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Nonreciprocal algebraic numbers of small measure

Artūras Dubickas

Abstract. The main result of this paper implies that for every positive integer d > 2
there are at least (d − 3)2/2 nonconjugate algebraic numbers which have their Mahler
measures lying in the interval (1, 2). These algebraic numbers are constructed as roots
of certain nonreciprocal quadrinomials.
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1. Introduction

The Mahler measure of a polynomial with complex coefficients is defined as
the modulus of the product of its leading coefficient and those of its roots that lie
outside the unit circle (counted with multiplicities). The Mahler measure of an
algebraic number is defined as the Mahler measure of its minimal polynomial in
Z[x]. Given a positive integer d and an interval of real numbers I, let N(d, I) be
the number of nonconjugate algebraic numbers of degree d having their Mahler
measures lying in I. Clearly, the Mahler measures of two algebraic numbers
conjugate over Q are equal, so the number of all such algebraic numbers will then
be dN(d, I).
There are several published upper bounds on the number N(d, I) for I = [1, T ].

M. Mignotte [8], [9] was the first who obtained such bounds. (He used a version of
Siegel’s lemma.) D.W. Boyd and H.L. Montgomery [2] found an asymptotic for-
mulae for the number of not necessarily irreducible integer polynomials having all
roots on the unit circle. (This corresponds to the case T = 1.) On the other hand,
S.J. Chern and J.D. Vaaler [3] found a nice asymptotic formulae for N(d, [1, T ])
when T is large compared to d. However, the most difficult case occurs when T is
fixed and d is large. Then the best result bounding N(d, [1, T ]) from above is due

to the author and S.V. Konyagin. It was shown in [6] that N(d, [1, T ]) < T (1+ε)d

for every fixed ε > 0 and d > d(ε). This bound is apparently far from the true
value of N(d, [1, T ]).
Usually, all algebraic numbers having Mahler’s measure greater than 1 and

smaller, say, than 2 are of special interest, because of their connection to the
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question of Lehmer. So far no attempt has been made to obtain a lower bound
for N(d, (1, 2)) (see p. 1075 in [9]). The aim of this note is to derive at least some
lower estimate for N(d, (1, 2)).

In all what follows, let λ1 = 1.32497 . . . be the largest real root of 4x8− 5x6−
2x4 − 5x2 + 4 = 0, and let λ2 = (

√
47 +

√
15)/4

√
2 = 1.89657 . . . be the largest

real root of 8x4 − 31x2 + 8 = 0. Recall that an algebraic number α is called
reciprocal if α−1 is conjugate to α over Q and is called nonreciprocal otherwise.
We prove the following theorem.

Theorem. For every d > 2, there are at least (d − 3)2/2 nonreciprocal noncon-
jugate units of degree d having their Mahler measures in the interval (λ1, λ2).

Since (λ1, λ2) = (1.32497 . . . , 1.89657 . . . ) ⊂ (1, 2), we clearly have N(d, (1, 2))
> (d − 3)2/2.
The proof of the theorem will be given in Section 3. It is based on a few

simple lemmas (see Section 2) which lead to the construction of many nonrecip-
rocal quadrinomials of fixed degree. All this is based on the following result of
W. Ljunggren [7]: if u, v, w are three distinct positive integers, then the poly-
nomial xu ± xv ± xw ± 1 is reducible over Q if and only if it has a cyclotomic
factor.

2. Auxiliary lemmas

Lemma 1. Let z1, z2, z3, z4 be four complex numbers (clockwise) on the unit
circle |z| = 1 which sum to zero. Then z1 + z3 = z2 + z4 = 0.

Proof: It is sufficient to prove that z1+z3 = 0. Let ℓ be a line passing through the
origin and the midpoint of the line segment connecting z1 and z2. By projecting
the sum z1+z2+z3+z4 = 0 into ℓ, we deduce that ℓ passes through the midpoint
of the line segment connecting z3 and z4. Furthermore, the distances between the
origin and these midpoints must be equal. Therefore the points z1, z2, z3, z4 are
the consecutive vertices of a rectangle. Of course, two degenerate situations,
namely, z1 = z2, z3 = z4 and z1 = z4, z2 = z3 are also possible. However, in
all three cases, we deduce that z1 and z3 are on a diameter of the unit circle, so
z1 + z3 = 0, as claimed. �

Lemma 2. Let µ be a root of unity and let u and v be two positive even and
odd integers, respectively. Assume that µu = −1. Then µv 6= ±1.

Proof: Without loss of generality we may assume that µ is a primitive mth root
of unity µ = exp(2πi/m). Then exp(2πiu/m) = −1, so u = m(2k + 1)/2 with
k ∈ Z. Since u is even, m is divisible by 4. Assuming that µv = ±1 we deduce
the equality µ2v = exp(4πiv/m) = 1. Hence v = ms/2 with s ∈ Z, so v must be
even, a contradiction. �
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Lemma 3. Let u, v, w be three distinct positive integers. If they are all odd,
then the polynomial xu + xv + xw ± 1 is irreducible over Q. Furthermore, if u, v
are even and w is odd then the polynomial xu+xv ±xw+1 is irreducible over Q.

Proof: Let u, v, w be three distinct positive integers. By the result of W. Ljung-
gren [7], if the quadrinomial q(x) = xu + xv ± xw ± 1 is reducible over Q, then
it has a cyclotomic factor. This can only happen if q(µ) = 0 for some root of
unity µ.

