qα0‖vn‖
N

N−1

∣

∣

∣

∣

vn
‖vn‖

∣

∣

∣

∣

N
N−1

)

.

The right-hand side may be expressed as

C

∫

exp
(

pαN |Un|
N

N−1

)

where (33) exposes that p is within the range demanded by Theorem 1.3. As a
consequence, ‖e(x, vn)‖q is bounded. Using the information that ‖wn‖q′ → 0,

it follows that
∫

e(x, un)un − e(x, vn)vn → 0. Hence expression (31) gives that

‖un‖N − ‖vn‖N → 0. But this contradicts (30), and thus u0 6≡ uM and the
solutions are distinct. �

The proof to Theorem 1.1 now follows from Lemmas 4.1, 4.2 and 4.3.

5. Signs of solutions

Tarantello’s results [16] deduced that for a similar problem, a positive perturbation
gives rise to positive solutions. The technique from [15] will be implemented to
attain a similar result.
Publication [13] claims that for h ≡ 0, solutions to (1) are nonnegative, but

this is not proven. We confirm this result here, and as a consequence discover that
a negative solution exists also. This occurs despite the fact that the nonlinearity
E(x, u) is not necessarily even in u.
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Theorem 5.1. Suppose h ≡ 0 and (13) holds. There exist at least one nonnega-
tive and one nonpositive solution to (1).

Proof: Take the positive half of E(x, u) and symmetrise. Define

E(x, u) =

{

E(x, u) if u ≥ 0

E(x,−u) if u < 0.

Define e accordingly, and construct I = 1
N ‖u‖N −

∫

E(x, u). The even functional

I satisfies the required geometry and convergence properties (Lemmas 2.1, 2.3,
2.4 and Remark 3.4), and so the mountain pass lemma without the (PS) condition
exposes a nontrivial solution u. It follows easily that I(u) = I(|u|), and we may
assume u = |u| ≥ 0 is a solution. Since I and I correspond when u ≥ 0, we have
that u solves (1).
To locate a negative solution, define

(34) E(x, u) =

{

E(x,−u) if u > 0

E(x, u) if u ≤ 0.

With e and I defined accordingly, the pertinent geometry and convergence prop-
erties hold and a nontrivial solution u results. By the remarks above, u ≥ 0 in Ω.
For any v ∈ C∞

0 (Ω),

(

I ′(u), v
)

=

∫

|∇u|N−2∇u∇v −

∫

e(x, u)v

but since u ≥ 0, e(x, u) = −e(x,−u). Consequently,
∫

|∇(−u)|N−2∇(−u)∇v −

∫

e(x,−u)v = 0

and so −u is a nonpositive solution. Since solutions are of opposing signs and
neither is trivial they must be distinct. �

Lemma 5.2. If (12) holds and nonzero h(x) ≥ 0, then the two derived solutions
are positive.

Proof: We have shown that the functional I+(u) satisfies the pertinent geometry
and convergence properties. Lemmas 4.1, 4.2 and 4.3 are applicable to I(u) as
well as to I+(u) and subsequently the functional I+ elicits two critical points.
Let u be a critical point of I+. Decompose u as u = u+ − u− where u+ ≥ 0

and u− ≥ 0. Then
(

(I+)′(u), u−
)

=

∫

|∇u|N−2∇u.∇u− −

∫

e+(x, u)u− −

∫

hu−.

However, e+(x, u)u−(x) = 0 almost everywhere and hence

−‖u−‖N −

∫

hu− = 0.

But h(x)u−(x) ≥ 0 almost everywhere, and thus ‖u−‖ = 0. Consequently u(x) ≥
0 on Ω. �
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Lemma 5.3. If (13) holds and nonzero h(x) ≤ 0 on Ω, then there exist at least
two negative solutions.

Proof: Assume the definition for E from (34). Define I(u) = 1
N ‖u‖N −

∫

E(x, u) +
∫

hu. Since −h(x) ≥ 0, the conditions are fulfilled to implement
Lemma 5.2 exposing two nonnegative solutions to I ′(u) = 0. Considering one
such solution, u, and recalling the construction of E(x, u), we have that e(x, u) =
−e(x,−u) and so

−
(

I ′(u), v
)

= −

∫

|∇u|N−2∇u∇v +

∫

e(x, u)v −

∫

hv

=

∫

| − ∇u|N−2(−∇u)∇v −

∫

e(x,−u)v −

∫

hv

=
(

I ′(−u), v
)

= 0.
�

Remark 5.4. For the development of positive solutions with h ≥ 0 in Theo-
rem 5.1 and Lemma 5.2, condition (12) will suffice in place of (13). Further, (10)
and (11) may be relaxed to:
There exists R > 0 and M > 0 such that for all u ≥ R and x ∈ Ω,

0 < E(x, u) ≤Me(x, u) and

lim sup
u→0+

NE(x, u)

|u|N
< λ1

respectively.
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