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Construction, properties and applications of finite neofields

A.D. Keedwell

Abstract. We give a short account of the construction and properties of left neofields.
Most useful in practice seem to be neofields based on the cyclic group and particularly
those having an additional divisibility property, called D-neofields. We shall give ex-
amples of applications to the construction of orthogonal latin squares, to the design of
tournaments balanced for residual effects and to cryptography.

Keywords: neofield, loop, orthomorphism, complete mapping, orthogonal latin squares,
cryptography, balanced round robin tournament

Classification: 12K99, 20N05, 05B15, 05B30, 94A60

Introduction

A left neofield (N,⊕, .) of order n consists of a set N of n symbols on which
two binary operations (⊕) and (.) are defined such that (N,⊕) is a loop, with
identity element 0 say, (N \ {0}, .) is a group and (.) distributes from the left over
(⊕). (That is, x(y ⊕ z) = xy ⊕ xz for all x, y, z ∈ N .)
If the right distributive law also holds, the structure is called a neofield . A left

neofield (or neofield) whose multiplication group is (G, .) is said to be based on
that group. Clearly, every left neofield based on an abelian group is a neofield.
Also, a neofield whose addition satisfies the associative law is a field. (In this
article, all the structures discussed will be finite.)

The concept of a neofield was first introduced and developed by L. J. Paige
[P1] in 1949. Paige hoped to use this structure as the co-ordinate system for
a finite projective plane and so to construct new planes, possibly of non-prime-
power order. It turns out, however, that a more natural structure to look at
is a left neofield because, as was shown by Hsu and Keedwell [H2] in a paper
published in 1984, left neofields are co-extensive with orthomorphisms and near
orthomorphisms of groups. (The present author discovered later that the Ph.D.
thesis of C.P. Johnson, a student of the late Trevor Evans, which was submitted
in 1981 contains essentially the same idea.) Before proceeding, we shall need some
further definitions:

A one-to-one mapping g → φ(g) of a finite group (G, .) onto itself is called an
orthomorphism if the mapping g → θ(g), where θ(g) = g−1φ(g), is again a one-
to-one mapping of G onto itself. The orthomorphism is said to be in canonical
form if φ(1) = 1, where 1 is the identity element of G.
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An orthomorphism in canonical form may be regarded as a permutation

φ = (1)(g11g12 . . . g1k1)(g21g22 . . . g2k2) . . . (gs1gs2 . . . gsks
)

of G such that the elements g−1ij gi,j+1 (where i = 1, 2, . . . , s and the second suffix j

is added modulo ki) comprise the non-identity elements of G each counted once.

Then φ(gij) = gi,j+1 and θ(gij) = g−1ij gi,j+1. The mapping θ is the complete

mapping associated with the orthomorphism φ.
If we express an orthomorphism in cycle form as above, we see that

∏

g∈G g =
∏

θ(gij) =
∏

(g−1ij gi,j+1) = 1. That is, the product of all the elements of G in

some appropriate order is equal to the identity element.
The concept of an orthomorphism was first introduced explicitly in [D4] but

the equivalent concept of complete mapping dates back to H.B. Mann [M2].
The historical significance of this concept as applied to a finite group G is that

it guarantees the existence of, and can be used to construct, an orthogonal mate
for the latin square formed by the multiplication table (Cayley table) of G.
As is implied by our earlier remarks and as we show in the next section, this

concept (and also that of a near orthomorphism, defined below) plays a crucial
role in the study of neofields because, in particular, the mapping defined by 1→ 1
and w → 1 ⊕ w (for w 6= 1) is an orthomorphism of every left neofield for which
1⊕ 1 = 0.

Suppose now that the elements of the finite group (G, .) can be arranged in the
form of a sequence [g′1g

′

2g
′

3 . . . g
′

h] followed by s cyclic sequences (g11g12 . . . g1k1),

(g21g22 . . . g2k2), . . . , (gs1gs2 . . . gsks
) such that the elements g′j

−1g′j+1 and

g−1ij gi,j+1 together with the elements g
−1
iki
gi1 comprise the non-identity elements

of G each counted once. Then the mapping θ of G \ {g′h} onto G \ {1} given by

θ(g′j) = g
′

j
−1g′j+1 for j = 1, 2, . . . , h−1 and θ(gij) = g

−1
ij gi,j+1 (where arithmetic

of second suffices is modulo ki) is called a near complete mapping of G. The
associated mapping φ : g → gθ(g) of G \ {g′h} onto G \ {g′1} is called a near

orthomorphism of G. It is said to be in canonical form if g′1 = 1, where 1 is the
identity element of G.
We shall represent a near orthomorphism φ in the following way:

φ = [g′1g
′

2g
′

3 . . . g
′

h](g11g12 . . . g1k1)(g21g22 . . . g2k2) . . . (gs1gs2 . . . gsks
).

