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On interval homogeneous orthomodular lattices

A. De Simone, M. Navara, P. Pták

Abstract. An orthomodular lattice L is said to be interval homogeneous (resp. centrally
interval homogeneous) if it is σ-complete and satisfies the following property: Whenever
L is isomorphic to an interval, [a, b], in L then L is isomorphic to each interval [c, d] with
c ≤ a and d ≥ b (resp. the same condition as above only under the assumption that all
elements a, b, c, d are central in L).
Let us denote by Inthom (resp. Inthomc) the class of all interval homogeneous ortho-

modular lattices (resp. centrally interval homogeneous orthomodular lattices). We first
show that the class Inthom is considerably large — it contains any Boolean σ-algebra,
any block-finite σ-complete orthomodular lattice, any Hilbert space projection lattice
and several other examples. Then we prove that L belongs to Inthom exactly when the
Cantor-Bernstein-Tarski theorem holds in L. This makes it desirable to know whether
there exist σ-complete orthomodular lattices which do not belong to Inthom. Such ex-

amples indeed exist as we than establish. At the end we consider the class Inthomc .
We find that each σ-complete orthomodular lattice belongs to Inthomc, establishing an
orthomodular version of Cantor-Bernstein-Tarski theorem. With the help of this result,
we settle the Tarski cube problem for the σ-complete orthomodular lattices.

Keywords: interval in a σ-complete orthomodular lattice, center, Boolean σ-algebra,
Cantor-Bernstein-Tarski theorem

Classification: 06C15, 06E05, 81P10

1. Basic notions

We shall be exclusively interested in σ-complete orthomodular lattices (ab-
breviated OMLs), i.e. in those OMLs which are closed under the formations of
countable suprema and infima (we refer to [1], [4] and [8] for the background on
OMLs). We shall frequently use the elementary fact (see [8]) that an interval in
a σ-complete OML constitutes, with the operations naturally inherited from the
host OML, a σ-complete OML. If L is an OML, we shall define the center of L as
the Boolean sub-σ-algebra consisting of all “absolutely compatible” elements, i.e.,
as the set of all elements compatible to each element of L (see [8]). As known, L
is a Boolean σ-algebra if and only if all its elements are central.
Recall that a sequence (an)n∈N of pairwise orthogonal elements in the center

of an OML is called a central partition of unity if
∨

n∈N
an = 1.

Let us consider two σ-complete OMLs. By an isomorphism between them
we mean a bijective mapping f such that both f and f−1 are OML morphisms
(thus, as a consequence, f and f−1 preserve countable infima and suprema).
We shall be interested in the class of those σ-complete OMLs L which, roughly
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speaking, satisfy the following homogeneity condition: If an interval in L is found
isomorphic to L, then it has to coincide with all its hyperintervals in L. Let
us formally introduce this class in the following definition. Besides the natural
meaning of this class within the theory of OMLs, it may be of significance in the
logico-algebraic foundations of quantum theories, too (see also Theorem 2.1 in
the next paragraph).

Definition 1.1. Let L be an OML. Then L is said to be interval homogeneous if
it is σ-complete and enjoys the following property: If, for some a, b ∈ L, a ≤ b, the
interval [a, b] is isomorphic to the entire L, then L is isomorphic to each interval
[c, d] with c ≤ a and d ≥ b (c, d ∈ L).
If all the elements a, b, c, d ∈ L from the previous definition are supposed to be

taken from the center of L, then L is called centrally interval homogeneous.

Let us denote the class of all interval homogeneous OMLs (resp. centrally
interval homogeneous OMLs) by Inthom (resp. by Inthomc). Obviously, Inthom
⊆ Inthomc. Before we exhibit basic examples of the σ-complete OMLs which
belong to Inthom, let us observe that our definition can be rephrased in a slightly
simplified form.

Proposition 1.2. An OML L belongs to Inthom if and only if L enjoys the
following property: If, for some a ∈ L, the interval [0, a] is isomorphic to the
entire L, then L is isomorphic to the interval [0, b] for each b ≥ a (b ∈ L).

