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Multiple solutions of a Schrödinger

type semilinear equation
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Abstract. Two nontrivial solutions are obtained for nonhomogeneous semilinear Schrö-
dinger equations.
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1. Introduction

The main purpose of this work is to investigate the existence of multiple solu-
tions of the semilinear Schrödinger equation

(1.1) −△u+ q(x)u = λu+ g(x, u) + f in R
N ,

where f ∈ L2(RN ), N ≥ 3.
Throughout this paper we assume that

(A1) q ∈ L∞(RN ) is periodic;
(A2) λ is in the spectral gap of the operator (−△+ q).

It is well known that the spectrum σ(T ) of Schrödinger operator T = −△+ q

is purely continuous. We denote by E the Sobolev space H1(RN ). For λ ∈ G, a
spectral gap of T , we may decompose E corresponding to the spectral gap G into
E = E+

⊕

E− such that the quadratic form

Q(u) =

∫

RN

(| ▽ u|2 + qu2 − λu2) dx

associated with T−λI, λ ∈ G, is positive and negative on E+ and E− respectively.
Both E+ and E− are infinite dimensional, so the operator −△+ q−λ is strongly
indefinite. There are many existence results for the case f ≡ 0 and we refer to
the papers [BJ], [CY], [PP] and references therein. Such a problem is usually
resolved by the Linking theorem ([R]), it only yields one solution in general. The
nonhomogeneous term f plays a role that the associated functional of (1.1) is no
longer even, so the multiple solutions of (1.1) cannot be obtained in a direct way.
There are obtained in [CZ] and [J] some multiplicity results for q = 0 and λ < 0.



736 Xiaochun Liu, Jianfu Yang

In this case, the operator T −λI is positive definite. Our problem is different and
more involved. We assume further that

(G1) g(x, t) is C1−function and g′t(x, t) ≥ 0 on R
N × R,

(G2) there exists K ∈ L1(RN ) ∩ L
2N

N−2 (RN ) such that |g(x, t)| ≤ K(x)(1 + |t|p),

where p ∈ (1,
N + 2

N − 2
), N ≥ 3,

(G3) g(x, t) = o(|t|) as t → 0 uniformly in x ∈ R
N ,

(G4) there is a constant β > 2 such that

0 < βG(x, t) ≤ tg(x, t)

for all t 6= 0 and x ∈ R
N , where G(x, t) =

∫ t

0
g(x, s) ds.

Therefore, the limits g± = lim
t→±∞

g(x, t)

t
= +∞ uniformly for x ∈ Ω ⊂⊂ R

N . It

reminds one of a type of Ambrosetti-Prodi problem in bounded domains [AP], [F]
and [FY]. These Ambrosetti-Prodi type of problems can be viewed as a question of
characterizing the range of a perturbation of a linear operator by some nonlinear
operator.
In this paper, we obtain two solutions for problem (1.1). The solutions of

problem (1.1) will be found as critical points of the functional

(1.2) J(u) =
1

2

∫

RN

(|∇u|2 + qu2 − λu2) dx −

∫

RN

G(x, u) dx −

∫

RN

fu dx.

First we reduce the problem by the Lyapunov-Schmidt reduction to a problem in
E+, and then using variational method, we obtain the following result.

Theorem A. Assume (A1)–(A2) and (G1)–(G4). If ‖f‖L2(RN ) is small, problem

(1.1) possesses at least two solutions.

Section 2 is dealt with Lyapunov-Schmidt reduction, existence result is proved
in Section 3.

2. Lyapunov-Schmidt reduction

Let E = E+
⊕

E− and the quadratic form Q be defined as in Section 1. It is
known that Q is positive on E+ and negative on E−. We can define a new scalar
product (·, ·)E on E with the corresponding norm ‖ · ‖E such that

Q(u) = −‖u‖2E for u ∈ E− and Q(u) = ‖u‖+E for u ∈ E+.

