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Best approximations and porous sets

Simeon Reich, Alexander J. Zaslavski

Abstract. Let D be a nonempty compact subset of a Banach space X and denote by
S(X) the family of all nonempty bounded closed convex subsets of X. We endow S(X)
with the Hausdorff metric and show that there exists a set F ⊂ S(X) such that its
complement S(X) \ F is σ-porous and such that for each A ∈ F and each x̃ ∈ D, the
set of solutions of the best approximation problem ‖x̃ − z‖ → min, z ∈ A, is nonempty
and compact, and each minimizing sequence has a convergent subsequence.

Keywords: Banach space, complete metric space, generic property, Hausdorff metric,
nearest point, porous set

Classification: 41A50, 41A52, 41A65, 54E35, 54E50, 54E52

Given a nonempty closed convex subset A of a Banach space (X, ‖ · ‖) and a
point x ∈ X , we consider the minimization problem

(P) min{‖x − z‖ : z ∈ A}.

It is well known that if X is reflexive, then problem (P) always has at least one
solution. This solution is unique when X is strictly convex. In this connection we
recall that the minimization problem (P) is said to be well posed if it has a unique
solution, say a0, and every minimizing sequence of (P) converges to a0. It is said
to be well posed in the generalized sense of [6] if the set of minimizers is nonempty
and compact, and each minimizing sequence has a convergent subsequence.
WhenX is not reflexive, several generic existence results for best approximation

problem are still available [3], [4], [9]. In these papers the authors considered a
framework the main feature of which is that the set A in problem (P) can vary.
For example, in their recent paper [2], De Blasi, Georgiev and Myjak fix a point
x ∈ X and show, inter alia, that for most bounded closed convex subsets of X ,
problem (P) is well posed.
In order to formulate their result more precisely, we first set, for each x ∈ X

and each A ⊂ X ,
ρ(x, A) = inf{‖x − y‖ : y ∈ A}.

We denote by S(X) the family of all nonempty bounded closed convex subsets
of X . For each A, B ∈ S(X), define the Hausdorff distance between A and B by

H(A, B) = max{sup{ρ(x, B) : x ∈ A}, sup{ρ(y, A) : y ∈ B}}.
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It is not difficult to see that H is a metric on S(X) and that the metric space
(S(X), H) is complete.
We also need to recall the notion of porosity [1], [2], [5], [8], [9], [12]–[14].
Let (Y, d) be a complete metric space. We denote by B(y, r) the closed ball of

center y ∈ Y and radius r > 0. A subset E ⊂ Y is called porous (with respect
to the metric d) if there exist α ∈ (0, 1) and r0 > 0 such that for each r ∈ (0, r0]
and each y ∈ Y , there exists z ∈ Y for which

B(z, αr) ⊂ B(y, r) \ E.

A subset of the space Y is called σ-porous (with respect to d) if it is a countable
union of porous subsets of Y .

Remark 1. It is known that in the above definition of porosity, the point y can
be assumed to belong to E.

Other notions of porosity have been used in the literature [1], [7], [11]–[13]. We
use the rather strong notion which appears, for example, in [2], [5], [8], [9], [14].
Fixing x ∈ X and denoting by F the set of all elements A ∈ S(X) for which the

minimization problem (P) is well posed, De Blasi, Georgiev and Myjak [2] have
proved that the complement S(X) \F is σ-porous in S(X). More applications of
porosity concepts to best approximation theory can be found in [5], [7], [10], [11]
and in the references mentioned there.
In the present paper, instead of x ∈ X we fix a set D ⊂ X . If D is countable,

then the De Blasi-Georgiev-Myjak result implies that the collection of all sets
A ∈ S(X) for which problem (P) is well posed for any x ∈ D, has a σ-porous
complement. When the set D is uncountable, the problem is more difficult and
less understood. Nevertheless, we are able to prove a partial positive result when
D is compact in the norm topology. More precisely, we establish the existence of
a set F ⊂ S(X) which has a σ-porous complement such that for any A ∈ F and
any x ∈ D, problem (P) is well posed in the generalized sense of [6].
We are now ready to state and prove our result.

