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Countable compactness and p-limits

S. Garcia-Ferreira, A.H. Tomita

Abstract. For ∅ 6= M ⊆ ω∗, we say that X is quasi M -compact, if for every f : ω → X
there is p ∈ M such that f(p) ∈ X, where f is the Stone-Čech extension of f . In
this context, a space X is countably compact iff X is quasi ω∗-compact. If X is quasi
M -compact and M is either finite or countable discrete in ω∗, then all powers of X are
countably compact. Assuming CH, we give an example of a countable subset M ⊆ ω∗

and a quasi M -compact space X whose square is not countably compact, and show
that in a model of A. Blass and S. Shelah every quasi M -compact space is p-compact
(= quasi {p}-compact) for some p ∈ ω∗, whenever M ∈ [ω∗]<c . We prove that if

∅ /∈ {Tξ : ξ < 2c} ⊆ [ω∗]<2
c

, then there is a countably compact space X that is not
quasi Tξ-compact for every ξ < 2c ; hence, if 2c is regular, then there is a countably

compact space X such that X is not quasi M -compact for any M ∈ [ω∗]<2
c

. We list
some open problems.
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0. Introduction

All our spaces are Tychonoff. If f : X → Y is a continuous function, then
f : β(X) → β(Y ) denotes the Stone-Čech extension of f . β(ω) is identified with
the set of all ultrafilters on ω, and β(ω) \ ω = ω∗ is the set of all free ultrafilters

on ω. For A ⊆ ω, Â = {p ∈ β(ω) : A ∈ p} = clβ(ω) A.

In the context of nonstandard analysis, the point f(p) ∈ X , where f : ω → X
is a function and p ∈ ω∗, has the following interpretation:

Definition 0.1 ([Be]). Let p ∈ ω∗ and let (xn)n<ω be a sequence in a space X .
We say that x is the p-limit point of (xn)n<ω, we write x = p− limn→ω xn, if for

every neighborhood V of x, {n < ω : xn ∈ V } ∈ p.

If x = p− limn→ω xn, then x = f(p), where f : ω → X is defined by f(n) = xn

for every n < ω. It is known that, in the category of Tychonoff spaces, a space
X is countably compact iff every sequence of points in X has a p-limit point for
some p ∈ ω∗: By using functions, X is countably compact iff for every f : ω → X
there is p ∈ ω∗ such that f(p) ∈ X . This last observation leads us to consider the
following class of spaces.
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Definition 0.2 ([Be]). Let p ∈ ω∗. A space X is said to be p-compact if for every
sequence (xn)n<ω of points of X there is x ∈ X such that x = p − limn→ω xn.

Thus, a space X is p-compact, for p ∈ ω∗, if f(p) ∈ X for every f : ω → X . It
is shown in [GS] that all powers of a space X are countably compact iff there is
p ∈ ω∗ such that X is p-compact. A.R. Bernstein [Be] proved that p-compactness
is preserved under arbitrary products, for every p ∈ ω∗. Since countable compact-
ness is not preserved under products, there are countably compact spaces which
are not p-compact for any p ∈ ω∗ (see [GJ]).

The following definition plays the main role in this paper:

Definition 0.3 ([G]). Let ∅ 6=⊆ ω∗. A space X is said to be quasi M -compact
if for every f : ω → X there is p ∈ M such that f(p) ∈ X .

Thus, a space X is countably compact iff X is quasi ω∗-compact, and p-
compactness agrees with quasi {p}-compactness. Given a countably compact
space X , we may ask about that smallest cardinality of a nonempty subset
M ⊆ ω∗ such that for every f : ω → X there is p ∈ M such that f(p) ∈ X .
For instance, we mentioned above that if all the powers of a space X are count-
ably compact, then set M may consist of just one single point. We show that if
X is a countably compact space and one of its powers is not countably compact,
then M cannot be neither finite and nor discrete. Under the assumption of CH ,
we give an Example of a countable subset M of ω∗, with one non-isolated point,
and a countably compact space X such that X is quasiM -compact and fails to be
p-compact for any p ∈ ω∗. In a the models described in [BS1] and [BS2], we will
prove that every quasi M -compact space is p-compact for some p ∈ ω∗, provided
that M ⊆ ω∗ and |M | < c.

