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A note on condensations of Cp(X) onto compacta

A.V. Arhangel’skii, O.I. Pavlov

Abstract. A condensation is a one-to-one continuous mapping onto. It is shown that the
space Cp(X) of real-valued continuous functions on X in the topology of pointwise con-
vergence very often cannot be condensed onto a compact Hausdorff space. In particular,
this is so for any non-metrizable Eberlein compactum X (Theorem 19). However, there
exists a non-metrizable compactum X such that Cp(X) condenses onto a metrizable
compactum (Theorem 10). Several curious open problems are formulated.

Keywords: condensation, compactum, network, Lindelöf space, topology of pointwise
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All spaces considered in this paper are assumed to be Tychonoff. A conden-
sation is a continuous one-to-one mapping onto. For a space X , Cp(X) denotes
the space of continuous real-valued functions on X in the topology of pointwise
convergence [2]. Obviously, Cp(X) is compact only if X is empty. However, it is
much less clear when the topology of Cp(X) contains a weaker compact topology.
Some concrete questions in this direction were formulated in [3]. Note, that S. Ba-
nach was one of the first to consider a question of this kind: he asked whether
every separable Banach space condenses onto a compact space [6]. Recently it was
shown in [4] that, for every metrizable compactum X (even for every σ-compact
metrizable space), Cp(X) condenses onto a metrizable compactum. On the other
hand, W. Marciszewski [10] established the consistency of the following statement:
there exists a subspace X of the space of real numbers such that Cp(X) cannot
be condensed onto a σ-compact space.
Below we present examples of compacta X for which Cp(X) cannot be con-

densed onto a compactum. We also show that there is a non-metrizable compact
space X such that Cp(X) condenses onto a metrizable compactum. Several suffi-
cient conditions that guarantee that Cp(X) does not condense onto a compactum
are provided.
Our notation and terminology are as in [2], [5], and [9]. In particular, for a

space X , we denote by nw(X) the networkweight of X , by w(X) the weight of
X , by d(X) the density of X , by ψ(X) the pseudocharacter of X . A space X is
said to be monolithic [2], if for every subset A of X we have nw(A) ≤ |A|. If A is
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a subspace of a space X , then Cp,A(X) denotes the subspace of Cp(A), consisting
of the restrictions to A of continuous real-valued functions on X . A space X is
said to be of point-countable type if every point of X is contained in a compact
subspace of X with a countable base of neighborhoods.
A space X is called a Lindelöf p-space if there exists a perfect mapping of X

onto a separable metrizable space (for more details on p-spaces, see [5]). A con-
tinuous image of a Lindelöf p-space is called a Lindelöf Σ-space.

Theorem 1. Let X be a monolithic Lindelöf Σ-space. Suppose also that Cp(X)
condenses onto a compact space F . Then: (1) nw(X) < 2ω; (2) |Cp(X)| ≤ 2

ω;

(3) |F | ≤ 2ω; and (4) w(F ) < 2ω.

Lemma 2. Let X be a monolithic Lindelöf Σ-space. Then, for each A ⊂ X such

that |A| ≤ 2ω, we have |Cp,A(X)| ≤ 2
ω.

Proof: Put Y = A. Then Y is a closed subspace of X and the networkweight
of Y is ≤ 2ω, since X is monolithic. Therefore, nw(Cp(Y )) = nw(Y ) ≤ 2ω

[2, Theorem 1.1.3]. The space Y n is Lindelöf, for every n ∈ ω, since X and
Y are Lindelöf Σ-spaces. It follows that the tightness of Cp(Y ) is countable [2,
Theorem 2.1.1]. From d(Cp(Y )) ≤ nw(Cp(Y )) ≤ 2

