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On subsets of Alexandroff duplicates

Takemi Mizokami

Abstract. We characterize the subsets of the Alexandroff duplicate which have a Gδ-
diagonal and the subsets which are M-spaces in the sense of Morita.
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1. Introduction

All spaces are assumed to be regular T1, and all mappings to be continuous.
We denote all positive integers, real numbers by N, R, respectively.
As it is well known, the Alexandroff duplicate of R does not have a Gδ-diagonal

and the famous Michael line is not an M-space in the sense of Morita, although it
is a subspace of the Alexandroff duplicate of R. So, in this paper, we characterize
the subspaces of the Alexandroff duplicate X ×ad (2) which have a Gδ-diagonal,
where X has a Gδ-diagonal, and also characterize the subspaces of Y ×ad (2)
which are M-spaces, where X is a metrizable space. The former gives an answer
to the problem posed by S. Watson, [3, Problem 3.1.29], where he asks how to
characterize the subsets of [0, 1]×ad (2) which have a Gδ-diagonal.
As for the properties of Gδ-diagonals and M-spaces used here, we refer to

Gruenhage [1]. We recall the definition of the Alexandroff duplicate X ×ad (2)
of a space X , stated in [3, Definition 3.1.1]. Let (X, τ) be a space. Define the
topology on Z = X×2 by declaring that each (x, 1) is open and that for each open
U ∈ τ , U × 2 \ {(x, 1)} is open. The space Z so defined is denoted by X ×ad (2),
where ad stands for Alexandroff duplicate. In the sequel, we write a subspace of
X ×ad (2) in the following form:

T (A, B) = A × {1} ∪ B × {0},

where A, B ⊂ X .

2. On subspaces of Alexandroff duplicates

For a subset A of a space X , we denote by Ad the set of all accumulation points
of A in X .
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Theorem 2.1. Assume that a space X has a Gδ-diagonal and T (A, B) ⊂ X ×ad

(2). Then T (A, B) has a Gδ-diagonal if and only if A ∩ B =
⋃
{Ci : i ∈ N} with

(Ci)
d ∩ B = ∅ for each i.

Proof: Only if part: Let (Un)n∈N be a Gδ-diagonal sequence for T (A, B). For
each x ∈ A ∩ B, there exists n(x) ∈ N such that

(x, 0) /∈ S((x, 1),Un(x)).

Let
Cn = {x ∈ A ∩ B : n(x) = n}, n ∈ N.

Then A ∩ B =
⋃

n Cn. Assume that (Cn)
d ∩ B 6= ∅ for some n. For a point

x ∈ (Cn)
d ∩ B, there exists U ∈ Un such that (x, 0) ∈ U . Since x is an accumu-

lation point of Cn, there exists x′ ∈ Cn such that (x
′, 0), (x′, 1) ∈ U , but this is

impossible.
If part: Let (Un)n∈N be a Gδ-diagonal sequence for A∪B. By the assumption,

A ∩ B =
⋃
{Cn : n ∈ N}, where (Cn)

d ∩ B = ∅ for each n. Since Cn is discrete
in B, there exists a family {V (x) : x ∈ Cn} of open subsets of A ∪ B such that
for each x ∈ Cn, V (x) ∩ B = {x} and x ∈ V (x) ⊂ U for some U ∈ Un. For each
U ∈ Un, n ∈ N, let

Û = (U \ Cn)× {0, 1} ∩ T (A, B).

For each x ∈ Cn, n ∈ N, let

V̂ (x) = (V (x)× {0, 1} \ {(x, 1)}) ∩ T (A, B).

For each n ∈ N, define an open cover

W(n) = {Û : U ∈ Un} ∪ {V̂ (x) : x ∈ Cn} ∪ {{(x, 1)} : x ∈ A} .

We show that (W(n))n∈N
is a Gδ-diagonal sequence for T (A, B). To this end, let

p = (x, s), q = (y, t)

be different points of T (A, B). If x 6= y, then there exists n ∈ N such that
x /∈ S(y,Un). Then it is easily seen that p /∈ S(q,W(n)). If x = y, s = 0, t = 1,
then we have x ∈ A ∩ B and x ∈ Cn for some n ∈ N. In this case, we easily have

p /∈ S (q,W(n)) = V̂ (x).