Acknowledgment. We are grateful to Michael Hrušák for useful suggestions
and instructive conversation.

1. Quasi M-compact spaces

Our first result is a particular case of Theorem 1.25 from [G].

Theorem 1.1. Let ∅ 6= M ⊆ ω∗. If there is f : ω → ω and p ∈ ω∗ such that

M ⊆ f
−1
(p), then every quasi M -compact space is p-compact.

Proof: Let X be a quasi M -compact space and let g : ω → X be a function.
Consider the composition g ◦f . Since X is quasiM -compact, there is r ∈ M such
that g(f(r)) ∈ X and then g(p) ∈ X , because of f(r) = p. Thus, X is p-compact.

�

Theorem 1.2. If X is quasi M -compact for some countable discrete subset
M ⊆ ω∗, then X is p-compact for some p ∈ M .

Proof: Let M ⊆ ω∗ be discrete and let X be a quasi M -space. Assume that
X is not p-compact for any p ∈ M . Enumerate M as {pn : n < ω} and let
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{An : n < ω} be a partition of ω such that An ∈ pn for every n < ω. By
assumption, for every n < ω, there is fn : ω → X such that fn(pn) /∈ X . Let
us define f : ω → X by f |An

= fn|An
for every n < ω. Then, there is m < ω

such that f(pm) ∈ X . But, by the definition of f , f(pm) = fm(pm) which is
a contradiction since fm(pm) /∈ X . �

In our first Example, we will need the following pre-orderings on ω∗: For
p, q ∈ ω∗, we say that p ≤RK q if there is a function f : ω → ω such that
f(q) = p, and p ≤RF q if there is an embedding e : ω → β(ω) such that g(p) = q.
If p, q ∈ ω∗, then we say that p ≈ q if p ≤RK q and q ≤RK p, and p <RK q (resp.,
p <RF q) means that p ≤RK q (resp., p ≤RF q) but p and q are not equivalent.
The type of p ∈ ω∗ is the set T (p) = {q ∈ ω∗ : p ≈ q}. A RK-minimal ultrafilter
on ω is usually called selective. We list the basic properties of these two pre-
orderings that we shall use (proofs of these facts may be found in [Co], [CN], [Ku]
and [vM]):

Lemma 1.3. The following properties hold:

1. ≤RF ⊂ ≤RK ;

2. for p, q ∈ ω∗, p ≈ q iff there is a bijection f : ω → ω such that f(p) = q;

3. let f : ω → ω and p ∈ ω∗. Then, p ≈ f(p) if and only if there is A ∈ p
such that f |A is one-to-one;

4. every weak P -point of ω∗ is RF -minimal, and there are 2c-many weak
P -points of ω∗ which are not selective;

5. if p ∈ ω∗ is selective and f : ω → ω∗ is a function such that f(p) /∈ f [ω],
then p <RF f(p);

6. if p ≤RF r and q ≤RF r, then p and q are RF -comparable;
7. if f : ω → ω∗ is an embedding, then p <RF f(p) for every p ∈ ω∗;

8. if X, Y ⊆ ω∗ are countable, then X ∩Y = ∅ iff X ∩Y = ∅ and X ∩Y = ∅.
In particular, if X and Y are disjoint countable sets of weak P -points of
ω∗, then X ∩ Y = ∅.

To state our preliminary results, we introduce the following notion: Let F ∈
[ω∗]ω , let e : ω → F be a function and let p ∈ ω∗. Then, a function f : ω → ω∗

is called a (F, e, p)-function if q <RF f(q) for every q ∈ F , and p <RF f(e(p)).
Notice that if F = {pn : n < ω} are RK-incomparable selective ultrafilters on
ω, p ∈ ω∗ and e : ω → ω∗ is defined by e(n) = pn for all n < ω, then every
(F, e, p)-function satisfies that f(pn) 6= f(pm) whenever n < m < ω.