The norm ‖ · ‖E is equivalent to the original norm on E, see [PP] for details.
Let P+ : E → E+ and P− : E → E− be orthogonal projections of E onto E+

and E− respectively. With the aid of these projections, we can write Q in the
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form Q(u) = ‖P+u‖2E − ‖P−u‖2E. One may verify that the functional J defined

in (1.2) is well defined and C1 on E. To eliminate the effect of indefinite property,
we consider the functional

(2.1) Iv(w) = J(v+w) =
1

2
(‖v‖2E−‖w‖2E)−

∫

RN

G(x, v+w) dx−

∫

RN

f(v+w) dx

defined on E− for fixed v ∈ E+. By (A2), (G4) and Hölder’s inequality, we have

(2.2) Iv(w) ≤
1

2
(‖v‖2E − ‖w‖2E) + ε‖w‖2E + Cε‖f‖

2
L2 + ‖f‖L2‖v‖E .

Choose ε > 0 sufficiently small in (2.2), then for any fixed v ∈ E+, Iv(w)→ −∞
as ‖w‖E → ∞. It implies that Iv(w) is bounded above on E−. Set

(2.3) M = sup
w∈E−

Iv(w).

Lemma 2.1. LetK(x) be as in (G2). If un
n
⇀ u weakly in E, then a subsequence

of {un}, still denoted by {un}, satisfies

lim
n→∞

∫

RN

K(x)
∣

∣un − u
∣

∣

p+1
dx = 0.

The conclusion follows by the fact that K decays uniformly in “average” sense
at infinity. For a proof we refer to [L].

Lemma 2.2. M is attained by some w0 ∈ E−. Furthermore, w0 satisfies

(2.4) −△w0 + qw0 = λw0 + g(x, v + w0) + f in (E−)∗.

Proof: We follow some ideas from [BJS]. By Ekeland’s variational principle [E],
we may find a maximizing sequence {wn} ⊂ E− of problem (2.3) such that

(2.5)
1

2
(‖v‖2E − ‖wn‖

2
E)−

∫

RN

G(x, v + wn) dx −

∫

RN

f(v + wn) dx =M + o(1),

(2.6)

∫

RN

(▽wn ▽ ϕ+ qwnϕ − λwnϕ) dx −

∫

RN

g(x, v + wn)ϕdx −

∫

RN

fϕ dx

= o(1)‖ϕ‖E , ∀ϕ ∈ E−.

Taking ϕ = −wn in (2.6), we obtain

(2.7) ‖wn‖
2
E +

∫

RN

g(x, v + wn)wn dx+

∫

RN

fwn dx = o(1)‖wn‖E .
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Therefore

‖wn‖
2
E +

∫

RN

g(x, v + wn)(v + wn) dx

≤

∫

RN

g(x, v + wn)v dx+ C‖f‖L2‖wn‖E + o(1)‖wn‖E .

By (G1)–(G4), we have

|g(x, t)|2 ≤ Ctg(x, t) if |t| ≤ 1 and x ∈ R
N ,

|g(x, t)|
p+1

p ≤ Ctg(x, t) if |t| ≥ 1 and x ∈ R
N

for some constant C > 0. It follows

(2.8)

|

∫

RN

g(x, v + wn)v dx|

≤ C(

∫

{|v+wn|≤1}
|g(x, v + wn)|

2 dx)
1

2 ‖v‖L2

+ C(

∫

{|v+wn|≥1}
|g(x, v + wn)|

p+1

p dx)
p

p+1 ‖v‖Lp+1

≤ C(

∫

RN

(v + wn)g(x, v + wn) dx)
1

2 ‖v‖L2

+ C(

∫

RN

(v + wn)g(x, v + wn) dx)
p

p+1 ‖v‖Lp+1

≤ ε

∫

RN

(v + wn)g(x, v + wn) dx+ Cε(‖v‖
2
E + ‖v‖p+1

E ).

As a result, we obtain
‖wn‖E ≤ C

by choosing ε > 0 sufficiently small. Therefore we may assume that wn
n
⇀ w0 in

E and wn
n

−→ w0 in Lr
loc(R

N ) for 2 ≤ r < 2∗ :=
2N

N − 2
and we have w0 ∈ E−

satisfying (2.4). Hence

(2.9)

∫

RN

[▽(wn − w0)▽ ϕ+ q(wn − w0)ϕ − λ(wn − w0)ϕ] dx

=

∫

RN

[g(x, v + wn)− g(x, v + w0)]ϕdx + o(1)‖ϕ‖E , ∀ϕ ∈ E−.