When the near orthomorphism is in canonical form so that g′1 = 1, we shall
denote the element g′h which has no image under the mapping by η and call it
the ex-domain element.
It is immediate to see from the definition of θ that

η =

( j=h−1
∏

j=1

θ(g′j)

)( i=s
∏

i=1

j=ks
∏

j=1

θ(gij)

)

.

That is, η is the product of all the elements of G in some appropriate order.
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Construction and properties

The concepts of orthomorphism and near orthomorphism of a group enable us
to characterize left neofields in the following way:

Theorem N. Let (N,⊕, .) be a finite left neofield with multiplicative group
(G, .), where G = N \ {0}. Then, if 1⊕ 1 = 0 in N , N defines an orthomorphism
(and corresponding complete mapping) of (G, .), which is in canonical form. If
1⊕ 1 6= 0 but 1⊕ η = 0, N defines a near orthomorphism of G in canonical form
and with η as ex-domain element.

Conversely, let (G, .) be a finite group with identity element 1 which possesses
an orthomorphism φ (in canonical form). Let 0 be a symbol not in the set G and
define N = G ∪ {0}. Then (N,⊕, .) is a left neofield, where we define ψ(w) =
1⊕w = φ(w) for all w 6= 0, 1 and ψ(0) = 1, ψ(1) = 0. Also, x⊕ y = x(1⊕ x−1y)
for x 6= 0, 0⊕ y = y and 0.x = 0 = x.0 for all x ∈ N .

Alternatively, let (G, .) possess a near orthomorphism φ in canonical form.
Then, with N defined as before, (N,⊕, .) is a left neofield, where we define ψ(w) =
1⊕w = φ(w) for all w 6= 0, η, where η is the ex-domain element of φ and ψ(0) = 1,
ψ(η) = 0. Also, x ⊕ y = x(1 ⊕ x−1y) for x 6= 0, as before, 0 ⊕ y = y and
0.x = 0 = x.0 for all x ∈ N .

Proof of Theorem N (first part; neofield given):

Case when 1⊕ 1 = 0.

In N \{0}, define φ(w) = 1⊕w for w 6= 1 and φ(1) = 1. Since (N,⊕) is a loop,
the equation φ(w) = 1 ⊕ w = z has a unique solution for w and w 6= 1 if z 6= 0,
so φ is a one-to-one mapping of G = N \ {0} onto itself.
Then θ(w) = w−1φ(w) = w−1 ⊕ 1 if w 6= 1, and θ(1) = 1. Since (N,⊕) is a

loop, the equation θ(w) = w−1 ⊕ 1 = z has a unique solution for w and w 6= 1 if
z 6= 0, so θ is a one-to-one mapping of G = N \ {0} onto itself.
It follows that φ is an orthomorphism in canonical form of G = N \ {0} with

θ as corresponding complete mapping.

Case when 1⊕ 1 6= 0, 1⊕ η = 0.

In N \ {0}, define φ(w) = 1⊕w for w 6= η. Since (N,⊕) is a loop, the equation
φ(w) = 1 ⊕ w = z has a unique solution for w with w 6= 0, η when z ∈ G \ {1},
where G = N \ {0}. Thus, φ is a one-to-one mapping from G \ {η} to G \ {1}.
Then θ(w) = w−1φ(w) = w−1 ⊕ 1 if w 6= 0, η. Since (N,⊕) is a loop, the

equation θ(w) = w−1 ⊕ 1 = z has a unique solution for w with w 6= 0, η when
z ∈ G \ {1}. So θ is a one-to-one mapping from G \ {η} to G \ {1}. [Note that
η−1 ⊕ 1 = 0 in (N,⊕, .).]
It follows that φ is a near orthomorphism in canonical form mapping G \ {η}

onto G \ {1} with θ as corresponding near complete mapping. Since the identity
element 1 of G has no pre-image, the near orthomorphism is in canonical form.
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Proof of Theorem N (second part; mapping of group given):
We require to show that (N,⊕) is a loop with identity element 0 and that

multiplication is left-distributive over addition.
We have tu⊕tv = tu(1⊕(tu)−1tv) = tu(1⊕u−1v) = t(u⊕v) from the definition

x⊕ y = x(1⊕ x−1y), so the left distributive law holds.
Also, in the case when φ is an orthomorphism,

ψ(w) = 1⊕ w = φ(w) for w 6= 0, 1;
ψ(1) = 1⊕ 1 = 0;
ψ(0) = 1⊕ 0 = 1. [Note that φ(1) = 1 since φ is in canonical form.]

Therefore, the elements a⊕ y = a(1⊕ a−1y) = aψ(a−1y) are distinct as y varies.
When x 6= 0, a; x⊕a = x(1⊕x−1a) = xφ(x−1a) = x.x−1aθ(x−1a) = aθ(x−1a).