Lemma 1.4. Let {p} ∪ {pn : n < ω} be pairwise RK-incomparable selective
ultrafilters on ω, and let e : ω → ω∗ be defined by e(n) = pn for every n < ω. If
f : ω → ω∗ satisfies that pn <RF f(pn) for every n < ω, then f is a ({pn : n <
ω}, e, p)-function.

Proof: We have to show that p <RF f(e(p)). In fact, if f(e(p)) 6= f(pn) for
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every n < ω, then f(e(p)) /∈ {f(e(n)) : n < ω}, and hence, by Lemma 1.3, p <RF

f(e(p)). Suppose that f(e(p)) = f(pk) for some k < ω. Our assumption implies

that f(e(p)) 6= f(pn) for every n ∈ ω − {k}. Since f(e(p)) is an accumulation
point of {f(pn) : n ∈ ω \ {k}}. Then, we may find a pairwise disjoint family
{Bm : m < ω} of subsets of ω such that Bm /∈ f(pk) for all m < ω and {f(pn) :

n ∈ ω \ {k}} ⊆
⋃

m<ω B̂m. Let h : ω → ω be the function defined by h−1(m) =

Bm for each m < ω. Then, (h ◦ f ◦ e)[ω \ {k}] ⊆ ω and h(f(e(p))) ∈ ω∗. Hence,

h(f(e(p))) ≤RK p. Since p is selective, h(f(e(p))) ≈ p. By applying Lemma 1.3,
we may find A ∈ p such that h◦f ◦e|A is one-to-one. So, by the definition of h, the
function f ◦ e|A is an embedding and hence p <RF f(e(p)). But, by Lemma 1.3,
this implies that p and pk are RF -equivalent, which is a contradiction. Then,
f(e(p)) 6= f(pn) for all n < ω. Therefore, f is a ({pn : n < ω}, e, p)-function. �

Lemma 1.5. Let {p} ∪ {pn : n < ω} be a set of pairwise RK-incomparable
selective ultrafilters on ω, and let e : ω → ω∗ be defined by e(n) = pn for every

n < ω. For a subspace X of ω∗, the following are equivalent:

1. X is quasi ({e(p)} ∪ {pn : n < ω})-compact;
2. for every ({pn : n < ω}, e, p)-function f : ω → X there is q ∈ {e(p)} ∪

{pn : n < ω} such that f(q) ∈ X .

Proof: The implication (1)⇒ (2) is evident.

(2)⇒ (1). Observe that e is an embedding and hence e(p) 6= pn for all n < ω.
Put M = {e(p)} ∪ {pn : n < ω}. Let us assume that f : ω → X is a function
such that f(q) /∈ X for every q ∈ M . Then, in particular, f(pn) /∈ f [ω] for every
n < ω. Thus, by Lemma 1.3, pn <RF f(pn) for each n < ω. So, by Lemma 1.4,
f is a ({pn : n < ω}, e, p)-function. By assumption, there is q ∈ M such that
f(q) ∈ X , which is a contradiction. �

Example 1.6. Let {p} ∪ {pn : n < ω} be a set of pairwise RK-incomparable
selective ultrafilters on ω, and let e : ω → ω∗ be defined by e(n) = pn for every

n < ω. Then, there is a quasi ({e(p)} ∪ {pn : n < ω})-compact space that is not
q-compact for any q ∈ ω∗.

Proof: Let {qn : n < ω} be a set of selective ultrafilters on ω such that {p}∪{pn :
n < ω} ∪ {qn : n < ω} are pairwise RK-incomparable. Notice that e(p) is an
accumulation point of {pn : n < ω}. Put F = M0 = {pn : n < ω} and
N0 = {qn : n < ω}. It follows from Lemma 1.3 that M0 ∩N0 = ∅. By transfinite
induction, for each 0 < ν < ω1 we may define Mν , Nν ⊆ ω∗ as follows:

1. Mν = {f(e(p)) : f : ω →
⋃

µ<ν(Mµ ∪ Nµ) is an (F, e, p)-function and

{n < ω : f(n) ∈
⋃

µ<ν Mµ} ∈ e(p)}.