Proof: Let L satisfy the property stated in Proposition 1.2. We want to show
that L belongs to Inthom. Assume that, for some a, b ∈ L, a ≤ b, the interval
[a, b] is isomorphic to L. Since [a, b] is isomorphic to [0, b∧ a′] (see e.g. [8, Propo-
sition 1.3.12]), we infer that L is isomorphic to [0, b∧a′]. Take arbitrary elements
c, d ∈ L with c ≤ a and d ≥ b. The relations d ∧ c′ ≥ b ∧ a′ and [0, d ∧ c′] ∼= [c, d]
then imply that L ∼= [0, d ∧ c′] ∼= [c, d]. �

2. Interval homogeneous OMLs and the Cantor-Bernstein-Tarski

theorem

In our first result we list basic examples of OMLs that belong to Inthom. As
usual, let us call a maximal Boolean subalgebra of an OML a block . As we
assume σ-completeness of the OML, each block is σ-complete, too. Let us use the
following notations: let us denote by N the set of all positive integers, and let us
further set N0 = N ∪ {0} and N∞ = N ∪ {∞}.

Theorem 2.1. Let L be a σ-complete OML. Each of the following conditions
guarantees that L belongs to Inthom:

(a) Each block of L is finite.
(b) L is a Boolean σ-algebra.
(c) L is the lattice of projections in a Hilbert space.
(d) L possesses only finitely many blocks (i.e., L is made up of finitely many
Boolean σ-algebras).
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Proof: (a) Let i:L → [0, a] be an isomorphism for some element a ∈ L, a <
1. Define a sequence, (an)n∈N0

, by putting a0 = 1 and an+1 = i(an). Thus
(an)n∈N0

is a strictly decreasing sequence which is contained in a block of L —
a contradiction. Thus, L ∈ Inthom.

(b) If L is a Boolean σ-algebra, then it is known from the Boolean algebra
theory that L belongs to Inthom ([6, Theorem 12.4, p. 180]). A proof can be
also obtained from our more general result of Theorem 3.1 which follows. (It
is perhaps worthwhile observing that yet another proof can be provided via the
Loomis-Sikorski theorem. Here is a sketch of the argument. One first applies
the famous Cantor-Bernstein iterating mechanism to set-representable Boolean
σ-algebras — the isomorphism of L and [a, b] can be made pointwise by [9] —
and then, for general (possibly non set-representable) Boolean σ-algebras, one
completes the proof by using the Loomis–Sikorski theorem.)

(c) Let H be a Hilbert space. Let us denote by L(H) the lattice of projections
in H . Set L = L(H). If dim H < ℵ0, then all blocks are finite and the case (a)
applies. If dim H = ℵ0, then the result is easy — for each infinite-dimensional
subspace M of L we obviously have L(H) ∼= L(M). If dimH > ℵ0, then L(H) ∈
Inthom by a simple cardinality argument.

(d) Let i:L → [0, a] be an isomorphism for some element a ∈ L, a < 1. Define
a sequence, (an)n∈N0

, by putting a0 = 1 and an+1 = i(an). Thus, a1 = a
and (an)n∈N0

is a strictly decreasing sequence. Due to the σ-completeness of L,
there exists the infimum of (an)n∈N0

, c =
∧

n∈N0
an. We distinguish two cases

depending on whether or not the element a is central.

(i) Suppose that a is central in L. Then L ∼= [0, a]× [0, a′] and the property of
being central in [0, a] implies being central in L.
As L has finitely many blocks, according to [4, Theorem 4, p. 40] (see also

[2]) it is isomorphic to the product L ∼= B × K, where B is a Boolean σ-algebra
which is maximal in the sense that K cannot be decomposed into a product of
a nontrivial Boolean σ-algebra and a (possibly trivial) OML. The decomposition
L ∼= B × K corresponds to the existence of a central element k ∈ L such that
K ∼= [0, k], B ∼= [0, k′]. The image of [0, k′] under i is the interval [0, i(k′)] and
it is a Boolean σ-algebra. Due to the maximality of B, [0, k] ∼= K has no factor
which is a nontrivial Boolean σ-algebra, therefore i(k′) ≤ k′. The image of [0, k]
under i is the interval [0, i(k)], where i(k) is central in L, and no nontrivial factor
of [0, i(k)] is a Boolean σ-algebra. Thus it is a subinterval of [0, k] and i(k) ≤ k.
We obtained

i(k) ∨ i(k′) = i(k ∨ k′) = i(1) = a = (a ∧ k) ∨ (a ∧ k′),

where all the joins in the latter equality are orthogonal. As i(k) ≤ k, i(k′) ≤ k′,
the two decompositions of a coincide, i.e.,

i(k) = a ∧ k , i(k′) = a ∧ k′.
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Since any isomorphism maps central elements onto central elements, all ele-
ments an (n ∈ N0) as well as the element c are central in [0, a] and in L. We there-
fore have a central partition of unity in L, (c, a0 ∧a′1, a1 ∧a′2, . . . , an ∧a′n+1, . . . ),
which gives us the isomorphism

L ∼= [0, c]×
∏

n∈N0

[0, an ∧ a′n+1].

