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Normal cones and C
∗
-m-convex structure

A. El Kinani, M.A. Nejjari, M. Oudadess

Abstract. The notion of normal cones is used to characterize C∗-m-convex algebras
among unital, symmetric and complete m-convex algebras.
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Introduction

In the first section, we consider unital, symmetric and complete m-convex
algebras A which are Sym-s.b. We show (Theorem 2.1) that if the cone of positive
elements is normal, then Pták’s function is a C∗-norm and stronger than the
initial topology; it is complete in the commutative case. The two topologies
coincide in each of the following situations: A is a Q-algebra (Corollary 2.2), A is
commutative and Fréchet (Corollary 2.4), A is barreled (Corollary 2.6). Noticing
that the cone of positive elements is always normal in a C∗-m-convex algebra,
we get Theorem 8.15 of [5]. We also obtain a generalization, to our context,
of a result of Pták ([7, Theorem 8.4, p. 277]). Without Sym-s.b. condition but
assuming commutativity we define, in Section 2, the notion of a normal cone
for a family (|.|λ)λ of seminorms; and show that it characterizes the cone of
positive elements of a C∗-m-convex algebra. We also exhibit three independent
conditions, on any cone which is stable by product, characterizing C∗-m-convex
algebras among unital and complete m-convex ones.

1. Preliminaries

In a locally convex space E, a convex cone K is said to be normal if there is
a family (|.|λ)λ of seminorms, defining the topology of E, such that, for every
λ, one has |y|λ ≥ |x|λ whenever x, y ∈ K and y − x ∈ K. Let (A, (|.|λ)λ)
be an m-convex algebra (l.m.c.a.) which is unital and complete. It is known
that (A, (|.|λ)λ) is the projective limit of the normed algebras (Aλ, ‖.‖λ), where
Aλ = A/Nλ with Nλ = {x ∈ A : |x|λ = 0}; and ‖x‖λ = |x|λ. An element x of A
is written x = (xλ)λ = (πλ(x))λ, where πλ : A −→ Aλ is the canonical surjection.

The algebra (A, (|.|λ)λ) is also the projective limit of the Banach algebras Âλ, the

completions of Aλ’s. The norm in Âλ will also be denoted by ‖.‖λ. We will denote
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by ∗-l.m.c.a. any l.m.c.a. A with a continuous involution x 7−→ x∗; it will be said
symmetric if e+xx∗ is invertible for every x in A. The sets of hermitian elements
and of positive elements, will be denoted by Sym(A) and A+ respectively. It is
known that A+ is a convex cone in any symmetric, unital and complete l.m.c.a.
([4, Proposition 8.6, p. 39]). An involutive algebra is said to be symmetrically
spectrally bounded (Sym-s.b.) if the spectrum of every hermitian element is
bounded. In the sequel ρ and pA will stand respectively for the spectral radius

and Pták’s function that is ρ(x) = sup{|λ| : λ ∈ Spx} and pA(x) = ρ(xx∗)
1

2 .

2. Normality of A+ and C∗-algebra structure

The cone of positive elements in a C∗-l.m.c.a. is always normal. The algebra

(C∞[0, 1], (|.|n)n), where |f |n =
∑n

k=0
1
k! sup{|f

(k)(t)| : t ∈ [0, 1]}, shows that this

is not, in general, the case for symmetric ∗-l.m.c.a.′s. Actually, the normality of
A+ is strong enough as to ensure a C∗-algebra structure under suitable conditions.
We first give a result on Pták’s function.

Theorem 2.1. Let (A, (|.|λ)λ) be a symmetric, unital and complete l.m.c.a.
which is Sym-s.b. If A+ is normal, then Pták’s function is a C∗-norm and stronger
than the topology of A.

Proof: A+ being normal, there is a family (‖.‖µ)µ of seminorms, not necessarily
submultiplicative, defining the topology of A such that ‖x‖µ ≤ ‖y‖µ for every
µ whenever x, y ∈ A+ and y − x ∈ A+. Whence, A being symmetric, ‖h‖µ ≤
3‖e‖µρ(h) for every h ∈ Sym(A) and every µ. Indeed, since Sph ⊂ R, one has
−ρ(h) ≤ h ≤ ρ(h), i.e., 0 ≤ h+ ρ(h) ≤ 2ρ(h); and one uses the normality of A+.
Since x = h + ik, with h, k ∈ Sym(A), one gets ‖x‖µ ≤ 3‖e‖µ(ρ(h) + ρ(k)), for
every x in A. This implies, by Proposition 8.8 of [4], that ‖x‖µ ≤ 3‖e‖µpA(x) for
every x in A. On the other hand, pA is a C∗-seminorm by Theorem 4.4 of [3].