Hence T (A, B) has a Gδ-diagonal. �

We give a remark to some special cases of X :
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Remark 2.1. (1) If X = R, T (A, B) has a Gδ-diagonal if and only if A ∩ B is
countable. It is because any uncountable subset of R has an accumulation point
in R.
(2) If X is metrizable, the above condition for T (A, B) to have a Gδ-diagonal is
that for T (A, B) to be submetrizable. This follows from the fact that T (A, B) is
paracompact.

Next, we characterize T (A, B) which is an M-space in the sense of Morita.
A space X is called an M-space if there exists a sequence (Un)n∈N of open covers
of X such that for each n, Un+1 star-refines Un and if xn ∈ S(x,Un), then
{xn : n ∈ N} clusters in X . Such a sequence (Un)n∈N is called an M-sequence
for X . On the other hand, in 1963 Arhangel’skĭı gave the concept of p-spaces.
As it is well known, M-spaces and p-spaces are equivalent in the presence of
paracompactness [1, Corollary 3.20], and paracompact p-spaces coincide with pre-
images of a metric space under a perfect mapping [1, Corollary 3.7].
Let (X, d) be a metric space. We denote an open ball with center x and radius

r by B(x, r). We note that the projection π : T (A, B) −→ A ∪ B is continuous.
In connection with the next theorem, the referee informed us about the inter-

esting fact that E.G. Pytkeev wrote a paper in which he proved that if a space
X is a Tychonoff space such that each subspace of X is a paracompact p-space,
then the structure of X is very similar to that of the Alexandroff duplicate of a
metric space; indeed, then the subspace of all non-isolated points is metrizable.

Theorem 2.2. Let T (A, B) ⊂ X ×ad (2), where X is a metric space. Then

T (A, B) is an M-space if and only if B is a Gδ-set in A ∪ B.

Proof: Only if part: Assume that B were not a Gδ-set. Let (Un)n∈N be an
M-space for T (A, B). Since X is a metric space, without loss of generality we can
assume that if (xn, sn) ∈ S((x, s),Un), n ∈ N, then xn −→ x as n −→ ∞. Let
n ∈ N be fixed. For each x ∈ B, there exists U ∈ Un such that (x, 0) ∈ U . There
exists a basic open neighborhood N(x, r(x)) of (x, 0) in X ×ad (2) such that

N(x, r(x)) = B(x, r(x)) × {0, 1} \ {(x, 1)},

N(x, r(x)) ∩ T (A, B) ⊂ U.

Let
Gn =

(⋃
{B(x, r(x)) : x ∈ B}

)
∩ (A ∪ B),

which is open in A ∪ B. By the assumption, there exists a ∈
⋂

n Gn \ B. Then
for each n ∈ N, there exists a point

(xn, 0) ∈ B × {0} ∩ S((a, 1),Un).

Since (Un) is an M-sequence and xn −→ a as n −→ ∞, {(xn, 0) : n ∈ N} clusters
at (a, 1), but this is a contradiction because {(a, 1)} is open.
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If part: Let B =
⋂

n Gn, Gn+1 ⊂ Gn, n ∈ N, where each Gn is open in A∪B.
Since A∪B is a metric space, there exists a development (Un)n∈N for A∪B such
that U∗

n+1 < Un, n ∈ N. We construct a sequence (Vn)n∈N of open covers of

T (A, B) as follows:

Vn = π−1(Un | Gn) ∪ {{(x, 1)} | x ∈ A \ Gn}, n ∈ N.

Then it is easily checked that each Vn+1 star-refines Vn. We show that (Vn)n∈N

is an M-sequence for T (A, B). Let

(xn, rn) ∈ S((x, r),Vn), n ∈ N.

If x ∈ B, then (x, 0) is a cluster point of {(xn, rn) | n ∈ N}. If x ∈ A \ B, then
there exists k ∈ N such that x /∈ Gk. From the construction of (Vn), it follows
that (xn, rn) = (x, 0) for n ≥ k, which means that (xn, rn) −→ (x, 0) as n −→ ∞.

�

Corollary 2.1. Let T (A, B) ⊂ X ×ad (2), where X is a metric space. Then

T (A, B) is metrizable if and only if B is a Gδ-set in A∪B and A∩B =
⋃

i∈N
Ci,

where for each i, (Ci)
d ∩ B = ∅.