These are all different as x varies and none is equal to 0 or a. Also, a ⊕ a =
a(1 ⊕ 1) = 0 and 0 ⊕ a = a. Therefore, the elements x ⊕ a are all distinct as x
varies.
In the case when φ is a near orthomorphism,

ψ(w) = 1⊕ w = φ(w) when w 6= 0, η;
ψ(η) = 1⊕ η = 0;
ψ(0) = 1 ⊕ 0 = 1. [Note that φ(η) is not defined since η is exdomain
element and that φ(w) 6= 1 for w ∈ G since φ is in canonical form.]

Therefore, the elements a⊕ y = a(1⊕ a−1y) = aψ(a−1y) are distinct as y varies.
When x−1a 6= 0, η; x ⊕ a = x(1 ⊕ x−1a) = xφ(x−1a) = x.x−1aθ(x−1a) =

aθ(x−1a). These are all different as x varies and none is equal to 0 or a. Further-
more, x−1a = η ⇒ x = aη−1 and aη−1 ⊕ a = aη−1(1 ⊕ η) = 0. Also, 0 ⊕ a = a.
Therefore, the elements x⊕ a are all distinct as x varies.
We conclude that (N,⊕) is a loop with 0 as two-sided identity. �

Note. The mapping ψ : z → 1+z is called the presentation function of the neofield
because it determines the complete addition table of the neofield by virtue of the
fact that x+ y = x(1 + x−1y).
Remarks.

(1) It is interesting to note here that, by a theorem of R.H. Bruck [B1], a
loop which has a transitive automorphism group is either simple (that is, without
normal subloops) or else is an elementary abelian group.
Since the mapping g → ag, where a is any non-zero fixed element, defines an

automorphism of the additive loop of a left neofield, it follows that this loop always
has a transitive automorphism group. The case when the loop is an elementary
abelian group occurs when and only when the neofield is a finite field. The
multiplication group is then cyclic.
(2) In a recently submitted paper [K5], the present author has investigated

the properties that an orthomorphism or near orthomorphism of a cyclic group
must have to enable it to define a finite field rather than just a cyclic neofield.
(For abelian groups, the existence of orthomorphisms or near orthomorphisms
are mutually exclusive according as the group has not or has a unique element of
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order two. This follows from the fact that the product of all the elements of a
finite abelian group is equal to the identity except when the group has a unique
element of order two.)

(3) In the case of a left neofield which is defined by a near orthomorphism of
a group, we have 1 ⊕ η = 0, η 6= 1 and so the exdomain element η plays the
role of the element −1 in a finite field. Since (−1)2 = 1 in a field, we might
expect that η would have multiplicative order two. However, it was shown in [K3]
that infinitely many so-called pathological left neofields exist in which η has prime
order distinct from two. Such left neofields were called pathological because they
do not have the left or right inverse properties, are not commutative for addition
or multiplication and cannot be (two-sided) neofields.

(4) A left neofield becomes a neofield if the right distributive law holds. It
was shown in [H2] that necessary and sufficient conditions for this are that the
complete mapping (in the case when 1⊕ 1 = 0) or the near complete mapping (in
the case when 1 ⊕ η = 0, η 6= 1) of the group G which defines the neofield maps
conjugacy classes to conjugacy classes and additionally in the latter case that η
is in the centre of G.

Most useful in practice are cyclic neofields: that is, neofields whose multiplica-
tion group is cyclic. Such neofields have been investigated in considerable detail
by D.F. Hsu in his book [H1].

Observation. Suppose that 1⊕η = 0 in a cyclic neofield of odd order m = n+1
based on the group G = 〈α : αn = 1〉. Then, because η is the product of all
the elements of G, it is equal to the unique element of order two in G. That is,

η = αn/2. We shall use this fact in the following sections.

An application of cyclic neofields to cryptography

One future application of cyclic neofields is likely to be to cryptography be-
cause, unlike finite fields, cyclic neofields exist of all finite orders. The following
example (taken from [D2]) indicates one cryptographic situation in which use of
a cyclic neofield has advantages over use of a group.

Example 1. Let (N,⊕, .) be a finite Galois field or a cyclic neofield. Then each
non-zero element u of the additive group or loop (N,⊕) can be represented in
the form u = αv, where α is a generator of the multiplicative group (N \ {0}, .).
v is called the discrete logarithm of u to the base α or, sometimes, the exponent
or index of u (see page 85 of [M1]). Given v and α, it is easy to compute u in
a finite field but, if the order of the field is a sufficiently large prime p and also
is appropriately chosen, it is believed to be difficult to compute v when u (as a
residue modulo p) and α are given (see [O1]). Since the multiplicative structure
of a cyclic neofield is the same as that of a finite field, the same remark applies
to a cyclic neofield of the same prime order.
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Let A,B,C, . . . , be persons who wish to send each other encrypted messages,
let p be a large prime number and let α be a primitive root of p. T. ElGamal in
[E1] has proposed the following public key encryption scheme.
Each of A,B,C, . . . , has a secret key x(i), i = a, b, c, . . . , and a public key,

y(i) = αx(i), i = a, b, c, . . . . Suppose that A wishes to send B a block Mj of
a message M , where 0 ≤ Mj ≤ p − 1. He chooses randomly a message key k,

0 < k < p − 1, and computes y(b)k = (αx(b))kmod p. He then sends (C′

j , Cj),

where C′

j = α
kmod p and Cj = y(b)

kMj or y(b)
k+Mj according as multiplication

or addition is used in the enciphering process.

