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Generalized n–coherence

J. Jirásko

Abstract. In this paper necessary and sufficient conditions for large subdirect products
of n-flat modules from the category Gen(Q) to be n-flat are given.

Keywords: relative finiteness conditions, relative coherence, large subdirect products of
n-flat modules

Classification: 16D40

In what follows, R stands for an associative ring with a unit element andR-Mod
(Mod-R) denotes the category of all unitary left (right) R-modules.
Let F be a filter on a set I and {Mi; i ∈ I} be a family of left R-modules. We

define an equivalence relation ∼ on
∏

i∈I Mi as follows: For (mi), (ni) ∈
∏

i∈I Mi,
(mi) ∼ (ni) if {i ∈ I;mi = ni} ∈ F . The equivalence class of (0, 0, . . . ) is called

the F -product and it is denoted by
∏F

i∈I Mi. Clearly,
∏F

i∈I Mi is a submodule of
∏

i∈I Mi. For a set X let |X | denotes the cardinality of X and for m = (mi)i∈I ∈
∏

i∈I Mi let supp(m) = {i ∈ I;mi 6= 0}. For an infinite cardinal number ℵ the ℵ-

product is defined as
∏ℵ

i∈I Mi = {m ∈
∏

i∈I Mi; |supp(m)| < ℵ}. For an infinite

cardinal number ℵ let ℵ+ be its immediate successor. Let F be a filter on an
index set I and let ℵ be sup{|I r X |;X ∈ F}. According to [9] we define sup(F)
to be ℵ if the supremum is not attained and ℵ+ if the supremum is attained. If
ℵ is an infinite cardinal number and |I| ≥ ℵ then F = {X ⊆ I; |I r X | < ℵ} is a

filter on I with sup(F) = ℵ and
∏ℵ

i∈I Mi =
∏F

i∈I Mi. If |I| < ℵ then obviously
∏ℵ

i∈I Mi =
∏

i∈I Mi. If |I| = ℵs then we have
∑⊕

i∈I Mi =
∏ℵ0

i∈I Mi ⊆
∏ℵ1

i∈I Mi ⊆

· · · ⊆
∏ℵs

i∈I Mi ⊆
∏ℵs+1

i∈I Mi =
∏

i∈I Mi. The F -products (ℵ-products) of flat and

projective modules were investigated in [9] and [10] by P. Loustaunau.
Let n be a nonnegative integer. A module M ∈ Mod-R is called n-presented if

there is a finite n-presentation of M i.e. an exact sequence

Fn → Fn−1 → . . . → F1 → F0 → M → 0

in which every Fi is free of finite rank. A ring R is said to be right n-coherent
if every n-presented right module is (n + 1)-presented. The following definition
of n-flat and n-FP -injective module is due to J. Chen and N. Ding. Let n be

The author has been supported by GA ČR 201/97/1162.
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a positive integer. A left R-module Q is called n-flat if TorRn (N, Q) = 0 for all
n-presented right R-modules N . A right R-moduleM is said to be n-FP -injective
if ExtnR(N, M) = 0 for all n-presented right R-modules N .

In [3] J. Chen and N. Ding characterize right n-coherent rings as rings for
which direct products of n-flat left R-modules are n-flat. In [5] (ℵ, Q)-coherent
rings were introduced and they were characterized as rings for which ℵ-products
of flat modules from the category Gen(Q) are flat. These rings were also studied
in [11]. The aim of this paper is to generalize results of J. Chen and N. Ding and
the results in [5] to ℵ-products of n-flat modules from the category Gen(Q) for a
fixed flat module Q.
Throughout all the paper RQ denotes a fixed flat left R-module and ℵ denotes

an infinite cardinal number.
The notions of (ℵ, Q)-finitely generated, (ℵ, Q)-finitely presented and (ℵ, Q)-

coherent modules were introduced in [5]. In the following lemmas we summarize
basic properties of these modules.