Let ϕ = −(wn − w0) in (2.9). Then

‖wn − w0‖
2
E +

∫

RN

[g(x, v + wn)(wn − w0)− g(x, v + w0)(wn − w0)] dx

= o(1)‖wn − w0‖E .
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By (G2), Hölder’s inequality and Lemma 2.1 we obtain

∫

RN

g(x, v + wn)(wn − w0) dx
n

−→ 0,(2.10)

∫

RN

g(x, v + w0)(wn − w0) dx
n

−→ 0.(2.11)

Actually, by (G2)

(2.12)

|

∫

RN

g(x, v + wn)(wn − w0) dx|

≤ C

∫

RN

K(x)(|v + wn|+ |v + wn|
p)|wn − w0| dx

≤ C

∫

RN

K(x)(|wn − w0|
2 + |wn − w0|

p+1) dx

since {wn} is bounded in E. (2.12) and Lemma 2.1 imply (2.10). (2.11) can be
obtained in the same way. Consequently,

wn
n

−→ w0 strongly in E.

The assertion follows. �

Lemma 2.3. There exists h ∈ C1(E+, E−) such that

J(v + w) < J(v + h(v)), ∀w ∈ E− and w 6= h(v).

Moreover, h(v) satisfies (2.4).

Proof: Following arguments in [BJS], we let

k(v, w) = −△w + qw − λw − P−(g(x, v + w) + f),

where v is fixed, w ∈ E−. By Lemma 2.2 we have

k(v, w0) = 0.

For all z ∈ E−, z 6= 0, we deduce by (G1) that

〈Dwk(v, w0)z, z〉 =

∫

RN

(| ▽ z|2 + qz2 − λz2) dx −

∫

RN

g′t(x, v + w0)z
2 dx

≤ −‖z‖2E < 0.

Hence Dwk(v, w0) is bounded in E∗, we conclude that its inverse exists and is
bounded. The Implicit Function Theorem yields that there exists h ∈ C1(E+, E−)
such that w0 = h(v). �
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3. Existence results

In this section we prove Theorem A. The first solution is obtained as a local
minimum of a functional in a small ball, the second one is found by the Mountain
Pass Theorem ([AR]). Let

F (v) = J(v + h(v)), ∀ v ∈ E+.

Then F ∈ C1(E+, R). By (2.4) we know that

−

∫

RN

fh(0) dx =

∫

RN

h(0)g(x, h(0)) dx+ ‖h(0)‖2E.

Using (G4) we obtain

|

∫

RN

fh(0) dx| ≥ ‖h(0)‖2E .

If ‖P−f‖L2(RN ) small, the inequality implies ‖h(0)‖E small. Consequently, F (0)

is small provided that ‖P−f‖L2(RN ) is small.

Lemma 3.1. If ‖P−f‖L2(RN ) is small, there exist α, r > 0 such that

(3.1) F (v) ≥ α > F (0), ∀ v ∈ E+, ‖v‖E = r.

Proof: By (G2), (G3), Lemma 2.3 and Hölder’s inequality, we have

(3.2) F (v) ≥ J(v) ≥ (
1

2
− ε)‖v‖2E − Cε(‖v‖

p+1
E + ‖f‖2L2).

On the other hand,

(3.3) F (0) ≤ C‖f‖L2‖h(0)‖E .

Thus, from (3.2) and (3.3) we obtain (3.1) for ‖v‖E and ‖f‖L2 small. �

Lemma 3.2. For any v ∈ E+, ‖F ′(v)‖E∗ = ‖J ′(v + h(v))‖E∗ .

Proof: See the proof of Lemma 2.2 in [BJS]. �

A sequence {vn} is said to be the Palais-Smale sequence for F ((PS)-sequence

for short) if |F (vn)| ≤ C uniformly in n and F ′(vn)
n

−→ 0 in (E+)∗. We say
that F satisfies the Palais-Smale condition ((PS) condition for short) if every
(PS)-sequence of F is relatively compact in E+.
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Lemma 3.3. F satisfies (PS) condition.