On receipt of the enciphered message, B first computes (C′

j)
x(b) = αk.x(b) =

y(b)k and hence he obtains Mj = Cj/y(b)
k or Mj = Cj − y(b)k.

ElGamal points out that it is not advisable to use the same key k for enciphering
more than one block of the message since, if k is used more than once, knowledge
of one blockM1 of the message would enable an intruder to compute other blocks
because thenM2/M1 = C2/C1 orM2−M1 = C2−C1 according as multiplication
or addition is used. However, this problem does not arise if a cyclic neofield is
used and Cj = y(b)k ⊕Mj since (⊕) does not satisfy the associative law and so

C2 − C1 = (y(b)
k ⊕M2)− (y(b)

k ⊕M1) 6=M2 −M1.
Suppose, for example, that a cyclic neofield of odd prime order p whose addition

is a crossed-inverse loop is used. [Crossed inverse loops were first introduced by
R. Artzy in [A2]. A neofield (N,⊕, .) is said to have the right crossed inverse
property if, for each g ∈ N , there exists an element g′R ∈ N such that (g⊕h)⊕g′R =
h for all h ∈ N . A neofield which has the right crossed inverse property also has
the left crossed inverse property. If the neofield is cyclic of odd order, 1⊕ η = 0
and then, putting h = 0, we see that g′R = gη.] Since the order of the neofield is

an odd prime p, each element g of the neofield has gη = gα(p−1)/2 as its crossed
inverse. The modified ElGamal scheme is then as follows:
A chooses a key k, 0 < k < p − 1, and sends (C′

j , Cj), where C
′

j = αkmod p

and Cj = y(b)k ⊕ Mj . On receipt of this encrypted block of the message, B

computes (C′

j)
x(b) = αk.x(b) = y(b)k and thence Cj ⊕ (C

′

j)
x(b)η = (y(b)k ⊕Mj)⊕

y(b)kα(p−1)/2 =Mj .
The same key k can now be used for each block of the message without pro-

viding any help to an intruder who acquires a knowledge of M1 because

C2 ⊕ C1η = (y(b)
k ⊕M2)⊕ (y(b)

k ⊕M1)η 6=M2 ⊕M1η.

Applications of cyclic neofields which have a special divisibility

property

A cyclic neofield (of order m = n+ 1) based on the group 〈x : xn = 1〉 is said
to have property D if (1 ⊕ xr+1)/(1⊕ xr) = (1⊕ xs+1)/(1⊕ xs)⇔ r ≡ smodn,
where r, s are any positive integers. For brevity, we shall call such a neofield,
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a D-neofield. It is almost certain, but still unproved, that such neofields exist of
every finite order except 2 and 6.
Historically, such neofields were introduced by the present author in order

to provide an explanation for the non-existence of orthogonal latin squares of
order six because the latin square formed by the addition table of a D-neofield
always has an orthogonal mate. (We prove this later when discussing round robin
tournaments.) It is easy to see that D-neofields do not exist of orders 2 and 6
but they can be constructed of all other small orders up to at least order 20. To
show this, we use the following theorem which generalizes to all cyclic neofields
the theorem first given in [K1].
Note. In Figure 1 below, we have written (+) in place of (⊕). We shall continue
to use this less formal notation throughout the subsequent part of the paper.
Theorem 1. A necessary and sufficient set of conditions for a cyclic neofield of

order m = n+ 1 to exist is that n− 2 (not necessarily distinct) residues modulo
n from the set {2, 3, . . . n− 1} can be arranged in a sequence P such that:

(i) the partial sums of the first one, two, . . . , n− 2 elements are all distinct
and non-zero modulo n; and

(ii) when each element of the sequence is reduced by one, the new sequence,
P ′ say, also satisfies (i).

Furthermore, the cyclic neofield has property D if and only if the elements of

P are all distinct.

Proof: Suppose first that a cyclic neofield of order m = n + 1 exists based on
the cyclic group Cn = 〈x : xn = 1〉. Its addition table can be written in the form

shown in Figure 1, where 1 ⊕ xh = 0 (so that h = 0 or n/2 according as n is
odd or even). Figure 2 represents the same addition table except that powers of
x have been replaced by their indices (with x0 = 1) and the element 0 has been
replaced by n. Comparison of the two tables shows that ai+1,j+1 = aij+1, where
arithmetic of indices is modulo n.