Lemma 1.1. Let {Qi; i ∈ I} be a set of left R-modules. Then

(i) if F is a filter on I with sup(F) ≤ ℵ then
∏

F
i∈I Qi ⊆

∏

ℵ
i∈I Qi;

(ii) let F be a filter on I with sup(F) = ℵ and q ∈
∏ℵ

i∈I Qi. If S = supp(q)
then there isX ∈ F and an injective map f : S → I\X . Since X ⊆ I\f(S)
the element q defined by qi = qf−1(i) for i ∈ f(S) and qi = 0 for i ∈ I\f(S)

belongs to
∏F

i∈I Qi.

Proof: (i). If q ∈
∏F

i∈I Qi then |supp(q)| < sup(F) ≤ ℵ and consequently

q ∈
∏ℵ

i∈I Qi.
(ii). If sup(F) = ℵ and |S| < ℵ then there is X ∈ F with |S| ≤ |I\X |. The rest
is clear. �

Lemma 1.2. Let F be a filter on I with sup(F) = ℵ, {Qi; i ∈ I} be a family of
left R-modules and M be a right R-module. Then the following conditions are

equivalent:

(i) the natural homomorphism ϕF : M⊗R

∏F
i∈I Qi →

∏F
i∈I(M⊗RQi) defined

via ϕF (m ⊗ (qi)i∈I) = (m ⊗ qi)i∈I is an epimorphism;

(ii) the natural homomorphism ϕℵ : M⊗R

∏ℵ
i∈I Qi →

∏ℵ
i∈I(M⊗RQi) defined

via ϕℵ(m ⊗ (qi)i∈I) = (m ⊗ qi)i∈I is an epimorphism.

Proof: (i) implies (ii). Let ϕF be an epimorphism, q ∈
∏ℵ

i∈I(M ⊗ Qi), S =

supp(q) and q ∈
∏F

i∈I(M ⊗ Qi) be the element defined in Lemma 1.1(ii). Then

there is an elementm1⊗q1+· · ·+mr⊗qr ∈ M⊗
∏F

i∈I Qi with (m1⊗q1i+· · ·+mr⊗
qri)i∈I = q. We can assume without loss of generality that qij = 0 for j ∈ I\f(S)

and i = 1, . . . , r. Let pj ∈
∏ℵ

i∈I Qi such that pj t
= 0 for t ∈ I\S and pjs

= qjf(s)
for s ∈ S, j = 1, . . . , r. Hence qs = qf(s) = m1 ⊗ q1f(s) + · · · +mr ⊗ qrf(s) =

m1 ⊗ p1s + · · ·+mr ⊗ prs for s ∈ S and consequently ϕℵ is an epimorphism.
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(ii) implies (i). If ϕℵ is an epimorphism and q ∈
∏F

i∈I(M ⊗ Qi) then there is an

elementm1⊗q1+· · ·+mr⊗qr ∈ M⊗
∏

ℵ
i∈I Qi with (m1⊗q1i+. . .mr⊗qri)i∈I = q.

If S = supp(q) then I\S ∈ F . Without loss of generality we can take qi such that

qij = 0 for j ∈ I\S and i = 1, . . . , r. Thus qi ∈
∏

F
i∈I Qi for i = 1, . . . , r and

consequently ϕF is an epimorphism. �

The following definition is motivated by the definition of R.R. Colby and
E.A. Rutter of the Q-finitely generated module in [4] and the definition of P. Lous-
taunau of the ℵ-finitely generated module in [9].

Definition 1.3. A right R-module M is said to be (ℵ, Q)-finitely generated if
every subset T of M ⊗R Q with |T | < ℵ is contained in N ⊗R Q for some finitely

generated submodule N of a module M .