2. Nν = {f(pk) : f : ω →
⋃

µ<ν(Mµ ∪ Nµ) is an (F, e, p)-function and

{n < ω : f(n) /∈
⋃

µ<ν Mµ} ∈ e(p) ∩ pk, k < ω}.
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We have that Mν ⊆ M0 and Nν ⊆ M0 for every ν < ω1. Our space is X =⋃
ν<ω1

(Mν ∪ Nν). By definition and Lemma 1.5, X is quasi ({e(p)} ∪ {pn : n <

ω})-compact. To prove that X is not q-compact for any q ∈ ω∗ is enough to show
that X×X is not countably compact (see [GS]). Assume that X×X is countably
compact and let us consider the function h : ω → X given by h(n) = qn, for every
n < ω. Let σ : ω → X × X be defined by σ(n) = (e(n), h(n)) = (pn, qn), for each
n < ω. It is clear that σ is an embedding. By assumption, there is r ∈ ω∗ such that
σ(r) ∈ X × X . Then, e(r), h(r) ∈ X , r <RF e(r) and r <RF h(r). We also have

that e(r), h(r) /∈ M0∪N0, e(r) ∈ M0 and h(r) ∈ N0. Let θ = min{µ < ω1 : e(r) ∈
Mµ ∪ Nµ} and λ = min{µ < ω1 : h(r) ∈ Mµ ∪ Nµ}. Hence, we must have that

e(r) = f(e(p)) and h(r) = g(pi), for some i < ω, where f : ω →
⋃

µ<θ(Mµ∪Nµ) is

an (F, e, p)-function, {n < ω : f(n) ∈
⋃

µ<θ Mµ} ∈ e(p), g : ω →
⋃

µ<λ(Mµ∪Nµ)

is an (F, e, p)-function and {n < ω : g(n) /∈
⋃

µ<θ Mµ} ∈ e(p)∩pi. Then, we have
that r and p are RF -comparable and r and pi are RF -comparable as well. Since p
and pi are RF -minimal, p ≤RF r and pi ≤RF r, but this implies, by Lemma 1.3,
that p and pi are RK-comparable, which contradicts our hypothesis. Therefore,
X × X is not countably compact. �

We remark that in Example 1.6 the set {pn : n < ω} is discrete and has e(p)
as an accumulation point. A. Blass [Bl] proved, in ZFC, that if ∅ 6= M ⊆ ω∗

has cardinality < d and every element of M is generated by < d sets, then there
is a finite-to-one function f : ω → ω such that f [M ] is a free ultrafilter on ω,
and hence, by Theorem 1.1, every quasi M -compact space is p-compact for some
p ∈ ω∗. This shows that Example 1.6 cannot take place in some models of ZFC.

Theorem 1.7. There is a model of ZFC in which every quasi M -compact space
is p-compact for some p ∈ ω∗, whenever M ∈ [ω∗]<c.

Proof: The authors of [BL] showed that in the models described in [BS1] and
[BS2] the following combinatorial principle holds:

(∗) If F is any free filter on ω, then there is a finite-to-one function f : ω → ω
such that f [F ] is either the filter of cofinite sets or an ultrafilter.

Fix M ∈ [ω∗]<c and put F =
⋂
{q : q ∈ M}. By (∗), there is a finite-to-one

function f : ω → ω such that either f [F ] is the filter of cofinite sets or f [F ] is an
ultrafilter. If f [F ] is the filter of cofinite sets, then f [M ] would be dense in ω∗,

which is impossible. So, f [F ] must be an ultrafilter, say p, and thenM ⊆ f
−1
(p).