Let p1 = a02 − a01. Then p′1 = p1 − 1 = a02 − (a01 + 1) = a02 − a12 =

an−3,n−1 − an−2,n−1.

p2 = a03 − a02. p′2 = p2 − 1 = a03 − (a02 + 1) = a03 − a13 =

an−4,n−1 − an−3,n−1.

p3 = a04 − a03. p′3 = p3 − 1 = a04 − (a03 + 1) = a04 − a14 =

an−5,n−1 − an−4,n−1.

. . . . . . . . . . . . . . . . . .

pn−2 = a0,n−1 − a0,n−2. p′n−2 = pn−2 − 1 = a0,n−1 − (a0,n−2 + 1) =

a0,n−1 − a1,n−1.

Since no two entries of the second row of the addition table are equal, no
one of the pi’s is equal to zero. Since no two entries of the last column of the
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addition table are equal, no one of the p′i’s is equal to zero. Thus, for each i,
pi 6= 0 or 1; so each pi ∈ {2, 3, . . . , n− 1}. Also, the partial sums p1 = a02 − a01,
p1 + p2 = a03 − a01, . . . . . . , p1 + p2 + . . . pn−2 = a0,n−1 − a01 are all distinct and
non-zero modulo n. Furthermore, the partial sums p′1 = an−3,n−1 − an−2,n−1,
p′1 + p

′

2 = an−4,n−1 − an−2,n−1, . . . . . . , p
′

1 + p
′

2 + . . . p
′

n−2 = a0,n−1 − an−2,n−1

are all distinct and non-zero modulo n.
Since 1 + xh+r = xs, where s = a0r, and 1 + x

h+r−1 = xt, where t = a0,r−1,

we have (1+ xh+r)/(1 + xh+r−1) = xs−t, where s− t = pr−1. It follows that the
elements of the set P = {p1, p2, . . . pn−2} are all distinct if and only if the neofield
has property D.

0 xh xh+1 xh+2 xh+3 ... xh−1

0 0 xh xh+1 xh+2 xh+3 ... xh−1

1 1 0 1+xh+1 1+xh+2 1+xh+3 ... 1+xh−1

x x x+xh
0 x+xh+2 x+xh+3 ... x+xh−1

x2 x2 x2+xh x2+xh+1
0 x2+xh+3 ... x2+xh−1

• • • • • • ... •
• • • • • • ... •
xn−2 xn−2 xn−2+xh xn−2+xh+1 xn−2+xh+2 xn−2+xh+3 ... xn−2+xh−1

xn−1 xn−1 xn−1+xh xn−1+xh+1 xn−1+xh+2 xn−1+xh+3 ... 0

Figure 1

n h h+ 1 h+ 2 h+ 3 . . . h− 1
n n h h+ 1 h+ 2 h+ 3 . . . h− 1
0 0 n a01 a02 a03 . . . a0,n−1
1 1 a10 n a12 a13 . . . a1,n−1
2 2 a20 a21 n a23 . . . a2,n−1
• • • • • • . . . •
• • • • • • . . . •

n− 2 n− 2 an−2,0 an−2,1 an−2,2 an−2,3 . . . an−2,n−1

n− 1 n− 1 an−1,0 an−1,1 an−1,2 an−1,3 . . . n

Figure 2

Conversely, given a sequence p1, p2, . . . , pn−2 of residues modulo n with the
properties stated in the theorem, we can construct a cyclic neofield in the following
way:
In Figure 2, the entries of the second row are 0, n, a01, a01 + p1, a01 + (p1 +

p2), . . . , a01 + (p1+ p2+ · · ·+ pn−2). Clearly, none of the n− 1 indices a01, a01 +
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p1, a01 + (p1 + p2), . . . , a01 + (p1 + p2 + · · ·+ pn−2) must be equal to 0 modulo n
and this determines a01. We may then fill in the second row of the table shown
in Figure 2 and also all its remaining rows using the fact that ai+1,j+1 = aij +1.

From the properties of the sequences P and P ′, it follows that the table so obtained
is an (n+ 1)× (n+ 1) latin square and so the corresponding Figure 1 represents
the addition table of a cyclic neofield.

It is helpful to illustrate the second part of the above proof by means of exam-
ples.
Let n = 7 and let P be the sequence 4, 6, 5, 5, 3. Then P ′ is the sequence

3, 5, 4, 4, 2. Each of these sequences has distinct partial sums and we have 0, n, a01,
a01+4, a01+3, a01+1, a01+6, a01+2 as elements of the second row in Figure 2.
Since a01 + 5 does not occur, we have a01 + 5 ≡ 0 (or 7) mod 7. Therefore,
a01 = 2 and the second row of the table is 0, n, 2, 6, 5, 3, 1, 4. We may complete
the Figure 2 so obtained to the table shown in Figure 3. Since n is odd, h = 0
and so the corresponding neofield has presentation function

ψ =

(

0 1 x x2 x3 x4 x5 x6

1 0 x2 x6 x5 x3 x x4

)

.