Suppose that u, v, w are all odd and q(x) = xu + xv + xw ± 1 is reducible.
Rearranging u, v and w, if necessary, and combining the result of W. Ljunggren
with Lemma 1 we deduce that µu + µv = 0 and µw ± 1 = 0. Assuming without
loss of generality that u > v we have that µu−v = −1 (and µw = ±1), contrary
to Lemma 2. For the polynomial xu + xv ± xw + 1 with u, v even and w odd the
argument is exactly the same. �

Lemma 4. Let q(x) = xu ± xv ± xw ± 1, where u > v > w are three positive
integers. Then the polynomial q(x)q(1/x)xu has at least 5 nonzero coefficients.

Proof: Writing q(x) = xu+τ1x
v+τ2x

w+τ3, where τ1, τ2, τ3 ∈ {−1, 1}, we have

q(x)q(1/x)xu = xu (

4 + τ3(x
u + x−u) + τ2(x

u−w + xw−u) + τ1(x
u−v + xv−u)

+τ1τ3(x
v + x−v) + τ1τ2(x

v−w + xw−v) + τ2τ3(x
w + x−w)

)

.

Clearly, we have 3 nonzero coefficients of powers xj with j = 0, u, 2u. The poly-
nomial also has 5 terms of the form ±xj , where u < j < 2u. Some of them
may cancel, but, by a parity argument, at least one of these terms remains. This
gives another nonzero coefficient. Since the polynomial q(x)q(1/x)xu is recip-
rocal, there is a corresponding nonzero term with j in the range 0 < j < u.
Summarizing, we have at least 5 nonzero coefficients. �

The example of q(x) = x3 + x2 + x − 1 shows that

q(x)q(1/x)x3 = −x6 + x4 + 4x3 + x2 − 1

has exactly 5 nonzero coefficients.

3. Quadrinomials have small Mahler measure

The claim of the theorem is evident for d 6 4, so assume that d > 5. If d is
even then, by Lemma 3, the polynomials xd+xv±xw+1 are irreducible whenever
v and w are even and odd, respectively, in the range 1 6 v, w 6 d − 1. Clearly,
there are precisely 2d(d − 2)/4 = d(d − 2)/2 of such polynomials. They are all
nonreciprocal.
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If d is odd then, by Lemma 3 again, the polynomial xd+xv+xw+1 is irreducible
if v and w (in the range 1 6 w < v 6 d − 1) are either both even or both odd.
There are

2

(

(d − 1)/2
2

)

=
(d − 1)(d − 3)

4

of such polynomials. Similarly, the polynomial xd + xv + xw − 1 is irreducible
with v, w being both odd, whereas the polynomial xd − xv − xw − 1 is irreducible
with v, w being both even (with the same natural restrictions 1 6 w < v 6 d− 1)
which gives another (d−1)(d−3)/4 nonreciprocal polynomials. Summarizing, we
obtain at least (d − 1)(d − 3)/2 distinct nonreciprocal irreducible polynomials of
degree d. It follows that in both (even and odd) cases there are at least (d−3)2/2
distinct nonreciprocal irreducible quadrinomials of degree d.
The Mahler measure M of a quadrinomial (with coefficients ±1) can be boun-

ded from above by combining Lemma 4 with Lemma 13 on p. 244 in [10]

M2 +M−2 +
√

(M2 +M−2)2 + 2 6 8.

(This inequality is stronger than that given by the inequality of J.V. Gonçalves:

M2 +M−2 6 4.) By an easy computation, we have that M 6 λ2 = (
√
47 +√

15)/4
√
2. Moreover, the inequality must be strict, because λ2 is not an algebraic

integer, so cannot be a Mahler measure. (See, for instance, [1], [4] for more
necessary conditions on an algebraic number to be a measure.)
As for the lower bound, the inequalityM > λ1 holds for the Mahler measure of

any nonreciprocal irreducible polynomial except for some very special trinomials.
Indeed, C.J. Smyth [11] showed that every nonreciprocal Mahler measure must
be at least λ0 = 1.32471 . . . , where λ0 is the positive solution of the equation
x3 − x− 1 = 0. Furthermore, in his thesis [12], he showed that any nonreciprocal
number with Mahler measure equal to λ0 must be conjugate to ±λ

±1/ℓ
0 , where ℓ

is a positive integer. Hence, all other nonreciprocal algebraic numbers have their
Mahler measures strictly greater than λ0. Combining the results of [5] and [12]
we showed in [4] that the interval (λ0, λ1], where λ1 = 1.32497 . . . is the largest
real root of 4x8 − 5x6 − 2x4 − 5x2 + 4 = 0, contains no nonreciprocal measures
at all. It follows that the Mahler measures of nonreciprocal algebraic numbers

which are not conjugate to ±λ
±1/ℓ
0 (including all roots of nonreciprocal irreducible

quadrinomials) must be greater than λ1, as claimed. This completes the proof of
the theorem.
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et Scientifiques: Bul. Sec. Sci. 3 (1981), 65–80.

[9] Mignotte M., On algebraic integers of small measure, Topics in Classical Number Theory,
Budapest, 1981, vol. II (G. Halász, ed.), Colloq. Math. Soc. János Bolyai 34 (1984), 1069–
1077.

[10] Schinzel A., Polynomials with Special Regard to Reducibility, Encyclopedia of Mathematics
and its Applications 77, Cambridge University Press, 2000.

[11] Smyth C.J., On the product of the conjugates outside the unit circle of an algebraic integer,
Bull. London Math. Soc. 3 (1971), 169–175.

[12] Smyth C.J., Topics in the theory of numbers, Ph.D. Thesis, University of Cambridge, 1972.

Department of Mathematics and Informatics, Vilnius University, Naugarduko 24,

Vilnius 2600, Lithuania

E-mail : arturas.dubickas@maf.vu.lt

(Received November 11, 2003, revised December 22, 2003)


		webmaster@dml.cz
	2012-04-30T22:42:57+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