ω it follows that we can fix

a subset B of Cp(Y ) such that B = Cp(Y ) and |B| ≤ 2ω. Now t(Cp(Y )) ≤ ω

implies that Cp(Y ) =
⋃
{P : P ⊂ B, |P | ≤ ω}. However, Cp(Y ) is monolithic,

since Y is a Lindelöf Σ-space [2, Theorems 2.6.21 and 2.6.8]. Therefore, for each
countable subset P of Cp(Y ), P is a space with a countable network. Hence,

|P | ≤ 2ω, for every countable P ⊂ B. It follows that |Cp(Y )| ≤ 2
ω. Clearly,

|Cp,A(X)| ≤ |Cp(Y )| ≤ 2
ω. �

Now we need the next result of M.G. Tkačenko [13, Theorem 2]:

Theorem 3. Let τ be a cardinal number and S a dense subspace of a product

Z = Π{Xα : α ∈ A}, where each Xα has a countable network. Suppose also that,

for every B ⊂ A such that |B| ≤ 2τ , the cardinality of the projection πB(S) of S
into the subproduct ZB = Π{Xα : α ∈ B} does not exceed 2τ . Then, for every
compact continuous image F of the space S, the weight of F is smaller than 2τ .

Proof of Theorem 1: Lemma 2 shows that Cp(X) satisfies the restrictions
on S in Theorem 3 (with ω in the role of τ). It follows that w(F ) < 2ω. Since
Cp(X) condenses onto F , we have ψ(Cp(X)) ≤ w(F ) < 2ω. Therefore, d(X) =
ψ(Cp(X)) < 2

ω (see [2]). Since X is monolithic, nw(X) = d(X) < 2ω [2]. Thus,
we have established (1) and (4). Clearly, (3) follows from (2).
Let us prove (2). We have d(Cp(X)) ≤ nw(Cp(X)) = nw(X) ≤ 2ω [2, Theo-

rems 1.1.3 and 1.1.4]. Fix a dense subset M in Cp(X) such that |M | ≤ 2ω. Since

X is a Lindelöf Σ-space, we have Cp(X) = ∪{P : P ⊂ M, |P | ≤ ω}, where each

P is a space with a countable network and has, therefore, cardinality not greater
than 2ω. Hence, |Cp(X)| ≤ 2

ω. �
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Corollary 4. Assume that 2ω < 2ω1 . Then every monolithic Lindelöf Σ-space
X such that Cp(X) condenses onto a compact space F has a countable network
(and F has a countable network as well ).

Proof: Indeed, |F | ≤ 2ω, by Theorem 1. Since 2ω < 2ω1 , it follows, by a well
known theorem of E. Čech and B. Posṕı̌sil (see [9]) that the space F satisfies
the first axiom of countability at least at one point. Hence, ψ(Cp(X)) ≤ ω.
This implies that X is separable (see [2, Theorem 1.1.4]). Therefore, since X
is monolithic, the space X has a countable network. Hence Cp(X) has a count-
able network [2, Theorem 1.1.3], which implies that the space F has a countable
network, as a continuous image of Cp(X). �

Corollary 5. Let X be a monolithic Lindelöf p-space such that Cp(X) condenses
onto a compact space. Then w(X) < 2ω.

Proof: By Theorem 1, nw(X) < 2ω. It remains to note that w(X) = nw(X),
since X is a p-space [5]. �

Corollary 6. If X is a monolithic compact space such that d(X) ≥ 2ω, then
Cp(X) cannot be condensed onto a compact space.

Proof: This follows from Theorem 1, since d(X) = nw(X). �

The assumption, that the space X in Theorem 1 and Corollary 4 is monolithic,
cannot be dropped. The next example shows it.