Theorem. Given a nonempty compact subset D of a Banach space (X, ‖ · ‖),
there exists a set F ⊂ S(X) such that its complement S(X) \ F is σ-porous in
(S(X), H) and such that for each A ∈ F and each x̃ ∈ D, the following property
holds:

(C) The set {y ∈ A : ‖x̃ − y‖ = ρ(x̃, A)} is nonempty and compact and each
sequence {yi}

∞
i=1 ⊂ A which satisfies limi→∞ ‖x̃− yi‖ = ρ(x̃, A) has a convergent

subsequence.

Proof: Let (X, ‖·‖) be a Banach space. Denote by co(A) and clco(A) the convex
hull and the closed convex hull of A, respectively.
For each A ⊂ X , set

(1) rad(A) = sup{‖x‖ : x ∈ A}.
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Let D be a nonempty compact subset of X . For each natural number n, denote
by Fn the set of all A ∈ S(X) which have the following property:

(C1) There exist a nonempty compact set E ⊂ A and a positive number δ such
that for each u ∈ D and each z ∈ A satisfying

(2) ‖u − z‖ ≤ ρ(u, A) + δ,

the inequality

(3) ρ(z, E) ≤ 1/n

is valid.
Set

(4) F =

∞⋂

n=1

Fn.

Let A ∈ F . By (4) and property (C1), for each natural number n, there exist
a nonempty finite set En ⊂ A and a positive number δn such that the following
property holds:

(C2) For each u ∈ D and each z ∈ A satisfying ‖u − z‖ ≤ ρ(u, A) + δn, the
inequality ρ(z, En) < 2/n holds.

Let u ∈ D. Consider a sequence {xi}
∞
i=1 ⊂ A such that limi→∞ ‖u − xi‖ =

ρ(u, A). By (C2), for each integer n ≥ 1, there exists a subsequence {x
(n)
i }∞i=1 of

{xi}
∞
i=1 such that the following two properties hold:

{x
(n+1)
i }∞i=1 is a subsequence of {x

(n)
i }∞i=1 for all integers n ≥ 1;

for any integer n ≥ 1, ‖x
(n)
j − x

(n)
k

‖ < 4/n for all integers j, k ≥ 1.

These properties imply that there exists a subsequence {x̄i}
∞
i=1 of {xi}

∞
i=1

which is a Cauchy sequence. Therefore {x̄i}
∞
i=1 converges to a point x̄ ∈ A which

satisfies
‖u − x̄‖ = lim

i→∞
‖u − xi‖ = ρ(u, A).

In other words, for each A ∈ F and each x̃ ∈ D, property (C) holds. In order
to complete the proof of our theorem, it is sufficient to show that S(X) \ F is
σ-porous in (S(X), H). Since

S(X) \ F =

∞⋃

n=1

S(X) \ Fn,

it suffices to show that S(X) \ Fn is σ-porous in (S(X), H) for each natural
number n.
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To this end, let n be a natural number. For each natural number m, set

(5) Ωm = {A ∈ S(X) : rad(A) ≤ m}.

Since

S(X) \ Fn =

∞⋃

m=1

Ωm \ Fn,

it is sufficient to show that for each natural number m, the set Ωm \Fn is porous
in (S(X), H).
Let m be a natural number. Choose a positive number α satisfying

(6) α < (4 · 48n(2m+ 1))−1.

Let

(7) A ∈ Ωm \ Fn and r ∈ (0, 1].

SinceD is compact, there are a natural number q and a finite subset {ξ1, . . . , ξq}
of D such that

(8) D ⊂

q⋃

i=1

{z ∈ X : ‖z − ξi‖ < αr}.

For each i ∈ {1, . . . , q}, we pick ξ̃i ∈ X satisfying

(9) ρ(ξ̃i, A) ≤ r/8, i = 1, . . . , q,

in the following way:
Let i ∈ {1, . . . , q}. There are two cases: 1) ρ(ξi, A) ≤ r/8; 2) ρ(ξi, A) > r/8.

In the first case we set

(10) ξ̃i = ξi.

In the second case, we first choose xi ∈ A for which

(11) ‖ξi − xi‖ ≤ ρ(ξi, A) + (64n(2m+ 1))
−1r,

and then choose

(12) ξ̃i ∈ {γxi + (1 − γ)ξi : γ ∈ (0, 1)}

such that

(13) ‖ξ̃i − xi‖ = r/8 and ‖ξ̃i − ξi‖ = ‖xi − ξi‖ − r/8.
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If the second case holds, then by (11) and (13),

(14) ‖ξi − ξ̃i‖ = ‖xi − ξi‖ − r/8 ≤ −r/8 + ρ(ξi, A) + r(64n(2m+ 1))−1.