Proof: Let vn ⊂ E+ be a (PS)-sequence of F . We may assume that

F (vn)
n

−→ c, F ′(vn)
n

−→ 0.

By Lemma 3.2 we have

(3.4) J(vn + h(vn))
n

−→ c, J ′(vn + h(vn))
n

−→ 0.

Let un = vn + h(vn). Then

J(un)−
1

2
〈J ′(un), un〉

=
1

2

∫

RN

g(x, un)un dx −

∫

RN

G(x, un) dx+
1

2

∫

RN

fun dx

≤ c+ o(1)‖un‖E + o(1).

By (G4)

(3.5)
(1

2
−
1

β

)

∫

RN

g(x, un)un dx ≤ c+ o(1)‖un‖E + o(1).

Since h(vn) satisfies (2.4),

Q(h(vn)) =

∫

RN

g(x, un)h(vn) dx+

∫

RN

fh(vn) dx.

Hence as (2.9) we deduce

(3.6) ‖h(vn)‖
2
E ≤

(

∫

RN

|g(x, un)|
p+1

p dx
)

p

p+1 ‖h(vn)‖Lp+1

+ C
(

∫

RN

|g(x, un)|
2 dx

)
1

2 ‖h(vn)‖L2 + C‖f‖L2‖h(vn)‖E .

(3.5) and (3.6) imply ‖h(vn)‖E is uniformly bounded in n. In the same way, we
infer from

〈J ′(un), vn〉 = o(1)‖vn‖E

that

(3.7) ‖vn‖
2
E ≤ C + C

∫

RN

g(x, un)un dx+ o(1)‖vn‖E .

So ‖vn‖E is also uniformly bounded. Consequently,

‖un‖E ≤ C.
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We may assume

vn
n
⇀ v0, wn

n
⇀ w0 in E

and v0 ∈ E+, w0 ∈ E− and

un
n
⇀ u0 = v0 + w0 in E, un

n
−→ u0 in Lr

loc(R
N ), 2 ≤ r < 2∗.

We remark that u0 is a weak solution of problem (1.1). Therefore

∫

RN

[▽(un − u0)▽ ϕ+ q(un − u0)ϕ − λ(un − u0)ϕ] dx

−

∫

RN

[g(x, un)− g(x, u0)]ϕdx = o(1)‖ϕ‖E , ∀ϕ ∈ E.

Let ϕ = vn − v0, then

‖vn−v0‖
2
E−

∫

RN

g(x, un)(vn−v0) dx−

∫

RN

g(x, u0)(vn−v0) dx = o(1)‖vn−v0‖E .

By Hölder’s inequality and Lemma 2.1 again, we infer that

‖vn − v0‖E
n

−→ 0.

The proof is completed. �

Let

m = inf
v∈Br

F (v),

where Br = {v ∈ E+ | ‖v‖E < r} and r is determined in Lemma 3.1.

Proposition 3.4. If ‖f‖L2 is small, m is attained by some v1 ∈ E+, and v1 +
h(v1) is a solution of (1.1).

Proof: Again by the Ekeland’s variational principle, we have a minimizing se-
quence {vn} satisfying

F (vn)
n

−→ m, F ′(vn)
n

−→ 0 and ‖vn‖E ≤ r.

From Lemma 3.3 we know that there exists a subsequence of {vn} convergent
strongly in E. Denote by v1 the limit function, then ‖v1‖E ≤ r. Lemma 3.1
implies ‖v1‖ < r, so v1 is a critical point of F . By Lemma 3.2, v1 + h(v1) is a
solution of (1.1). �

Next, we use the Mountain Pass Theorem to obtain the second solution.
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Lemma 3.5. There exists v ∈ E+, v /∈ Br(0) such that F (v) < 0.

Proof: By assumptions (G1) and (G4), there exists a function l(x) > 0, ∀x ∈

R
N such that

G(x, t) ≥ l(x)|t|β

provided that |t| ≥ σ for some σ > 0. Choosing v ∈ E+ and ‖v‖E = 1, we claim
that

(3.8) F (tv) < 0

for t > 0 large.