7 0 1 2 3 4 5 6
7 7 0 1 2 3 4 5 6
0 0 7 2 6 5 3 1 4
1 1 5 7 3 0 6 4 2
2 2 3 6 7 4 1 0 5
3 3 6 4 0 7 5 2 1
4 4 2 0 5 1 7 6 3
5 5 4 3 1 6 2 7 0
6 6 1 5 4 2 0 3 7

Figure 3

6 3 4 5 0 1 2
6 6 3 4 5 0 1 2
0 0 6 5 3 2 4 1
1 1 2 6 0 4 3 5
2 2 0 3 6 1 5 4
3 3 5 1 4 6 2 0
4 4 1 0 2 5 6 3
5 5 4 2 1 3 0 6

Figure 4

Secondly, let n = 6 and let P be the sequence 4, 5, 2, 3. Then P ′ is the se-
quence 3, 4, 1, 2. Each of these sequences has distinct partial sums and we have
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0, n, a01, a01+4, a01+3, a01+5, a01+2 as elements of the second row in Figure 2.
Since a01+1 does not occur, we have a01+1 ≡ 0 (or 6) mod 6. Therefore, a01 = 5
and the second row of the table is 0, n, 5, 3, 2, 4, 1. We may complete the Figure 2
so obtained to the table shown in Figure 4. Since n is even, h = n/2 = 3 and so
the corresponding neofield has presentation function

ψ =

(

0 x3 x4 x5 1 x x2

1 0 x5 x3 x2 x4 x

)

.

Since the elements of the sequence P are distinct, the neofield has property D.
It is in fact the finite field of order 7 and the generating element is 3 (which is a
primitive root of 7).

Note. The smallest order for which there exists a D-neofield which is not a field
is 9. (See [K2] for a table of finite D-neofields which are not fields.)

The special case of the above theorem which applies to D-neofields is due to
the present author. It appears both in [K1] and also as Theorems 7.5.2 and 7.5.3
of [D1]. D. Bedford observed (in his Ph.D. thesis of 1991) that the theorem can
be generalised to apply to all cyclic neofields as above.

As regards the explanation for the non-existence of D-neofields of order 6 and
consequent non-existence of pairs of orthogonal latin squares of that order based
on the addition table of a D-neofield, we quote from [K1]: “Since [use of D-
neofields ] provides a standard method for constructing pairs of mutually orthog-
onal latin squares of all orders up to 20 at least, we shall expect it to throw some
light on the reason for the non-existence of pairs of orthogonal latin squares of
order 6. We observe [using the theorem above] that the method fails when m = 6
because the integers 2, 3, 4 and 2–1, 3–1, 4–1 cannot be simultaneously re-ordered
so that their partial sums taken modulo 5 are all distinct and non-zero. Essen-
tially, this is due to the fact that the integers 2, 3 occur in each triad and must
occur consecutively in one or the other. Thus, the non-existence of orthogonal
latin squares of order 6 appears to be a consequence of nothing more profound
than the paucity of combinatorial arrangements of the integers 0 to 4.”

A more recent, and quite surprising, application of D-neofields is to the
construction of round robin games tournaments balanced for residual effects.
K.G. Russell [R1] was the first to investigate the existence of such tournaments.
Suppose that player x (or team x) meets player y (team y) in one round of

the tournament and immediately afterwards meets player z in the next round.
Then it is likely that x’s performance against z will have been affected by y. For
example, if y is very strong relative to x, x’s morale will have been shaken and so
he will perform less well than is to be expected against z. Because of this, it is
desirable that z should profit by the carry-over effect of y no more than once in
the whole tournament. If we represent the tournament by a latin square, we see
that it will be “best possible” if we can arrange that each player has carry-over
from each other at most once. Let us define a matrix as follows: place k in cell
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(i, j) if j plays k in the ith round of the tournament. When there are an even
number of players, everyone plays in every round so, if we denote the rounds by
1, 2, . . . , 2n− 1, and the players by 0, 1, 2, . . . , 2n− 1, every player occurs in the
ith row and every player except j occurs in the jth column (since a player cannot
play against himself). In this representation of the tournament, player z suffers a
carry-over effect from player y when and only when y, z are consecutive entries of
the same column. Since player y occurs in every row, he creates 2n−2 carry-overs
(there is no carry-over from the last row) so it ought to be possible to arrange
that these carry-overs are all different. However, there is a snag. If j plays k in
the ith round of the tournament, then k plays j in the ith round. In other words,
our matrix must have the property that if cell (i, j) contains k then also cell (i, k)
contains j. Despite this, a matrix which meets all the requirements is known to
exist when m = 2n is a power of two and for at least some other even values.
(When there are an odd number of players, we can delete one player, say player
0, and take that player’s opponent in round i (as given by the matrix) to be the
player who has a bye in that round.)

