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On the cardinality of Hausdorff

spaces and Pol-Šapirovskii technique

Alejandro Raḿirez-Páramo

Abstract. In this paper we make use of the Pol-Šapirovskii technique to prove three
cardinal inequalities. The first two results are due to Fedeli [2] and the third theorem of
this paper is a common generalization to: (a) (Arhangel’skii [1]) If X is a T1 space such

that (i) L(X)t(X) ≤ κ, (ii) ψ(X) ≤ 2κ, and (iii) for all A ∈ [X]≤2
κ

,
��A�� ≤ 2κ, then

|X| ≤ 2κ; and (b) (Fedeli [2]) If X is a T2-space then |X| ≤ 2aql(X)t(X)ψc(X).
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Classification: 54A25

In [2], Fedeli proved, using the language of elementary submodels, two cardinal

inequalities which state (1) “if X ∈ T2, then |X | ≤ 2ac(X)Hψ(X)” and (2) “if

X ∈ T2, then |X | ≤ 2lc(X)πχ(X)ψc(X)”. Each of these inequalities improve the

well known Hajnal-Juhász’s inequality: “for X ∈ T2, |X | ≤ 2c(X)χ(X)”. In the
first part of this paper we give a proof of the inequalities (1) and (2) without using
elementary submodels. Our proof makes use of the Pol-Šapirovskii technique.
This technique provides a unified approach to the difficult inequalities in the
theory of cardinal functions. The reader is referred to [4] and [3] for a detailed
discussion like for additional inequalities in cardinal functions which can be proved
using the Pol-Šapirovskii technique.
We refer the reader to [3], [2] and [5] for definitions and terminology not ex-

plicitly given. Let L, c, χ, ψ, ψc, πχ, t, denote the following standard cardinal
functions: Lindelöf degree, celularity, character, pseudocharacter, closed pseu-
docharacter, π-character and tightness, respectively.
Let X be a Hausdorff space. The Hausdorff pseudocharacter, denoted Hψ(X),

is the smallest infinite cardinal κ such that for every x ∈ X there is a collection Ux
of open neighborhoods of x with |Ux| ≤ κ and such that (∗) if x 6= y, there exist
U ∈ Ux and V ∈ Uy with U ∩ V = ∅. If Ux is a collection of open neighborhoods
of x which satisfies (∗), we say that Ux is a H-pseudobase of x.

Definition 1. Let X be a topological space:

(a) ac(X) is the smallest infinite cardinal κ such that there is a subset S of X

with |S| ≤ 2κ and for every open collection U in X , there is a V ∈ [U ]≤κ, with
⋃

U ⊆ S ∪
⋃

{

V : V ∈ V
}

.
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(b) lc(X) is the smallest infinite cardinal κ such that there is a closed subset F

of X with |F | ≤ 2κ and for every open collection U in X , there is a V ∈ [U ]≤κ,

with
⋃

U ⊆ F ∪
⋃

{

V : V ∈ V
}

.

(c) aql(X) is the smallest infinite cardinal κ such that there is a subset S of X

such that |S| ≤ 2κ and for every open cover U of X there is a V ∈ [U ]≤κ with
X = S ∪ (

⋃

V).

Clearly ac(X) ≤ lc(X) ≤ c(X), and aql(X) ≤ L(X) for every topological
space.

Theorem 2. If X is a T2-space then |X | ≤ 2ac(X)Hψ(X).

Proof: Let κ = ac(X)Hψ(X), and let S be a subset of X with |S| ≤ 2κ and
witnessing that ac(X) ≤ κ. For each x ∈ X , let Bx an H-pseudobase of x in X ,
with |Bx| ≤ κ.
Construct a sequence

{

Aα : 0 ≤ α < κ+
}

of sets in X and a sequence
{

Vα : 0 < α < κ+
}

of open collections in X such that

(1) |Aα| ≤ 2κ; 0 ≤ α < κ+;

(2) Vα =
⋃

{

Bx : x ∈
⋃

β<αAβ

}

; 0 < α < κ+;

(3) if C = {Cγ : γ ∈ λ} is a collection (λ ≤ κ) of closed sets in X such

that each Cγ has the form
⋃

{

V : V ∈ Uγ
}

, where Uγ ∈ [Vα]
≤κ, and if

X − (S ∪
⋃

C) 6= ∅, then Aα − (S ∪
⋃

C) 6= ∅.