Lemma 1.4. Let M be a right R-module. Then the following conditions are

equivalent:

(i) M is (ℵ, Q)-finitely generated;
(ii) if I is a set and Qi ∈ Gen(Q), i ∈ I then the natural homomorphism

ϕ : M ⊗R

∏ℵ
i∈I Qi →

∏ℵ
i∈I(M ⊗R Qi) defined via ϕ(m ⊗ (qi)i∈I) =

(m ⊗ qi)i∈I is an epimorphism;

(iii) if I is a set then the natural homomorphism ϕ : M ⊗R

∏ℵ
i∈I Q →

∏

ℵ
i∈I(M⊗RQ) defined via ϕ(m⊗(qi)i∈I) = (m⊗qi)i∈I is an epimorphism.

Proof: (i) implies (ii). Let u ∈
∏ℵ

i∈I(M ⊗Qi), T = supp(u) and fi : Q
(Ji) → Qi,

i ∈ I be epimorphisms. Then |T | < ℵ and idM ⊗ fi : M ⊗ Q(Ji) → M ⊗ Qi,
i ∈ I are epimorphisms. Hence ui =

∑ni

j=1mij ⊗ fi(qij), where mij ∈ M ,

qij ∈ Q(Ji), i ∈ I and j = 1, . . . , ni. Now qij =
∑tij

k=1 qijk, where qijk ∈ Q,
k = 1, . . . , tij . Let S = {mij ⊗ qijk; i ∈ T, j = 1, . . . , ni, k = 1, . . . , tij}. Then
|S| < ℵ and S ⊆ M ⊗Q. Thus S ⊆ N ⊗Q for some finitely generated submodule

N =
∑l

p=1 npR ofM . Hencemij⊗qijk =
∑l

p=1 np⊗qijkp for some qijkp ∈ Q. Put

vip =
∑ni

j=1

∑tij
k=1 qijkp for i ∈ T and vip = 0 for i ∈ I\T , p = 1, . . . , l. Then wp =

(fi(vip))i∈I ∈
∏ℵ

i∈I Qi, p = 1, . . . , l and ui =
∑l

p=1 np ⊗ fi(
∑ni

j=1

∑tij
k=1 qijkp) =

∑l
p=1 np ⊗ fi(vip), i ∈ I. Thus ϕ(

∑l
p=1 np ⊗ wp) = (

∑l
p=1 np ⊗ fi(vip))i∈I = u

and consequently ϕ is an epimorphism.
(ii) implies (iii). Obvious.
(iii) implies (i). Let S ⊆ M⊗Q with |S| < ℵ and I be a set such that |S| ≤ |I| (e.g.
I =M ⊗ Q or I is a set with |I| ≥ ℵ). Then there is an injective map f : S → I.

Let us consider u ∈
∏ℵ

i∈I(M ⊗Q) defined by ui = f−1(i) for i ∈ f(S) and ui = 0

for i ∈ I\f(S). Then by assumption there is
∑r

j=1mj ⊗ qj ∈ M ⊗
∏ℵ

i∈I Q such

that (
∑r

j=1mj ⊗ qj i
)i∈I = u. Now if s ∈ S then s = f−1(i) =

∑r
j=1mj ⊗ qji

for some i ∈ f(S) and therefore S ⊆ N ⊗ Q, where N =
∑r

j=1mjR is a finitely

generated submodule of M . �
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Corollary 1.5. The class of all (ℵ, Q)-finitely generated modules is closed un-
der extensions, homomorphic images, finite direct sums, direct summands and

contains the class of all finitely generated modules.

Proof: It follows immediately from Lemma 1.4(ii) and the definition of (ℵ, Q)-
finitely generated module.

�

Definition 1.6. A right R-module M is said to be (ℵ, Q)-finitely presented if
there is a short exact sequence 0→ K → F → M → 0 with F free of finite rank

and K (ℵ, Q)-finitely generated.