Let {tn} be a sequence of positive numbers, tn
n

−→ ∞. Denote un = tnv +

h(tnv), and wn =
un

‖un‖E
. We may assume that wn

n
⇀ w = w++w− in E, where

w± ∈ E±.
We distinguish two cases:

(i)
‖h(tnv)‖E

tn
→ +∞;

(ii)
‖h(tnv)‖E

tn
→ k ≥ 0, where k is a constant.

In the first case, by (G4) and Hölder’s inequality, we deduce

F (tnv) = J(tnv + h(tnv))

≤
1

2

[

t2n‖v‖
2
E − ‖h(tnv)‖2E

]

+ C‖f‖L2‖tnv + h(tnv)‖E

≤
t2n
2

[

‖v‖2E −
1

t2n
‖h(tnv)‖2E +

C

tn
‖f‖L2‖v‖E +

C

t2n
‖f‖L2‖h(tnv)‖E

]

(3.9)

≤
t2n
2

[

‖v‖2E −
1

t2n
(1− ε)‖h(tnv)‖2E + Cε‖f‖

2
L2 + C‖f‖L2‖v‖E

]

.

Choosing ε > 0 sufficiently small, we obtain

F (tnv)→ −∞

as n → ∞.
In the second case, if ‖h(tnv)‖E/tn → k > 0, then we may assume h(tnv)/tn

n
⇀

h1, it follows that w =
v + h1

(1 + k2)
1

2

6≡ 0. In fact, were it not the case, we would

have v = −h1, it would yield

0 = Q(v, h1) = Q(v,−v) = −‖v‖2E

a contradiction to the choice of v. By Lemma 2.1

lim
n→∞

∫

RN

l(x)|wn|
β dx =

∫

RN

l(x)|w|β dx.
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The limit is positive.
For n large we have ‖un‖E ≥ tn > 1. Let ωn = {x ∈ R

N : |tnv(x) +
h(tnv(x))| ≥ σ}. We estimate by (G2)

∫

RN/ωn

G(x, tnv + h(tnv)) dx ≤ C

and ∫

RN /ωn

l(x)
∣

∣tnv + h(tnv)
∣

∣

β
dx ≤ C,

where C > 0 is independent of n. Hence we deduce

(3.10)

∫

RN

G(x, tnv + h(tnv)) dx

=

∫

ωn

G(x, tnv + h(tnv)) dx+

∫

RN/ωn

G(x, tnv + h(tnv)) dx

≥

∫

ωn

l(x) |tnv + h(tnv)|β dx − C

≥ ‖un‖
β
E

∫

RN

l(x)
∣

∣

tnv + h(tnv)

‖un‖E

∣

∣

β
dx − C1

≥ tβn
(

∫

RN

l(x)|w|β dx+ o(1)
)

− C1.

It concludes by (3.10) that

F (tnv) ≤
t2n
2

[

‖v‖2E −
1

t2n
(1 − ε)‖h(tnv)‖2E + Cε‖f‖

2
L2 + C‖f‖L2‖v‖E

]

(3.11)

−tβn
(

∫

RN

l(x)|w|β dx+ o(1)
)

− C ≤ 0

for n large.
If ‖h(tnv)‖E/tn → 0, then ‖un‖E/tn → 1. By Sobolev embedding, we have

h(tnv)/tn → 0 a.e. in R
N . It results

∫

RN

l(x)
∣

∣

tnv + h(tnv)

‖un‖E

∣

∣

β
dx →

∫

RN

l(x)|v|β dx > 0.

Then we may argue as before. The conclusion follows. �

Proof of Theorem A: By Lemma 3.5, there exists e ∈ E+, e /∈ Br such that
F (e) < 0. Let

Γ = {γ ∈ C([0, 1], E+) | γ(0) = v1, γ(1) = e},



Multiple solutions of a Schrödinger type semilinear equation 745

where v1 is the minimum point of m obtained in Proposition 3.4. Define

c = inf
γ∈Γ
max
v∈γ

F (v).

Lemma 3.3 and the Mountain Pass Theorem imply c is a critical value of F , and
by Lemma 3.2, corresponding critical point v2 gives second solution v2 + h(v2)
of (1.1). �
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