The construction is by transfinite induction. Let 0 < α < κ+, and assume
that Aβ and Vβ have been constructed for each β < α. Note that Vα is defined
by (2). For each collection C = {Cγ : γ ∈ λ} with λ ≤ κ of closed sets in X such

that each Cγ has the form
⋃

{

V : V ∈ Uγ
}

, where Uγ ∈ [Vα]
≤κ, and such that

X 6= S∪
⋃

{Cγ : γ ∈ λ}, choose one point in X−
(

S ∪
⋃

{Cγ : γ ∈ λ}
)

. Let Aα be
the set of points chosen in this way. To show that |Aα| ≤ 2κ, let F =

⋃

β<αAβ ;

then Vα =
⋃

x∈F Bx, hence |Vα| ≤
∑

x∈F |Bx| ≤ κ · |F | ≤ κ ·
∑

β∈α

∣

∣Aβ
∣

∣ =

κ · |α| · 2κ = 2κ. Since |Aα| ≤
∣

∣[[Vα]
κ]κ

∣

∣ ≤ (2κ)κ = 2κ, we have |Aα| ≤ 2κ. This
completes the construction.
Now let A =

⋃

α<κ+ Aα and let U =
⋃

{

Vα : α ∈ κ+
}

; clearly, |A| ≤ 2κ.
The proof is complete if X = (S ∪A). Suppose not, and let p ∈ X − (S ∪ A).

Let B = {Bγ : γ ∈ λ} be a family of open neighbourhoodsof p in X , such

that
⋂

{Bγ : γ ∈ λ} = {p} with λ ≤ κ. For each γ ∈ λ, let Vγ = X − Bγ
and let Wγ = {V ∈ U : V ⊆ Vλ}. Since ac(X) ≤ κ, for each γ ∈ λ there

exists Uγ ∈
[

Wγ

]≤κ
such that

⋃

Wγ ⊆ S ∪
⋃

{V : V ∈ Uγ}. Note that for each

γ ∈ λ, p /∈ S ∪
⋃

{V : V ∈ Uγ}. Finally, let Cγ =
⋃

{V : V ∈ Uγ} for each γ ∈ λ.

Since Uγ ⊆ U and
∣

∣Uγ
∣

∣ ≤ κ, for all γ ∈ λ, by the regularity of κ+ there is an

α ∈ κ+ such that C = {Cγ : γ ∈ λ} is a collection of ≤ κ closed sets in X ,



On the cardinality of Hausdorff spaces 133

such that each Cγ has the form
⋃

{

V : V ∈ Uγ
}

, where Uγ ∈ [Vα]
≤κ. Moreover

X −
(

S ∪
⋃

{Cγ : γ ∈ λ}
)

6= ∅, therefore, by (3), Aα −
(

S ∪
⋃

{Cγ : γ ∈ λ}
)

6= ∅.
Since Aα ⊆ A ⊆ S ∪

⋃

{Cγ : γ ∈ λ}, we reach a contradiction. Thus X = S ∪ A
and |X | = |S ∪A| ≤ 2κ. �

Theorem 3. If X is a T2-space then |X | ≤ 2lc(X)πχ(X)ψc(X).

Proof: Let κ = lc(X)πχ(X)ψc(X), and let F be a closed set in X with |F | ≤ 2κ

and witnessing that lc(X) ≤ κ. For each x ∈ X , let Vx a π-base local of x in X
such that |Bx| ≤ κ.
Construct a sequence

{

Aα :α ∈ κ+
}

of sets in X and a sequence
{

Bα :α ∈ κ+
}

of open collections in X such that:

(1) α ∈ κ+, |Aα| ≤ 2κ; 0 ≤ α ≤ κ+;

(2) Vα =
⋃

{

Bx : x ∈
⋃

β<αAβ

}

; 0 < α < κ+;

(3) if C = {Cγ : γ ∈ λ}, with λ ≤ κ, is a collection of closed sets inX , where each

Cγ has the form
⋃

{

V : V ∈ Uγ
}

, where Uγ ∈ [Vα]
≤κ andX−(F ∪

⋃

C) 6= ∅,
then Aα − (F ∪

⋃

C) 6= ∅.