Lemma 1.7. Let M be a finitely generated right R-module. Then the following

conditions are equivalent:

(i) M is (ℵ, Q)-finitely presented;
(ii) if 0 → K → P → M → 0 is a projective presentation with P finitely

generated then K is (ℵ, Q)-finitely generated;
(iii) if I is a set and Qi ∈ Gen(Q), i ∈ I then the natural homomorphism

ϕ : M ⊗R

∏

ℵ
i∈I Qi →

∏

ℵ
i∈I(M ⊗R Qi) defined via ϕ(m ⊗ (qi)i∈I) =

(m ⊗ qi)i∈I is an isomorphism;

(iv) if I is a set then the natural homomorphism ϕ : M ⊗R

∏ℵ
i∈I Q →

∏ℵ
i∈I(M⊗RQ) defined via ϕ(m⊗(qi)i∈I ) = (m⊗qi)i∈I is an isomorphism.

Proof: (i) implies (ii). Let 0 → Ki → Pi → M → 0, i = 1, 2 be two projective
presentations of M . By Schanuel’s Lemma we have P1 ⊕ K2 ≃ P2 ⊕ K1. Now
if P1, P2 are finitely generated and K1 is (ℵ, Q)-finitely generated then K2 is
(ℵ, Q)-finitely generated by Corollary 1.5.

(ii) implies (iii). Let 0 → K → F → M → 0 be an exact sequence, where F is
free of finite rank and Qi ∈ Gen(Q), i ∈ I. Consider the following commutative
diagram

K ⊗
∏ℵ

i∈I Qi −−−−→ F ⊗
∏ℵ

i∈I Qi −−−−→ M ⊗
∏ℵ

i∈I Qi −−−−→ 0




y

ϕK





y

ϕF





y

ϕM

∏

ℵ
i∈I(K ⊗ Qi) −−−−→

∏

ℵ
i∈I(F ⊗ Qi) −−−−→

∏

ℵ
i∈I(M ⊗ Qi) −−−−→ 0

.

Then ϕF is obviously an isomorphism since F is free of finite rank and ϕK is an
epimorphism since K is (ℵ, Q)-finitely generated. Hence ϕM is an isomorphism.

(iii) implies (iv). Obvious.

(iv) implies (i). Let 0 → K → F → M → 0 be an exact sequence with F free of
finite rank. Consider the following commutative diagram

K ⊗
∏

ℵ
i∈I Q −−−−→ F ⊗

∏

ℵ
i∈I Q −−−−→ M ⊗

∏

ℵ
i∈I Q −−−−→ 0





y

ϕK





y

ϕF





y

ϕM

0 −−−−→
∏ℵ

i∈I(K ⊗ Q) −−−−→
∏ℵ

i∈I(F ⊗ Q) −−−−→
∏ℵ

i∈I(M ⊗ Q) −−−−→ 0

.
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Now ϕF and ϕM are isomorphisms. Hence ϕK is an epimorphism and K is
(ℵ, Q)-finitely generated by Lemma 1.4. �

Remark 1.8. As it follows from Lemma 1.2 and the proof of Lemma 1.7 every

ℵ-product
∏

ℵ
i∈I in Lemma 1.4 and Lemma 1.7 can be replaced by F -product

∏F
i∈I for a filter F on I with sup(F) = ℵ.

Definition 1.9. Let n be a nonnegative integer. A right R-module M is called

n-(ℵ, Q)-presented if there is a finite n-(ℵ, Q)-presentation of M i.e. an exact

sequence

0→ Kn → Fn−1 → . . . → F1 → F0 → M → 0

in which every Fi is free of finite rank and Kn is (ℵ, Q)-finitely generated.

Definition 1.10. Let n be a nonnegative integer. A ring R is said to be right

n-(ℵ, Q)-coherent if every n-presented right R-module is (n+1)-(ℵ, Q)-presented.