Clearly, (9) holds in both cases.
Let

(15) Ã := clco(A ∪ {ξ̃1, . . . , ξ̃q})

and

(16) E := co{ξ̃1, . . . , ξ̃q}.

By (9) and (15),

(17) H(A, Ã) ≤ r/8.

We will now show that the following property holds:

(C3) If u ∈ D, z ∈ Ã, and ‖u − z‖ ≤ ρ(u, Ã) + 4αr, then ρ(z, E) ≤ n−1.

Indeed, assume that

(18) u ∈ D, z ∈ Ã, and ‖u − z‖ ≤ ρ(u, Ã) + 4αr.

We claim that ρ(z, E) ≤ n−1. Assume the contrary. Then

(19) ρ(z, E) > n−1.

By (8) and (18), there exists j ∈ {1, . . . , q} such that

(20) ‖u − ξj‖ < αr.

The relations (20) and (18) imply that

‖ξj − z‖ ≤ ‖u − z‖+ ‖ξj − u‖ < αr + ρ(u, Ã) + 4αr

≤ 5αr + ρ(ξj , Ã) + ‖u − ξj‖ < 6αr + ρ(ξj , Ã).

Thus

(21) ‖ξj − z‖ < 6αr + ρ(ξj , Ã).

If ρ(ξj , A) ≤ r/8, then by the definition of ξ̃j (see (10)), ξj = ξ̃j ; now by (21), the

inclusion ξ̃j ∈ Ã (see (15)), and (6),

‖ξj − z‖ < 6αr + ρ(ξj , Ã) = 6αr < n−1,
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and in view of (16),

ρ(z, E) ≤ ‖z − ξj‖ < n−1,

a contradiction (see (19)). Therefore we have

(22) ρ(ξj , A) > r/8.

Since z ∈ Ã, it follows from (15) that there exists a sequence

(23) {zi}
∞
i=1 ⊂ co(A ∪ {ξ̃1, . . . , ξ̃q})

such that

(24) ‖z − zi‖ → 0 as i → ∞.

The relations (23), (16) and the convexity of A imply that for each natural num-
ber i, there exist

(25) λi ∈ [0, 1], zi1 ∈ A, and zi2 ∈ E

such that

(26) zi = λizi1 + (1− λi)zi2.

It follows from (25), (19), (26), (7), (5), (16), (1) and (9) that for each natural
number i,

n−1 < ‖z − zi2‖ ≤ ‖z − zi‖+ ‖zi − zi2‖ = ‖z − zi‖+ λi‖zi1 − zi2‖

≤ ‖z − zi‖+ λi(‖zi1‖+ ‖zi2‖)

≤ ‖z − zi‖+ λi(2m+ 1),

and by (24),

n−1 ≤ lim inf
i→∞

(‖z − zi‖+ λi(2m+ 1)) = (2m+ 1) lim inf
i→∞

λi.

Thus

(27) lim inf
i→∞

λi ≥ ((2m+ 1)n)
−1.

Let ∆ be any positive number. By (25), (16) and (9), for each natural number i,
there exists z̃i2 ∈ X such that

(28) z̃i2 ∈ A and ‖zi2 − z̃i2‖ ≤ r/8 + ∆.
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It follows from (25), (26) and (28) that for each natural number i,

λizi1 + (1− λi)z̃i2 ∈ A

and

ρ(ξj , A) ≤ ‖ξj − (λizi1 + (1− λi)z̃i2)‖

≤ ‖ξj − (λizi1 + (1− λi)zi2)‖ + ‖(1− λi)(zi2 − z̃i2)‖

= ‖ξj − zi‖+ (1− λi)‖zi2 − z̃i2‖ ≤ ‖ξj − zi‖+ (1− λi)(r/8 + ∆).

By these relations, (24) and (27),

(29) ρ(ξj , A) ≤ lim inf
i→∞

(‖ξj − zi‖+ (1− λi)(r/8 + ∆)) = ‖ξj − z‖

+ lim inf
i→∞

(1− λi)(r/8 + ∆) ≤ ‖ξj − z‖+ (r/8 + ∆)(1− ((2m+ 1)n)−1).