The construction is by transfinite induction. Let 0 < α < κ+, and assume that
Aβ and Vβ have been constructed for each β < α. Note that Vα is defined by (2).
Let Pα =

⋃

β<αAβ ; we have Vα =
⋃

{Bx : x ∈ Pα}. Now, for each collection

C = {Cγ : γ ∈ λ}, λ ≤ κ, of closed sets in X such that each Cγ has the form
⋃

{

V : V ∈ Uγ
}

, where Uγ ∈ [Vα]
≤κ and X 6= F ∪

⋃

{Cγ : γ ∈ λ}, choose one

point in X−
(

F ∪
⋃

{Cγ : γ ∈ λ}
)

. Let Aα be the set of points chosen in this way.

Observe that |Aα| ≤
∣

∣[[Vα]≤κ]≤κ
∣

∣ ≤ 2κ. This completes the construction.

Let A =
⋃

{

Aα : α ∈ κ+
}

and let U =
⋃

{

Vα : α ∈ κ+
}

. It is clear that
|A| ≤ 2κ. The proof is complete if X = F ∪ A. Assume, on the contrary, that
p ∈ X − (F ∪ A), and consider V = {Bγ : γ ∈ λ}, where λ ≤ κ, a family of

neighbourhoods of p in X such that
⋂

{Bγ : γ ∈ λ} = {p}. For each γ ∈ λ, let

Vγ = X − Bγ and let Wγ = {V ⊆ Vλ : V ∈ U}. Since lc(X) ≤ κ for each γ ∈ λ,

there exists Uγ ∈
[

Wγ

]≤κ
such that

⋃

Wγ ⊆ F ∪ {
⋃

V : V ∈ Uγ}. Observe that,

for each γ ∈ λ, p /∈ F ∪
⋃

{V : V ∈ Uγ}. Let W =
⋃

{Wγ : γ ∈ λ}. Finally, for

each γ ∈ λ, let Cγ =
⋃

{V : V ∈ Uγ}. Since Uγ ⊆ U and
∣

∣Uγ
∣

∣ ≤ κ for all γ ∈ λ,

then by the regularity of κ+ there exists α ∈ κ+ such that C = {Cγ : γ ∈ λ} is a

collection of≤ κ closed sets inX and each Cγ has the form
⋃

{

V : V ∈ Uγ
}

, where

Uγ ∈ [
⋃

{Vx : x ∈ Aα}]
≤κ. Moreover,X−

(

F ∪
⋃

{Cγ : γ ∈ λ}
)

6= ∅, hence by (3),

Aα −
(

F ∪
⋃

{Cγ : γ ∈ λ}
)

6= ∅. Since Aα ⊆ A ⊆
⋃

W ⊆ F ∪
⋃

{Cγ : γ ∈ λ}, we
reach a contradiction. Thus X = F ∪A; therefore |X | ≤ 2κ. �

Now we turn to the second part of this paper. Another well known cardinal

inequality is due to Arhangel’skii [3]: “For X ∈ T2, |X | ≤ 2L(X)t(X)ψ(X)”. Fedeli
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[2] proved, making use of elementary submodels, that: if X is a T2-space then

|X | ≤ 2aql(X)t(X)ψc(X). This result generalizes the Arhangel’skii’s inequality. On
the other hand, in [1], Arhangel’skii proved that: (a) “If X is a T1 space such

that (i) L(X)t(X) ≤ κ, (ii) ψ(X) ≤ 2κ, and (iii) for all A ∈ [X ]≤2
κ
,

∣

∣A
∣

∣ ≤ 2κ,
then |X | ≤ 2κ”. From this result one easily obtains the Arhangel’skii’s inequality
mentioned above.