Lemma 1.11. Let n be a positive integer, N be an n-(ℵ, Q)-presented right
R-module and {Qi; i ∈ I} be a family of left R-modules from Gen(Q). Then:

(i) there is an epimorphism TorRn (N,
∏ℵ

i∈I Qi)→
∏ℵ

i∈I Tor
R
n (N, Qi);

(ii) there is an isomorphism TorRn−1(N,
∏ℵ

i∈I Qi) ∼=
∏ℵ

i∈I Tor
R
n−1(N, Qi).

Proof: Let
0→ Kn → Fn−1 → . . . → F1 → F0 → N → 0

be the finite n-(ℵ, Q)-presentation of N and Ki = Ker(Fi−1 → Fi−2) for i =
2, . . . , n. Then the short exact sequence 0 → Ki → Fi−1 → Ki−1 → 0 induces
the commutative diagram

0→ TorR
1 (Ki−1,

∏ℵ
i∈I Qi) −−−−→ Ki ⊗

∏ℵ
i∈I Qi −−−−→ Fi−1 ⊗

∏ℵ
i∈I Qi





y

fi−1





y

ϕKi





y

ϕFi−1

0→
∏

ℵ
i∈I Tor

R
1 (Ki−1, Qi) −−−−→

∏

ℵ
i∈I(Ki ⊗ Qi) −−−−→

∏

ℵ
i∈I(Fi−1 ⊗ Qi)

.

Then fn−1 is an epimorphism since Kn is (ℵ, Q)-finitely generated and fn−2 is
an isomorphism since Kn−1 is (ℵ, Q)-finitely presented, Ki being finitely pre-

sented for i < n − 1. Now our lemma follows from the fact that TorRn−1(N,−) ∼=

TorR1 (Kn−2,−) and Tor
R
n (N,−) ∼= TorR1 (Kn−1,−). �

Theorem 1.12. Let n be a nonnegative integer. Then the following conditions

are equivalent:

(i)
∏ℵ

i∈I Q is n-flat for every index set I;

(ii)
∏ℵ

i∈I Qi is n-flat for every index set I and any family of n-flat modules

Qi ∈ Gen(Q);
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(iii) R is right n-(ℵ, Q)-coherent.
(iv)

TorRn (N,
∏

i∈I

ℵQi) ∼=
∏

i∈I

ℵTorRn (N, Qi)

for every n-presented right R-module N and any family of left R-modules

Qi ∈ Gen(Q).

Proof: (ii) implies (i). Obvious.

(i) implies (iii). Suppose that N is an n-presented right R-module,

Fn → Fn−1 → . . . → F1 → F0 → N → 0

is a finite n-presentation of N and Ki = Ker(Fi−1 → Fi−2) for i = 2, . . . , n.
Then the exact sequence 0 → Kn → Fn−1 → Kn−1 → 0 induces the following
commutative diagram

0→ Kn ⊗
∏

ℵ
i∈I Q −−−−→ Fn−1 ⊗

∏

ℵ
i∈I Q −−−−→ Kn−1 ⊗

∏

ℵ
i∈I Q → 0





y

ϕKn





y

ϕFn−1





y

ϕKn−1

0→
∏ℵ

i∈I(Kn ⊗ Q) −−−−→
∏ℵ

i∈I(Fn−1 ⊗ Q) −−−−→
∏ℵ

i∈I(Kn−1 ⊗ Q)→ 0

.

Then TorR1 (Kn−1,
∏ℵ

i∈I Q) ∼= TorRn (N,
∏ℵ

i∈I Q) = 0 by assumption and the upper
row is exact. The lower row is exact since Q is flat. Now ϕFn−1

, ϕKn−1
are

isomorphisms and consequently ϕKn
is an isomorphism. ThusKn is (ℵ, Q)-finitely

presented by Lemma 1.7. Hence N is (n+ 1)-(ℵ, Q)-presented.

(iii) implies (iv). It follows immediately from Lemma 1.11(ii).

(iv) implies (ii). Obvious. �
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