Here, we recall the definition of resolutions of spaces. Let X be a space and
for each x ∈ X , let fx : X \ {x} −→ Yx be a mapping. We topologize

Z =
⋃

{{x} × Yx : x ∈ X}

by defining an open set U ⊗ V for each x ∈ X and each open subset U of X with
x ∈ U and open subset V of Yx as

U ⊗ V = ({x} × V ) ∪
⋃

{{p} × Yp : p ∈ U ∩ f−1
x (V )}.

We call Z thus defined the resolution of X at each point x ∈ X into Yx by fx

[3, Definition 3.1.32], and we denote it by Z = R(X, fx, Yx). We note that the
projection π : Z −→ X defined by π((x, y)) = x for each (x, y) ∈ Z is continuous.

Example 2.1. There exists a resolution Z = R(X, fx, Yx) of a compact space X
into paracompact M-spaces Yx, x ∈ X , such that Z is not an M-space.

Proof: Let X = ω1 + 1 with the order topology. For each α < ω1, let Yα be
the copy of R with the usual topology. Let fα : X \ {α} −→ Yα be a constant
mapping such that fα(X \ {α}) = yα ∈ Yα. For α = ω1, Yω1 = {ω1} and let
fω1 : X \ {ω1} −→ Yω1 be a natural mapping. Let Z = R(X, fx, Yx). Assume
that there exists an M-sequence (Un)n∈N for Z. For p = (ω1, ω1), there exists
α ∈ ω1 such that

{α} × Yα ⊂
⋂

n∈N

S((ω1, ω1),Un).
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Since Yα is not countably compact, this is impossible. �

We say that a subset Λ is Fσ-discrete in X if Λ =
⋃

n∈N
Λn, where each Λn is

discrete and closed in X . Richardson and Watson showed that if X and each Yx

are metrizable and

Λ = {x ∈ X : |Yx| > 1}

is Fσ-discrete in X , then R(X, fx, Yx) is metrizable [2, Proposition 9]. We recall
a characterization of paracompact p-spaces: a space X is a paracompact p-space
if and only if there exists a perfect mapping of X onto a metric space.

Theorem 2.3. Let X be a metric space and each Yx, x ∈ X , a paracompact
p-space. If Λ, defined above, is Fσ-discrete in X , then Z = R(X, fx, Yx) is a
paracompact p-space.

Proof: By the above characterization, for each x ∈ X there exists a perfect
mapping gx : Yx −→ Mx with Mx metric. By the condition on Λ, the resolution
Z ′ = R(X, gxfx, Mx) is a metric space. So, it suffices to show that the mapping
Φ : Z −→ Z ′ defined by

Φ(x, y) = (x, gx(y)), (x, y) ∈ Z,

is a perfect mapping. It is easily checked that Φ is continuous. To see that Φ is
closed, let W be an open set of Z containing Φ−1(x, y′) = {x} × g−1x (y

′). There
exists a finite open cover {Ui ⊗ Vi | i = 1, . . . , k} of Φ−1(x, y′) in Z such that

Φ−1(x, y′) ⊂
k⋃

i=1

Ui ⊗ Vi ⊂ W,

where each Ui is an open neighborhood of x inX . Since gx : Yx −→ Mx is a perfect
mapping, there exists an open neighborhood O of y′ in Mx such that g−1x (O) ⊂⋃k

i=1 Vi. Then we can easily see that (
⋂k

i=1 Ui)⊗ O is an open neighborhood of

(x, y′) in Z ′ such that Φ−1((
⋂k

i=1 Ui)⊗ O) ⊂ W . Hence Φ is a perfect mapping.
�

Since π : R(X, fx, Yx) −→ X is a perfect mapping if each Yx is compact [2,
Lemma 6], the following is easy to see:

Theorem 2.4. Let X be an M-space and let each Yx be compact. Then Z =
R(X, fx, Yx) is an M-space.

References

[1] Gruenhage G., Generalized metric spaces, Handbook of Set-theoretic Topology, North-
Holland, 1984, pp. 423–501.



130 T.Mizokami

[2] Richardson K., Watson S., Metrisable and discrete special resolutions, Topology Appl. 122
(2002), 605–615.

[3] Watson S., The construction of topological spaces: Planks and resolutions, Recent Progress
in General Topology, North-Holland, Amsterdam, 1992, pp. 637–757.

Department of Mathematics, Joetsu University of Education, Joetsu, Niigata

Prefecture, 943-8512, Japan

(Received February 19, 2004, revised June 14, 2004)


		webmaster@dml.cz
	2012-04-30T22:51:07+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