Since aql(X) ≤ L(X) for every topological space X , it is natural to ask if L
can be replace by aql in the inequality (a). The next theorem gives an affirmative
answer to this question. Our proof makes use of the Pol-Šapirovskii technique.

Theorem 4. Let X be a T1-space such that (i) aql(X)t(X) ≤ κ, (ii) ψ(X) ≤ 2κ,
and (iii) if A ∈ [X ]≤2

κ
then

∣

∣A
∣

∣ ≤ 2κ. Then |X | ≤ 2κ.

Proof: Let S be an element of [X ]≤2
κ
witnessing that aql(X) ≤ κ. For each

x ∈ X , let Bx an pseudobase of x in X such that |Bx| ≤ κ.

Construct an increasing sequence
{

Aα : α ∈ κ+
}

of closed sets in X and a

sequence
{

Vα : α ∈ κ+
}

of open collections in X such that

(1) |Aα| ≤ 2κ, 0 ≤ α < κ+;

(2) Vα =
⋃

{Bx : x ∈ Aα};

(3) if U ⊆
⋃

{

Bx : x ∈ clX

(

⋃

β<αAβ

)}

with |U| ≤ κ and X − (S ∪
⋃

U) 6= ∅,

then Aα − (S ∪
⋃

U) 6= ∅.

The construction is by transfinite induction. Let 0 < α < κ+ and assume that
Aβ and Vβ have been constructed for each β ∈ α. Note that Vα is defined by (2).

Let Pα = clX

(

⋃

β<αAβ

)

and let Cα =
⋃

{Bx : x ∈ Pα}. Since
∣

∣

∣

⋃

β<αAβ

∣

∣

∣
≤ 2κ,

it follows by (iii) that |Pα| ≤ 2κ, hence, |Cα| ≤ 2κ. For each U ⊆ Cα with |U| ≤ κ
and X − (S ∪

⋃

U) 6= ∅, choose one point in X − (S ∪
⋃

U). Let Lα be the set of
points chosen in this way. Clearly |Lα| ≤ 2κ. Let Aα = Pα ∪ Lα. This completes
the construction.

Let A =
⋃

{

Aα : α ∈ κ+
}

and note that A is closed in X ; moreover, clearly

|A| ≤ 2κ. Let V =
⋃

{

Vα : α ∈ κ+
}

. The proof is complete if X = S ∪ A.
Suppose not, let p ∈ X − (S ∪ A) and for each x ∈ A, choose Vx ∈ Bx such
that p /∈ Vx. Then {Vx : x ∈ A} together with {X − A} cover X ; hence, there
exists B ⊆ [A]≤κ such that X = S ∪ (

⋃

{Vx : x ∈ B}) ∪ (X − A). Let U =
⋃

{Vx : x ∈ B}. Since |B| ≤ κ, by the regularity of κ+ there exists α ∈ κ+ such

that {Vx : x ∈ B} ⊆
⋃

{

Bx : x ∈ clX

(

⋃

β<α Aβ

)}

, that is U is the union of ≤ κ

elements of
⋃

{

Bx : x ∈ clX

(

⋃

β<α Aβ

)}

and X − (S ∪ U) 6= ∅. Hence by (3),

Aα − (S ∪ U) 6= ∅. Since Aα ⊆ A ⊆ S ∪ U , we reach a contradiction. Thus
X = S ∪A. �

Now we have the inequality (a), as a consequence of our theorem.
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Corollary 5 (Arhangel’skii). Let X be a T1-space such that: (i) L(X)t(X) ≤ κ,

(ii) ψ(X) ≤ 2κ, and (iii) for all A ∈ [X ]≤2
κ
,
∣

∣A
∣

∣ ≤ 2κ. Then |X | ≤ 2κ.

Another consequence of Theorem 5 is the next theorem due to Fedeli.

Corollary 6. If X is a T2-space then |X | ≤ 2aql(X)ψc(X)t(X).

Proof: Let κ = aql(X)ψc(X)t(X). It is enough to note that for all A ∈ [X ]≤2
κ
,

∣

∣A
∣

∣ ≤ 2κ. �
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