�

Corollary 2.2. Let (A, (|.|λ)λ) be a Q-∗-l.m.c.a. which is unital, complete and
symmetric. If A+ is normal, then A is a C∗-algebra.

Proof: Follows from the fact that Pták’s function is continuous ([4, Corol-
lary 8.9]).

�

Example 2.3. The Q-property is essential in this corollary. Indeed, consider the
algebra l∞(N) with the usual operations, the family (|.|n)n of seminorms where
|(xp)p|n = sup{|xp| : p ≤ n} and the involution given by ((xp)p)

∗ = (xp)p.

Proposition 2.4. If in Theorem 2.1 the algebra A is commutative, then Pták’s
function pA is a Banach algebra norm.

Proof: If (xn)n is a Cauchy sequence for pA, it is also Cauchy for the topology
of A and hence converges to an element x in A. But A is the projective limit of
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Banach algebras Âλ. The involution being continuous and due to commutativity,

Âλ can be endowed with a hermitian involution by (limn πλ(an))
∗ = limn πλ(a

∗

n).

Denoting by p
Aλ

Pták’s function in Âλ, one has, for every λ, limn p
Aλ

(πλ(xn −

x)) = 0. Indeed

p
Aλ

(πλ(xn − x)) ≤ cλp̂λ (πλ(xn − x)) = cλpλ (xn − x) ,

for a given cλ > 0. But, pA(a) = supλ p
Aλ

(πλ(a)) for every a in A. Finally, we

obtain, by standard technics, that limn pA(xn − x) = 0. �

We have the following consequence.

Corollary 2.5. Let (A, (|.|λ)λ) be a commutative symmetric and Fréchet ∗-
l.m.c.a. which is Sym-s.b. If A+ is normal, then A is a C∗-algebra.

Remark 2.6. In Proposition 2.4, commutativity is used to ensure that the ex-

tended involution, from Aλ to Âλ, remains hermitian. This is the case, for
example, when we deal with any C∗-l.m.c.a. Indeed, Aλ is then complete by
Theorem 2.4 of [1].

Corollary 2.7. Let (A, (|.|λ)λ) be a unital, symmetric and barreled complete
l.m.c.a. which is Sym-s.b. If A+ is normal, then A is a C∗-algebra.

Proof: By Theorem 2.1, there is a family (‖.‖µ)µ of seminorms, not necessarily
submultiplicative, defining the topology of A and such that ‖x‖µ ≤ pA(x) for
every x and every µ. Put ‖x‖ = sup{‖x‖µ : µ}, x ∈ A. Then ‖.‖ is a norm
which is finer than the topology of A. But {x ∈ A : ‖x‖ ≤ 1} is a barrel, which
implies that (A, (|.|λ)λ) is a normed algebra. Finally, it is a C∗-algebra, since
‖x‖ ≤ pA(x) for every x ([5, Theorem 7.9]). �

As a consequence, we obtain a result of M. Fragoulopoulou.

Corollary 2.8 ([5, Corollary 7.11]). Let (A, (|.|λ)λ) be a unital and complete
l.m.c.a. The following assertions are equivalent.

(i) A is a Q-C∗-l.m.c.a.
(ii) A is a barreled C∗-l.m.c.a. which is Sym-s.b.
(iii) A is a Fréchet C∗-l.m.c.a. which is Sym-s.b.
(iv) A is a C∗-algebra.

Proof: Due to the fact that A+ is normal in any complete C∗-l.m.c.a. �

If in a hermitian Banach algebra (A, ‖.‖), there is α > 0 such that ρ(h) ≥
α‖h‖, for every h in Sym(A), then A is a C∗-algebra for an equivalent norm ([6,
Theorem 8.4]). In m-convex algebras, we have the following results.
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Theorem 2.9. Let (A, (|.|λ)λ) be a symmetric and complete l.m.c.a. which is
Sym-s.b. If, for every λ, there is αλ > 0 such that ρ(h) ≥ αλ|h|λ for every h ∈
Sym(A), then Pták’s function is a C∗-norm which is stronger than the topology
of A.

Theorem 2.10. Let (A, (|.|λ)λ) be a symmetric and complete ∗-l.m.c.a. which
is Sym-s.b. The following assertions are equivalent.

(i) A is a C∗-algebra.
(ii) A is a Q-algebra and, for every λ, there is αλ > 0 such that ρ(h) ≥ αλ|h|λ
for every h ∈ Sym(A).

(iii) A is barreled and, for every λ, there is αλ > 0 such that ρ(h) ≥ αλ|h|λ
for every h ∈ Sym(A).

3. Normality of A+ and commutative C∗-m-convex structure

In a complete C∗-l.m.c.a., the family (|.|λ)λ of seminorms defining the topology
satisfy |y|λ ≥ |x|λ, for x, y ∈ A+ such that y − x ∈ A+. This fact suggests the
following definition.