0 1 2 3 4 5 6 7
0 0 1 2 3 4 5 6 7
1 1 0 4 7 2 6 5 3
2 2 4 0 5 1 3 7 6
3 3 7 5 0 6 2 4 1
4 4 2 1 6 0 7 3 5
5 5 6 3 2 7 0 1 4
6 6 5 7 4 3 1 0 2
7 7 3 6 1 5 4 2 0

Figure 5

A solution for eight players (or seven players with byes) is shown in Figure 5.
It is immediately obvious that, if an additional first row is adjoined to our matrix
with players in the same order as the row border, then the matrix becomes a
latin square. By suitably labelling the players, we can also arrange that the first
column of the square is in the same order as the column border (as in Figure 5)
and then the latin square represents the addition table of a loop such that i+ j =
k ⇔ i+ k = j: that is, a loop with the left keys property: namely, one for which
i + (i + k) = k. (See, for example, [D1, page 58] for more details.) Since each
symbol is to follow each other at most once in the columns when the first row is
omitted, it is necessary and sufficient to have a latin square which satisfies the
left keys law and becomes a column complete (m − 1) ×m latin rectangle when
its first row is deleted.
One way of achieving this is by means of a suitable and suitably arranged group

of order m = 2n (with elements which we may denote by 0, 1, . . . , 2n− 1, where 0
is the identity element) which satisfies the left keys law and whose Cayley table is
the latin square. This is the method used by Russell but, unfortunately, a group
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can only satisfy the left keys law if all its elements have order two: that is, if it is
elementary abelian. Consequently, this method of attack can only give solutions
whenm is a power of two. (For more details of this method of obtaining solutions,
see Russell’s original paper or the survey paper [K4] of the present author.)
An alternative idea is to use a loop instead of a group. More precisely, an

idea proposed by A. Tripke [T1] is to use the addition table of a cyclic neofield.
Tripke pointed out that a sufficient condition that a balanced tournament for
m = 2n players should exist is that there exists a latin square L which satisfies
the left keys law and is cyclically orthogonal with respect to rows ; by which is
meant that the latin square obtained from L by effecting the permutation P =
(0)(2n − 1 2n − 2 . . . 2 1) of its rows is orthogonal to L. The latter concept is
due to Tripke himself who has pointed out in his Diploma Thesis (of the Ruhr
Universität in Bochum) that such a latin square can be constructed from a D-
neofield of order m and characteristic two. A cyclic neofield has characteristic 2
if its presentation function ψ(z) = 1 + z consists entirely of cycles of length 2, so
that 1 + (1 + z) = z. Since multiplication distributes over addition, this implies

that the left keys law holds. We have xh + (xh + xh+k) = xh+k, where z = xk,

and so xh + (xh + xl) = xl for every pair of non-zero elements xh and xl. The
addition table of such a neofield takes the form shown in Figure 6.

0 1 x x2 ... xm−3 xm−2

0 0 1 x x2 ... xm−3 xm−2

1 1 1+1 1+x 1+x2 ... 1+xm−3 1+xm−2

x x x+1 x+x x+x2 ... x+xm−3 x+xm−2

x2 x2 x2+1 x2+x x2+x2 ... x2+xm−3 x2+xm−2

• • • • • • ... •
• • • • • • ... •

xm−3 xm−3 xm−3+1 xm−3+x xm−3+x2 ... xm−3+xm−3 xm−3+xm−2

xm−2 xm−2 xm−2+1 xm−2+x xm−2+x2 ... xm−2+xm−3 xm−2+xm−2

Figure 6

We shall show that the latin square of Figure 6 is cyclically orthogonal with
respect to both rows and columns. (It will then follow that Figure 6 provides
a tournament scheduling of the kind we are seeking.) To see this, note first
that, if the 0th row and 0th column of the latin square are disregarded, the
remainder of the main left-to-right diagonal consists entirely of zeros (since the
neofield has characteristic two) and each of the other broken left-to-right diagonals
consists of powers of x in ascending natural order. Because the neofield has
property D, the differences between the indices of x of adjacent elements of the
row prefixed by 1 are all different and non-zero modulo m − 1. Also, none of
them is equal to 1 because (1 + xr+1)/(1 + xr) = x would imply that 1 = x.
Since succeeding rows of the matrix (excluding the 0th column) are obtained
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by adding 1 to the indices of x of the entries, excluding 0, of the previous row
and shifting the elements thus obtained one step to the right, every ordered pair
(xu, xu+t), 0 ≤ u ≤ m − 2, 2 ≤ t ≤ m − 2, where the indices are added modulo
m − 1, occurs once among the rows 1, 2, . . . ,m − 1 when the columns are read
cyclically. Also, because all the entries of the main left-to-right diagonal are
equal to 0, whereas those of the adjoining broken diagonals are all different, every
ordered pair (0, xu) and every ordered pair (xu, 0), 0 ≤ u ≤ m − 2, occurs.
Finally, because the indices of the entries in the row prefixed by 0 all differ by
1, every ordered pair (xu, xu+1), 0 ≤ u ≤ m − 2, occurs. It follows that the
latin square is cyclically orthogonal with respect to columns. We easily show
that it is also cyclically orthogonal with respect to rows. From the property
(1 + xr+1)/(1 + xr) = (1 + xs+1)/(1 + xs)⇔ r ≡ smodm− 1, we get