By (29), (21), (15), (22), the definition of ξ̃j (see (12), (13)) and (14),

ρ(ξj , A) ≤ ‖ξj − z‖+ (8−1r +∆)(1− ((2m+ 1)n)−1)

< (8−1r +∆)(1− ((2m+ 1)n)−1) + 6αr + ρ(ξj , Ã)

≤ (8−1r +∆)(1− ((2m+ 1)n)−1) + 6αr + ‖ξj − ξ̃j‖

≤ (8−1r +∆)(1− ((2m+ 1)n)−1)

+ 6αr − r/8 + ρ(ξj , A) + r((2m + 1)64n)−1.

Since ∆ is an arbitrary positive number, we conclude that

0 ≤ (1 − ((2m+ 1)n)−1) + 48α − 1 + ((2m+ 1)8n)−1

= 48α − ((2m+ 1)n)−1 + ((2m+ 1)8n)−1 ≤ 48α − ((2m+ 1)2n)−1,

a contradiction (see (6)). The contradiction we have reached proves that ρ(z, E) ≤
n−1, as claimed. Thus property (C3) holds true.
Now assume that

(30) B ∈ S(X), H(B, Ã) ≤ αr,

and

(31) u ∈ D, z ∈ B, ‖u − z‖ ≤ ρ(u, B) + αr.

By (30) and (31),

(32) ρ(u, B) ≤ ρ(u, Ã) +H(B, Ã) ≤ ρ(u, Ã) + αr
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and there is z1 ∈ X such that

(33) z1 ∈ Ã and ‖z1 − z‖ ≤ 2αr.

The relations (31), (33) and (32) imply that

‖u − z1‖ ≤ ‖u − z‖+ ‖z − z1‖ ≤ ρ(u, B) + αr + 2αr ≤ ρ(u, Ã) + 4αr.

Thus

(34) ‖u − z1‖ ≤ ρ(u, Ã) + 4αr.

It now follows from (31), (33), (34) and property (C3) that ρ(z, E) ≤ n−1. Hence
B ∈ Fn. The inequalities (30), (17) and (6) imply that

H(A, B) ≤ H(B, Ã) +H(Ã, A) ≤ αr + r/8 ≤ r.

In other words, we have shown that each B satisfying (30) belongs to Fn and
satisfies H(A, B) ≤ r. Therefore

{B ∈ S(X) : H(B, Ã) ≤ αr} ⊂ {B ∈ S(X) : H(B, A) ≤ r} ∩ Fn

and the set Ωm \ Fn is porous in (S(X), H). This completes the proof of our
theorem. �

Since every σ-porous set is of the first category, the following corollary is an
immediate consequence of our theorem.

Corollary. Given a nonempty compact subset D of a Banach space (X, ‖ · ‖),
there exists a residual set F ⊂ S(X) such that for each A ∈ F and each x̃ ∈ D,
the following property holds:

The set {y ∈ A : ‖x̃ − y‖ = ρ(x̃, A)} is nonempty and compact and each
sequence {yi}

∞
i=1 ⊂ A which satisfies limi→∞ ‖x̃− yi‖ = ρ(x̃, A) has a convergent

subsequence.

A natural question which can be raised at this point is whether analogous
results hold in a nonconvex setting. A theorem in this direction can indeed be
found in [10]. However, the setting there is different; it is concerned with complete
hyperbolic spaces, closed (not necessarily bounded) subsets, and with the notion
of porosity with respect to a pair of metrics. At first sight, the result of [10]
seems to be more general. Indeed, here we have considered only Banach spaces
(a special case of complete hyperbolic spaces), porosity with respect to only one
metric, and the subclass of bounded closed convex subsets. But sometimes it is
more difficult to establish a generic result for a subspace than for the whole space.
This is because one of the most crucial points in the proofs of generic results is the
construction of a small perturbation of a given element. Thus in [10], when we
perturb a given set, we need only to make sure that the perturbed set is closed,
while in the present paper we need to ensure that it is also convex. It may also be
of interest to mention that we do not know if the theorem of the present paper can
be extended to closed convex, not necessarily bounded, subsets. Also, it seems
that its proof cannot be modified so as to apply to all complete hyperbolic spaces.
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