Moreover, all the factors [0, an∧a′n+1] in the latter decomposition are isomorphic.

If [0, an ∧ a′n+1] has more than one block, then L has infinitely many blocks since
the blocks of L correspond to the products of blocks of the factors (see e.g. [2]).
This contradicts the hypothesis on L. Thus [0, an∧a′n+1] is a Boolean σ-algebra for

all n ∈ N0. In particular, [0, a0∧a′1] = [0, a
′] is a Boolean σ-algebra, hence a′ ≤ k′.

We proved that i(k) = a∧k = k, so i restricted to [0, k] is an automorphism. The
restriction of i to [0, k′] is an isomorphism of a Boolean σ-algebra [0, k′] and its
subinterval [0, a∧k′]. The standard Cantor-Bernstein-Tarski theorem for Boolean
σ-algebras then completes the proof.

(ii) Suppose that there is an element b in L which is not compatible to a. Define
a sequence, (bn)n∈N, in L by setting b1 = b, and bn+1 = i(bn) (n ∈ N). Obviously
b < 1, i.e., b1 < a, so we have also bn+1 < an for each n ∈ N, and we obtain the
chain

bn+1 < an < an−1 < · · · < a1.

Therefore there is a Boolean sub-σ-algebra of L which contains the set
{bn+1, an, an−1, . . . a1}. But bn+1 is not compatible to an+1. As a result of the
previous considerations, for each n ∈ N there exists a block in L containing the
set {bn+1, an, an−1, . . . , a1} but not containing the element bn. This means that
there exist infinitely many distinct blocks in L. This is a contradiction. It follows
that the case (i) above applies and therefore L ∈ Inthom. �

In the next result we observe that the relation of Inthom to Cantor-Bernstein-
Tarski theorem known for Boolean σ-algebras can be generalized to σ-complete
OMLs.

Proposition 2.2. The following statements on L are equivalent:

i) L ∈ Inthom.
ii) The Cantor-Bernstein-Tarski theorem holds true for L: If M is a σ-
complete OML such that L is isomorphic to an interval [0, b]M in M ,
and M is isomorphic to an interval [0, a]L in L, then L is isomorphic
to M .

Proof: i) ⇒ ii): Let us assume that L ∈ Inthom and that there exists a σ-
complete orthomodular lattice M with two isomorphisms α:L → [0, b]M and

β:M → [0, a]L. Since the restriction, β̃, of β to the interval [0, b]M is an iso-

morphism between [0, b]M and [0, β(b)]L, we see that β̃ ◦ α:L → [0, β(b)]L is an
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isomorphism. The assumption on L plus the obvious relation β(b) ≤ a then
imply that L is isomorphic to [0, a]L. Thus, L ∼=M .

ii) ⇒ i): This implication is obviously true — it suffices to take M = [0, b]L in
Proposition 1.2. �

The previous result allows us to easily exhibit OMLs which do not belong to
Inthom.

Theorem 2.3. The class Inthom is not closed under the formation of products.
A consequence: There exist σ-complete OMLs which do not belong to Inthom.

Proof: Let K = {0, 1, x, x′, y, y′} (this lattice is often denoted by MO2 – see
[4]). Then K obviously belongs to Inthom. Let Kn = K for each n ∈ N. Take
L =

∏∞
n=1Kn. Then the Cantor-Bernstein-Tarski theorem does not hold true

for L. Indeed, let M = {0, 1} × L. Then we can easily find an isomorphism of
L onto an interval in M (take e.g. the interval {0} × L = [0, (0, 1)]M ), and we
can also find an isomorphism of M onto an interval in L (take e.g. the interval
{0, x} ×

∏∞
n=2Kn = [0, (x, 1, 1, . . . )]L). But L is obviously not isomorphic to M

since M possesses a central atom — a minimal nonzero element in the center —
here it is the element (1, 0, 0, . . . ) but L does not. The proof is complete. �

Let us comment on the previous result. It implies that there are in fact modular
set-representable complete OMLs which do not belong to Inthom — we have just
constructed one. This result can be understood in such a way that there are
OMLs which are intrinsically fairly close to Boolean σ-algebras and yet do not
belong to Inthom. It should be noted that there are also examples of OMLs which
are intrinsically fairly close to L(H) and do not belong to Inthom either. Indeed,
it is easily seen that if we take the lattice L(R3) for Kn (n ∈ N) in the above
construction, we obtain an OML, L, such that L /∈ Inthom. A quantum logic
reformulation of this fact is this (see e.g. [8] for the investigation of the Jauch-
Piron property): There are Jauch-Piron OMLs which do not belong to Inthom.

