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A note on intermediate

differentiability of Lipschitz functions

L. Zaj́ıček

Abstract. Let f be a Lipschitz function on a superreflexive Banach space X. We prove
that then the set of points of X at which f has no intermediate derivative is not only a
first category set (which was proved by M. Fabian and D. Preiss for much more general
spaces X), but it is even σ-porous in a rather strong sense. In fact, we prove the
result even for a stronger notion of uniform intermediate derivative which was defined
by J.R. Giles and S. Sciffer.

Keywords: Lipschitz function, intermediate derivative, σ-porous set, superreflexive Ba-
nach space

Classification: Primary 46G05; Secondary 58C20

1. Introduction

In this note we show that a theorem of [2] implies a new result on intermediate
differentiability of Lipschitz functions.

Let X be a real Banach space. The open ball with center c and radius r is
denoted by B(c, r). If f is a Lipschitz function, then the Lipschitz constant of f
is denoted by Lip(f).
If f is a real function on X and x, v ∈ X , then we consider the upper and lower

(one-sided) directional derivatives

f(x, v) = lim sup
t→0+

f(x+ tv)− f(x)

t
and f(x, v) = lim inf

t→0+

f(x+ tv)− f(x)

t
.

Following [3] we say that x∗ ∈ X∗ is an intermediate derivative of a function
f : X → R at a point x ∈ X if

f(x, v) ≤ (v, x∗) ≤ f(x, v) for every v ∈ X.

Of course, if f has at x the Gâteaux derivative, then it has also the (unique)
intermediate derivative. Therefore Aronszajn’s differentiability theorem ([1]) im-
plies that every (locally) Lipschitz function on a separable Banach space has an
intermediate derivative at all points except a set E which is null in Aronszajn’s
sense.
M. Fabian and D. Preiss [3] proved the following theorem.
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Theorem FP. Suppose that a Banach space Y contains a dense continuous lin-
ear image of an Asplund space and that X is a subspace of Y . Then every locally
Lipschitz function defined on an open subset Ω of X is intermediate differentiable
at every point of Ω \ A, where A is a first category set.

J.R. Giles and S. Sciffer [4] considered the following stronger notion of uniform
intermediate differentiability.

Definition 1. A real function f defined on an open subset Ω of a Banach space
X is said to be uniformly intermediate differentiable at x ∈ Ω if there exists
(a “uniform intermediate derivative”) x∗ ∈ X∗ and a sequence tn ց 0 such that

lim
n→∞

f(x+ tnv)− f(x)

tn
= (v, x∗)

for each direction v ∈ X with ‖v‖ = 1.

The following result is proved in [4] using the Preiss deep differentiability the-
orem of [5].

Theorem GS. LetX be an Asplund space. Then every locally Lipschitz function
defined on an open subset Ω of X is uniformly intermediate differentiable at every
point of Ω \ A, where A is a first category set.

To formulate the result of the present note, we need the following definition
(cf. [8], p. 327).

Definition 2. Let P be a metric space and M ⊂ P . We say that

(i) M is globally very porous if there exists c > 0 such that for every open ball
B(a, r) there exists an open ball B(b, cr) ⊂ B(a, r) \ M and

(ii) M is σ-globally very porous if it is a countable union of globally very porous
sets.

Remark 1. Every globally very porous set is clearly nowhere dense and thus
every σ-globally very porous set is of the first category. It is not difficult to prove
that in each Banach space there exists a first category set which is not σ-globally
very porous. (For the more difficult result concerning the weaker notion of a
σ-porous set see [10].)

Now we can formulate our result.

Theorem. Let X be a superreflexive Banach space. Then every locally Lip-

schitz function f defined on an open subset Ω of X is uniformly intermediate

differentiable at every point of Ω \ A, where A is a σ-globally very porous set.

By Remark 1, our Theorem is, in the case of a superreflexive X , an improve-
ment of Theorem GS.
A result analogous to Theorem for the weaker notion of (non-uniform) interme-

diate differentiability is proved in [7] in the case of a separable Banach space X .
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In this case the set A can be taken to be “σ-directionally porous”. Note that the
notions of smallness “σ-globally very porous” and “σ-directionally porous” are
incomparable in infinite-dimensional spaces.
We will need also the notion of a very porous set which is clearly weaker than

this of a globally very porous set.