According to Theorem 1.1, every quasi M -compact space is p-compact. �

It is a consequence of Theorem 1.7 that, under (∗), if a quasiM -compact space
X is not p-compact for any p ∈ ω∗, then |M | ≥ c.

We turn out to the second example of this section.
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Example 1.8. If ∅ /∈ {Tξ : ξ < 2c} ⊆ [ω∗]<2
c

, then there is a countably compact

space X such that it is not quasi Tξ-compact for any ξ < 2c.

Proof: We will use the following fact:

If X is a countable infinite subset of β(ω), then |X | = 2c.

It is well-known that there are 2c-many weak P -points in ω∗ (see [vM]). We par-
tition the set of weak P -points of ω∗ in countable infinite subsets and enumerate
them as {Sξ : ξ < 2c}. Now, for each ξ < 2c, we fix a bijection hξ : ω → Sξ . We
shall use the standard method of constructing countably compact subspaces of
ω∗. We put Y0 = S0 − h0[T0]. Suppose that for each ξ < λ < 2c we have defined
Yξ ⊆ ω∗ such that

1. Yξ ⊆
⋃
{X : X ∈ [

⋃
ζ≤ξ Sζ ]

ω} for each 1 ≤ ξ < λ;

2. Yξ ⊆ Yζ whenever ξ < ζ < λ;
3. every countable discrete infinite subset of Yξ has an accumulation point
in Yξ+1 for each ξ < ξ + 1 < λ; and

4. Sξ ⊆ Yξ ⊆ ω∗ \ [(
⋃

ζ≤ξ hζ [Tζ ]) ∪ (
⋃

ξ<ζ<2c Sζ)] for each ξ < λ.

Define Y = Sλ∪ (
⋃

ξ<λ Yξ). First notice that Y ∩hξ [Tξ] = ∅ for every ξ < 2c. We

enumerate all countable discrete infinite subsets of Y as {Dθ : θ < |Y |ω = κ}.
Without loss of generality, we may assume that either Dθ ⊆

⋃
ξ<λ Yξ or Dθ ⊆ Sλ.

By Lemma 1.3, Dθ ∩ (
⋃

λ<ζ<2c Sζ) = ∅, for each θ < κ, and Sζ ∩Yξ = ∅ whenever

ξ < ζ ≤ λ. For each θ < κ, we choose pθ ∈ Dθ as follows:

Suppose that Dθ ⊆
⋃

ξ<λ Yξ . By 1, there is a countable subset I of λ such that

Dθ ⊆
⋃

ξ∈I Sξ . Since |
⋃

ξ∈I hξ[Tξ ]| < 2c, we may choose pθ ∈ Dθ \
⋃

ξ∈I hξ [Tξ]

(by the fact).

If Dθ ⊆ Sλ, then we pick any pθ ∈ Dθ \ h[Tλ] , this is possible by the fact.
Then, we define Yλ = Y ∪ {pθ : θ < κ}. It is clear that Yλ satisfies all the

conditions. Finally, we put X =
⋃

λ<2c Yλ. By clauses 2 and 3 and the fact that
cf(2c) > ω, X is countably compact and, by clause 4, X is not quasi Tξ-compact
for every ξ < 2c. �

In particular, if 2c = (2c)<2
c

, then there is a countably compact space X such

that X is not quasi M -compact for any M ∈ [ω∗]<2
c

: The equality 2c = (2c)<2
c

holds when 2c is a regular cardinal. It should be remark that if X is a countably
compact space of size c, then there isM ∈ [ω∗]≤c such that X is quasiM -compact.

Question 1.9. For each cardinal κ < 2c, is there a countably compact space
X such that Xκ is countably compact, and X is not quasi M -compact for any
M ∈ [ω∗]<2

c

?

By making some minor changes, for each 1 < n < ω, we may construct a space
X like in Example 1.8 with the additional property thatXn is countably compact.
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Question 1.10. Is there a countably compact space X and M ∈ [ω∗]ω1 such

that X is quasi M -compact, and X is not N -compact for any N ∈ [ω∗]≤ω?
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