Example 7. Let X be the “two-arrows” space, that is, X = [0, 1]× {0, 1} with
the topology generated by the lexicographic order. The space X is hereditar-
ily separable and first countable. Fix any countable dense subset A of X , and
consider the space Cp,A(X) of all continuous real-valued functions on X in the
topology of pointwise convergence on A. The space Cp,A(X) is an Fσδ-subset

of the complete separable metrizable space R
A (see Lemma 5.7 in [7]). On the

other hand, Cp,A(X) is not σ-compact, since A is a non-discrete countable space.
Indeed, the next result was established in [2] (Theorem 1.2.2): if Y is dense in X ,
and Cp,Y (X) is σ-compact, then X is pseudocompact, and Y is a P -space. Recall,
that a P -space is a space in which every Gδ-subset is open. Clearly, every count-
able P -space is discrete. E.G. Pytkeev showed that every non-σ-compact Borel
subset of a separable complete metric space can be condensed onto a (metrizable)
compact space [12]. Therefore, Cp,A(X) condenses onto a metrizable compact
space F . Since Cp(X) obviously condenses onto Cp,A(X), it follows that Cp(X)
condenses onto the metrizable compactum F . Therefore, X is a non-metrizable
compactum for which Cp(X) condenses onto a metrizable compactum. Notice,
that X is a Rosenthal compactum (see [8]).

Problem 8. When does a separable compact space X have the following prop-
erty: for every countable dense subspace A of X , the space Cp,A(X) condenses
onto a (metrizable) compactum?
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Remark 9. W. Marciszewski has informed me that he has an example of a
perfectly normal (hence, first countable) hereditarily separable compact space X
with a countable dense subspace A such that Cp,A(X) cannot be condensed onto
a compact space.

Theorem 10. The space Cp(D
c) (where c = 2ω) condenses onto a metrizable

compact space.

Proof: LetM be the Cantor set, with the usual topology. ThenDM is a compact
subspace of R

M , and the set A of continuous mappings of M into the discrete
spaceD = {0, 1} is a countable dense subset ofDM . Theorem 2.3 from [11] implies

that Cp,A(D
M ) is an Fσδ-subset of R

A. On the other hand, Cp,A(D
M ) is not σ-

compact, by Theorem 1.2.2 from [2]. Now, a result of Pytkeev in [12] implies that

Cp,A(D
M ) condenses onto a metrizable compact space. Since Cp(D

M ) condenses

onto Cp,A(D
M ), and Dc is, obviously, homeomorphic to DM , we are done. �

Problem 11. Is it true that Cp(D
ω1) condenses onto a (metrizable) compact

space? onto a σ-compact space?

Of course, under CH the answer is “yes”, by Theorem 10. However, curiously
enough, the proof of Theorem 10 cannot be adapted to provide an answer to
Problem 11 in ZFC. This can be seen from the following statement:

Theorem 12. The continuum hypothesis CH is equivalent to the following con-

dition:

(e) there exists a countable dense subset A in Dω1 such that Cp,A(D
ω1) is an

Fσδ-subset of R
A.

Proof: Indeed, CH implies condition (e), by Theorem 10. Assume now the
negation of CH, and let us show that the negation of (e) holds. Assume the
contrary. Then from Corollary 2.4 in [7] it follows that either Dω1 is a Rosenthal
compactum or else Dω1 contains a topological copy of βω. However, the second
alternative is impossible since the weight of βω is c = 2ω, and the weight of Dω1

is ω1 and ω1 < 2
ω, by the assumption. On the other hand, Dω1 is not a Rosenthal

compactum, since, for example, the space Dω1 is not Fréchet-Urysohn (see [8]).
Thus, the first alternative is also impossible. This contradiction completes the
proof. �

In connection with the above argument, notice, that Dc does contain a topo-
logical copy of βω and that in the proof of Theorem 10 we showed that there exists
a countable dense subset A in Dc such that Cp,A(D

c) is an Fσδ-subset of R
A.

Example 13. Let X be the Σ-product subspace of the product Dc (over zero-
point). Then X is a countably compact monolithic Fréchet-Urysohn topological
group, and Cp(X) is Lindelöf (see [2]). Let us show that Cp(X) does not condense
onto a space of point-countable type (in particular, Cp(X) does not condense onto
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a compact space or onto a Čech complete space). Compare this statement with
Theorem 10 and Problem 11.
Indeed, assume that Cp(X) condenses onto a space F of point countable type.