3. Centrally interval homogeneous OMLs and the Tarski cube

problem

In the final part of this paper we shall investigate the class Inthomc. Making
use of Proposition 1.2, L ∈ Inthomc ⇔ if L is isomorphic to [0, a], a central in L,
then L is isomorphic to [0, b] for each central b ∈ L, b ≥ a.

Theorem 3.1. Each σ-complete OML belongs to Inthomc. A corollary (the
Cantor-Bernstein-Tarski theorem in OMLs): Let L, M be σ-complete OMLs and
let L be isomorphic to [0, b]M for a central element b ∈ M and M be isomorphic
to [0, a]L for a central element a ∈ L. Then L is isomorphic to M .

Proof: Let L be a σ-complete OML. Let a, b be two central elements in L and
let a ≤ b. Let i:L → [0, a] be an isomorphism. Define the sequences (an)n∈N0
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and (bn)n∈N0
by induction:

a0 = 1, b0 = b,

an+1 = i(an), bn+1 = i(bn).

Note that

a0 ≥ b0 ≥ a1 ≥ b1 ≥ a2 ≥ b2 ≥ . . . ,

where

a1 = i(1) = a,
an = in(1) = in−1(a),
bn = in(b).

We chose a, b central in L. In other words, a1, b0 are central in [0, a0]. An
isomorphism maps central elements onto central elements, therefore by induction
in(a1) = an+1, i

n(b0) = bn are central in [0, i
n(a0)] = [0, an]. As a consequence,

all an, n ∈ N, as well as all bn, n ∈ N, are central in L. Due to the σ-completeness
of L, there exists the infimum,

c =
∧

n∈N0

an =
∧

n∈N0

bn.

Moreover, c is also central. Thus, we have a central partition of unity

(c, a0 ∧ b′0, b0 ∧ a′1, a1 ∧ b′1, b1 ∧ a′2, . . . )

in L and each x ∈ L admits a unique decomposition with respect to it,

x = (x ∧ c) ∨
∨

n∈N0

(x ∧ an ∧ b′n) ∨
∨

n∈N0

(x ∧ bn ∧ a′n+1).

It is easy to see that c is a fixed point of the mapping i. The restriction of the
isomorphism i to the interval [0, c] is obviously an isomorphism.
In the final step, one only checks that the function ϕ defined by

ϕ(x) = (x ∧ c) ∨
∨

n∈N0

i(x ∧ an ∧ b′n) ∨
∨

n∈N0

(x ∧ bn ∧ a′n+1)

is an isomorphism of L onto [0, b]. Indeed, ϕ restricts to the identity on the
intervals

[0, c], [0, bn ∧ a′n+1], n ∈ N0,

and to isomorphisms

[0, an ∧ b′n]→ [0, an+1 ∧ b′n+1], n ∈ N0.
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For the range ϕ(L) we may write

ϕ(L) ∼= [0, c]×
∏

n∈N0

[0, bn ∧ a′n+1]×
∏

n∈N0

[0, an+1 ∧ b′n+1]

∼= [0, (a0 ∧ b′0)
′] = [0, b].

The proof is complete. �

Let us make final remarks. First, it should be noted that the σ-complete setup
of the problem pursued here seems well justified by the Boolean algebra results. To
demonstrate that, let us tentatively denote by inthom the class of OMLs defined in
the category of (generally non σ-complete) OMLs in the full analogy with Inthom.
Then the fact is that there is even a Boolean algebra which does not lie in inthom.
An example can be constructed easily on the ground of the so-called “Tarski
cube phenomenon”: There is a Boolean algebra A such that A2 is not Boolean
isomorphic to A but A is Boolean isomorphic to A3 (see [3] and [5]). This Boolean
algebra obviously does not belong to inthom. An interesting question arises: Since
the phenomenon A 6∼= A2, A ∼= A3 obviously cannot occur for Boolean σ-algebras,
can it occur for σ-complete OMLs? It cannot as Theorem 3.1 implies — if there
is a σ-complete OML with A 6∼= A2 and A ∼= A3, then A ∼= [(0, 0, 0), (0, 0, 1)]A3
and A2 ∼= [(0, 0, 0), (0, 1, 1)]A3. This is in contradiction with Theorem 3.1 because
the elements (0, 0, 1) and (0, 1, 1) are central in A3. Let us explicitly record the
latter result.

Theorem 3.2. Let L be a σ-complete OML. If L 6∼= L2, then L 6∼= Ln for any
n ∈ N, n > 1.
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