Definition 3.1. Let (A, (|.|λ)λ) be an l.m.c.a., C a convex cone in A and (‖.‖λ)λ
a family of seminorms on A. The cone C is said to be normal for the family (‖.‖λ)λ
if, for every λ, there is βλ > 0 such that ‖y‖λ ≥ βλ‖x‖λ whenever x, y ∈ C and
y − x ∈ C.

Proposition 3.2. Let (A, (|.|λ)λ) be a commutative, unital complete and sym-
metric ∗-l.m.c.a. If A+ is normal for (|.|λ)λ, then A is a C∗-l.m.c.a. for an
equivalent family of seminorms.

Proof: Consider the Banach algebras Âλ of which A is the projective limit. We

show that every Âλ is a C∗-algebra for an equivalent norm. First, notice that every

Âλ is hermitian. Indeed, for h ∈ Sym(Âλ), there is a sequence (hn)n ⊂ Sym(A)

such that h = limn πλ(hn); hence Sph ⊂ R for Âλ is commutative. Now, one

shows that (Âλ)+ = πλ(A+). Finally, (Âλ)+ is normal, since A+ is so. We
conclude by Corollary 2.2. �

Let (A, (|.|λ)λ) be a commutative, unital and complete l.m.c.a., K a convex
cone which is stable by product and H = K − K the real sub-algebra spanned
by K. We consider the following conditions which are satisfied by the cone of
positive elements in a C∗-l.m.c.a.

(P1) A = H + iH .

(P2) K is normal for (|.|λ)λ.

(P3) (e+ u)−1 ∈ K, for every u ∈ K.

We show that these conditions characterize the cone of positive elements in a
C∗-l.m.c.a. Let us begin with the Banach case.
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Proposition 3.3. Let (A, ‖.‖) be a commutative, unital, Banach algebra and K
a convex cone which is stable by product. If conditions (P1), (P2) and (P3) are
fulfilled, then A is a C∗-algebra for an equivalent norm.

Proof: We may suppose K closed for the closureK of K also satisfies (P1), (P2)
and (P3). By Theorem 2, p. 260, of [2], one has

(1) K = H ∩ Splsa(A); where Splsa(A) = {x ∈ A : Spx ⊂ R+},

(2) Sph ⊂ R, for every h ∈ H .

Now K, being normal, is salient and so H ∩ iH = {0}. Then, the map (h+ ik)∗ =
h − ik defines, on A, a hermitian involution. The cone A+, of positive elements,
for this involution, is exactly K. The conclusion follows from Corollary 2.2. �

This result extends to m-convex algebras as follows.

Proposition 3.4. Let (A, (|.|λ)λ) be a commutative, unital; complete l.m.c.a.
and K a convex cone which is stable by product. If conditions (P1), (P2) and
(P3) are fulfilled, then A is a C∗-l.m.c.a. for an equivalent family of seminorms.

Proof: For every λ, the closed convex cone Kλ = πλ(K) is stable by product

and satisfies (P2) and (P3). The real subalgebra Hλ = Kλ − Kλ is closed in Âλ

([2, Theorem 2, p. 260]). On the other hand, one shows that, for every λ, there is
βλ > 0 such that |h|λ ≤ βλ|h+ ik|λ, for h, k ∈ Aλ. So the subalgebra Hλ + iHλ

is closed in Âλ and hence Âλ = Hλ + iHλ. We conclude by Proposition 3.3. �

Remark 3.5. Without condition (P1), one obtains that lim
←−

(Hλ + iHλ) is a C∗-

l.m.c.a., containing H+ iH and contained in A. An application of this fact is the
following.

Let (A, (|.|λ)λ) be a commutative, unitary and complete l.m.c.a. The set P =
{x ∈ A : Spx ⊂ R+} is a convex cone which is stable by product. Put H = P −P
the real subalgebra spanned by P .

Proposition 3.6. If the cone P is normal for (|.|λ)λ, then the complex algebra
H + iH is a C∗-l.m.c.a.

Proof: It is sufficient to show that H + iH is closed in the C∗-l.m.c.a. B =
lim
←−

(Hλ+ iHλ). First, H is closed, since H = {x ∈ A : Spx ⊂ R}. Let (hn+ ikn)n

be a sequence, in H + iH , converging to x in B. Since, for every λ, Hλ+ iHλ is a
C∗-algebra for an equivalent norm ‖.‖λ, there is αλ > 0 such that ‖hλ + ikλ‖λ ≥
αλ‖hλ‖λ, for hλ, kλ ∈ Hλ. So the sequences (hn)n and (kn)n are Cauchy, in A,
and hence converge, to h and k in H , respectively. Finally x = h+ ik. �
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