Then from Corollary 1 in [14] it follows that F is first countable at some point.
Hence, the pseudocharacter of Cp(X) is countable. It follows that X is separa-
ble [2], a contradiction.
Notice that Cp(D

c) condenses onto Cp(X) (by the natural restriction map-
ping).

The case of monolithic spaces covers the important cases of Eberlein compacta
and of Corson compacta [2]. However, we can formulate a very general condition
for non-condensability of Cp(X) onto a compactum in the following terms, not
using explicitly the notion of monolithicity. The first step in this direction is the
following statement.

Proposition 14. Suppose X is a space such that 2d(X) > |Cp(X)|. Then Cp(X)
cannot be condensed onto a compact space.

Proof: Suppose that Cp(X) condenses onto a compactum F . Clearly, F is
dense in itself. Let τ be the smallest cardinal number such that the character of
F at some point z ∈ F does not exceed τ . By a theorem of Čech and Posṕıǐsil,

|F | ≥ 2τ [9]. From 2d(X) > |Cp(X)| = |F | ≥ 2τ it follows that τ < d(X).
However, d(X) = ψ(Cp(X)) ≤ τ (see [2]). This contradiction completes the
proof. �

Theorem 15. Suppose X is a Lindelöf Σ-space such that 2d(X) > (nw(X))ω .
Then Cp(X) cannot be condensed onto a compact space.

Proof: The space Cp(X) is monolithic, since X is a Lindelöf Σ-space. For the
same reason, the tightness of Cp(X) is countable [2]. It follows that |Cp(X)| ≤

(nw(Cp(X)))
ω . Since nw(X) = nw(Cp(X)) (see [2]), we conclude that 2

d(X) >

|Cp(X)|. It remains to apply Proposition 14. �

In connection with Example 7, note the next corollary from Proposition 14.

Corollary 16. Assume that 2ω < 2ω1 , and let X be a space such that Cp(X)
condenses onto a compact space. Then X is separable if and only if |Cp(X)| ≤ 2

ω.

The next statement also directly follows from Proposition 14.

Corollary 17. If X is a space such that d(X) = |Cp(X)|, then Cp(X) cannot
be condensed onto a compact space.

Example 18. Let X be a well ordered space of cardinality 2τ , with the topology
generated by the well ordering. Then Cp(X) cannot be condensed onto a compact
space. Indeed, it is easy to see that, under the assumptions, d(X) = |Cp(X)|.
Therefore, Corollary 17 is applicable.
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One more restriction on the existence of condensations of Cp(X) onto compacta
involves the Lindelöf degree of Cp(X).

Theorem 19. Suppose X is a space such that Xn is Lindelöf, for every n ∈ ω,

and Cp(X) is also Lindelöf. Suppose further that Cp(X) condenses onto a space
Y of point countable type (for example, onto a compact space Y ). Then Y has a
countable network and X is separable.

Proof: Let us show that the tightness of Y is countable. Since Y is a space
of point countable type, it suffices to verify that the tightness of each compact
subspace F of Y is countable (see [5]).
Assume the contrary. Then there exists an uncountable free sequence in F ,

which obviously implies that there exists an uncountable free sequence in Cp(X).
However, this is impossible, since Cp(X) is a Lindelöf space of countable tightness.
Hence, the tightness of Y is countable. Now it follows from Theorem 2.20 in [15]
that the space Y has a countable network. Hence, ψ(Cp(X)) ≤ ψ(Y ) ≤ nw(Y ) ≤
ω, which implies that X is separable. �

Corollary 20. Suppose X is a compact space such that Cp(X) is Lindelöf. Sup-
pose further that Cp(X) condenses onto a space Y of point countable type (for
example, onto a compact space Y ). Then Y has a countable network and X is
separable.