(1+xm−r−2)/(1+xm−r−1) = (1+xm−s−2)/(1+xm−s−1)⇔ m−r−1 ≡ m−s−1,

and hence (xr+1+1)/(xr+1+x) = (xs+1+1)/(xs+1+x)⇔ r ≡ s, since xm−1 = 1.
The latter implication is equivalent to (xr+1+1)/(xr+1) = (xs+1+1)/(xs+1)⇔
r ≡ s, and we can immediately deduce that the transpose of the given latin square
is cyclically orthogonal with respect to columns or, equivalently, that the given
square is cyclically orthogonal with respect to rows. To transform Figure 6 to the
form shown in the example of Figure 5, we replace xu by the integer u + 1 for
0 ≤ u ≤ m − 2. (For example, to obtain Figure 5 itself, we take m = 8 and the
neofield to be the Galois field GF [23] with x as a primitive root which satisfies
the equation x3 = x+ 1.)
We state this result as a theorem:

Theorem 2. A sufficient condition for the existence of a round robin tournament

for m = 2n players which is balanced for carry-over effects is that there exists a
property D cyclic neofield of order m and characteristic two.

Because 1+ 1 = 0 in a cyclic neofield of even order, to say that such a neofield
has the left inverse property is equivalent to saying that it has characteristic two,
as we observed above. Such a neofield need not have the right inverse property
as was first shown by Hsu who, in [H1], gave explicit constructions for cyclic
neofields of every finite order which have the left inverse property but not the right
inverse property. Hsu called them LXP-neofields . However, the LXP-neofields
constructed by Hsu do not have property D.
On the other hand, if a cyclic neofield of characteristic two has both the left

and right inverse properties, then and only then it is commutative for addition
(Lemma I.14 of [H1] or Theorem 2.1 (1) of [K5]). Such neofields exist of all even
orders which are not multiples of 6 except order 10. (This was first proved by
J.R. Doner [D3] in his Ph.D. thesis of 1972.) An easy proof of non-existence if
m ≡ 0mod6 is as follows:
Since the neofield is cyclic of even order, 1 + 1 = 0 and so each element is its

own additive inverse as already remarked. If x, y are non-zero elements of the
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addition loop and x + y = z, then, by adding x on the left of this equality, we
get y = x + z and, by adding y on the right, we get x = z + y. Also, addition is
commutative and so y+x = z, z+x = y, y+z = x. Thus, the additive loop of the
neofield is totally symmetric and so its non-zero elements define a Steiner triple
system whose triples x, y, z are such that the sum in the additive loop of any two
is the third. A Steiner triple system of order m − 1 exists only if m − 1 ≡ 1 or
3mod 6 so only m ≡ 2 or 4mod 6 are possible.
Tripke reported in his Diploma Thesis that he had carried out a search for

commutative D-neofields of characteristic two for all orders m that are not multi-
ples of 6 up to order 54 inclusive. He found two commutative D-neofields of order
20 and two of order 22 but no further examples. In fact, each of these pairs of
examples of the same order are complementary. The presentation function ψ of
one is obtained from that of the other by replacing each transposition (a b) by the
transposition (m− 1− a m− 1− b). More recently, I. Anderson [A1], unaware of
Tripke’s work, has looked at this same problem of finding tournaments balanced
for carry-over effects from a different point of view. With the aid of a computer
programme written by N. Finizio, he has found (in effect) the same commutative
D-neofields of characteristic two of orders 20 and 22 but no others, though the
search was not exhaustive for m > 22. In the meantime, I had asked a young
student (Ganesh Sittampalam) of mine to write his own computer programme for
this same purpose. He obtained the same results!
The question remains open as to whether non-commutative D-neofields of char-

acteristic two exist and also for what orders greater than 22 (if any) commutative
ones exist.

Acknowledgement. The author wishes to thank the referee for a number of
helpful suggestions.
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dapest; English Universities Press, London; Academic Press, New York, 1974.
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auf ausgewogen Spielpläne, Diploma Thesis, Ruhr-Universität in Bochum, 1983.

Department of Mathematics and Statistics, University of Surrey,

Guildford GU2 7XH, Surrey, United Kingdom

(Received August 26, 1999, revised December 6, 1999)


		webmaster@dml.cz
	2012-04-30T19:23:51+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