Definition 3. Let P be a metric space, M ⊂ P and x ∈ P . We say that

(i) M is very porous at x if there exist numbers δ > 0, η > 0 such that, for
each 0 < ρ < δ, there exists a ball B(y, ω) ⊂ B(x, ρ) \ M with ω ≥ ηρ,

(ii) M is very porous if it is very porous at each of its points and

(iii) M is σ-very porous if it is a countable union of very porous sets.

The basic ingredience of the proof of our Theorem is the following result of [2].
In the terminology of [2], it says that the pair of Banach spaces (X, R) has the “uni-
form approximation by affine property (UAAP )” if X is superreflexive. (More-
over, it is proved in [2] that (X, R) has (UAAP ) iff X is superreflexive.)

Theorem BJLPS. Let X be a superreflexive Banach space. Then for each ε > 0
there exists c = c(ε) > 0 such that for every ball B(x, ρ) in X and every Lipschitz
function f : B(x, ρ) 7→ R there exist a ball B(y, ρ̃) ⊂ B(x, ρ) and an affine
function a : X 7→ R such that ρ̃ ≥ cρ and

|f(z)− a(z)| ≤ ερ̃Lip(f) for each z ∈ B(y, ρ̃).

We will use also the following relatively easy fact (see [11], Lemma E).

Proposition Z. Let X be a Banach space and M ⊂ X . Then M is σ-globally
very porous iff it is σ-very porous.

2. Proof of Theorem

Let Gn be the union of all balls B(c, r) ⊂ Ω such that r < 1/n and there exists
an affine function a on X for which |f(z) − a(z)| ≤ r/n whenever z ∈ B(c, 2r).
Put Pn = Ω \ Gn and A =

⋃

∞

n=1 Pn. It is sufficient to prove that

(1) each Pn is σ − globally porous and

(2) f has a uniform intermediate derivative at each point of Ω \ A =
∞
⋂

n=1

Gn.

First we will prove (1). By Proposition Z, it is sufficient to prove that each Pn is
very porous at each point x ∈ Ω. To this end choose n, x and find δ > 0, K > 0
such that B(x, δ) ⊂ Ω, δ < 1/n and f is Lipschitz with constant K on B(x, δ).

Now find c = c( 12nK ) by Theorem BJLPS and consider an arbitrary 0 < ρ < δ.
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By the choice of c there exists a ball B(y, ρ̃) ⊂ B(x, ρ) and an affine function a
on X such that ρ̃ ≥ cρ and

|f(z)− a(z)| ≤
1

2nK
ρ̃K =

ρ̃

2n
for each z ∈ B(y, ρ̃).

Therefore B(y, ρ̃/2) ⊂ Gn and we see that Pn is very porous at x (with η = c/2).
To prove (2), suppose that z ∈

⋂

∞

n=1Gn is given. Then there exist sequences
(B(cn, rn)) of balls and (an) of affine functions on X such that 0 < rn < 1/n, z ∈
B(cn, rn) and

(3) |f(y)− an(y)| < rn/n for each y ∈ B(cn, 2rn).

Let an(t) = qn + x∗n(t), where qn ∈ R and x∗n is a linear function on X . If
v ∈ X, ‖v‖ = 1, then (3) implies
(4)
∣

∣

∣

∣

f(z + rnv)−f(z)

rn
− (v, x∗n)

∣

∣

∣

∣

=

∣

∣

∣

∣

f(z + rnv)−f(z)

rn
−

an(z + rnv)−an(z)

rn

∣

∣

∣

∣

<
2

n
.

Since f is locally Lipschitz, there exist L > 0 and n0 ∈ N such that |(v, x∗n)| <
L + 2/n whenever n ≥ n0 and ‖v‖ = 1. Therefore (x∗n)

∞

n=n0 is a norm bounded
sequence in X∗. By the Eberlein-Smulyan theorem we can choose a subsequence
(x∗nk
)∞k=1 and x∗ ∈ X∗ such that

(5) x∗nk
→ x∗ in the w∗ − topology.

Put tk := rnk
. Then (4) and (5) clearly imply that

lim
k→∞

f(z + tkv)− f(z)

tk
= (v, x∗)

for each v ∈ X, ‖v‖ = 1, which completes the proof.
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based on a modification of the Banach-Mazur game is given. In the original ver-
sion of the present paper, this characterization (similarly as in [9]) was used. The
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