Corollary 21. Suppose that X is a monolithic compactum such that Cp(X)
is Lindelöf. Then Cp(X) condenses onto a compact space if and only if X is
metrizable.

Proof: IfX is a metrizable compactum, then Cp(X) condenses onto a metrizable
compactum [4]. Assume now that Cp(X) condenses onto a metrizable compactum.
Then, by Theorem 19, X is separable. Since X is monolithic and compact, it
follows that X is metrizable. �

A compact space is said to be a Corson compactum if it is homeomorphic to a
subspace of a Σ-product of separable metrizable spaces (see [2]).

Corollary 22. If X is a non-metrizable Corson compactum, then Cp(X) cannot
be condensed onto a compact space.

Proof: Indeed, this follows from Corollary 21, since every Corson compactum
X is monolithic and Cp(X) is Lindelöf (see [2]). �

Example 23. Let Aτ be the Alexandroff one-point compactification of an un-
countable discrete space (of the cardinality τ). Then Cp(X) cannot be condensed
onto a compact space. Indeed, Aτ is a Corson compactum (even an Eberlein
compactum) [2]. Therefore, Corollary 22 is applicable.

Below we denote by (MA + ¬CH) the combination of Martin’s Axiom with
the negation of Continuum Hypothesis.
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Theorem 24. Assume (MA + ¬CH), and suppose that X is a compact space
such that Cp(X) is Lindelöf. Suppose also that Cp(X) condenses onto a space of
point countable type (for example, onto a compact space). Then X is metrizable.

Proof: E.A. Reznichenko showed (see [2]) that, under (MA + ¬CH), every
separable compact space X with Lindelöf Cp(X) is metrizable. Thus, it remains
to apply Corollary 20. �

Problem 25. Can one drop the assumption that (MA+¬CH) in Theorem 24?

Remark 26. Notice that the restrictions on X in Theorem 19 can be replaced by
a more technical assumption that there are no uncountable free sequences in X .

Problem 27. Can the space Cp(βω) (where βω is the Stone-Čech compactifica-
tion of the discrete space ω) be condensed onto a compact space?

Note that Cp(βω) naturally condenses onto the σ-compact space Z of all
bounded real-valued functions on ω (in the topology of pointwise convergence).
However, Z cannot be condensed onto a compact space, since Z is the union of
a countable family of nowhere dense compacta (the Baire category theorem for
compacta works). Problem 27 is obviously related to the following question.

Problem 28. Fix ξ ∈ βω, and take the subspace ω ∪ {ξ} of βω. Consider

the space Cb
p(ω ∪ {ξ}) of bounded continuous real-valued functions on the space

ω ∪ {ξ}, in the topology of pointwise convergence. Can the space Cb
p(ω ∪ {ξ}) be

condensed onto a compact space?

Note, that the space Cb
p(ω ∪ {ξ}) in Problem 28 is not a Borel subset of the

space R
ω∪{ξ}, this was shown in [7]. Thus, to solve affirmatively Problem 28 we

cannot just apply Pytkeev’s results from [12]. Note also, that Cb
p(ω ∪ {ξ}) can be

condensed onto a σ-compact space. It would be interesting to find out which of
the results in this article on the non-existence of a condensation of certain spaces
onto compacta can be strengthened to a conclusion that, for the same spaces,
there is no condensation onto a σ-compact space. For example, we have the next
question:

Problem 29. Can the space Cp(Aτ ), where Aτ is the Alexandroff one-point
compactification of an uncountable discrete space of cardinality τ , be condensed
onto a σ-compact space? Can the space Cp(Aω1) be condensed onto a σ-compact
space?

Problem 30. Suppose thatX is a non-metrizable Corson (Eberlein) compactum.
Is then true that Cp(X) cannot be condensed onto a σ-compact space?

See, in connection with Problem 30, Corollaries 22 and 21.
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