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Cardinal invariants of universals

Gareth Fairey, Paul Gartside, Andrew Marsh

Abstract. We examine when a space X has a zero set universal parametrised by a metris-
able space of minimal weight and show that this depends on the σ-weight of X when
X is perfectly normal. We also show that if Y parametrises a zero set universal for
X then hL(Xn) ≤ hd(Y ) for all n ∈ N. We construct zero set universals that have
nice properties (such as separability or ccc) in the case where the space has a K-coarser
topology. Examples are given including an S space with zero set universal parametrised
by an L space (and vice versa).

Keywords: zero set universals, continuous function universals, S and L spaces, admissi-
ble topology, cardinal invariants, function spaces

Classification: 54C30, 54C50, 54D65, 54D80, 54E35

1. Introduction

In this paper we deal with continuous function universals and zero set uni-
versals. A universal will in some appropriate sense parametrise all objects in a
certain class. More specifically we can define a continuous function universal as
follows. Given a space X we say that a space Y parametrises a continuous func-
tion universal for X via the function F if F : X × Y → R is continuous and for
any continuous f : X → R there exists some y ∈ Y such that F (x, y) = f(x) for
all x ∈ X . We will use F y to denote the corresponding function on X . Note that
if the y above is unique then, in effect, Y is the set of all continuous real valued
functions on X with an admissible topology (the evaluation map is continuous,
see [1]).

Given a space X we say that a space Y parametrises a zero set universal for
X if there exists U , a zero set in X × Y such that for all A ⊂ X with A a zero
set there exists y ∈ Y such that Uy = {x ∈ X : (x, y) ∈ U} = A. This zero set U
must be witnessed by some continuous function F : X ×Y → R and we will refer
to such a function as the parametrising function. Note that the particular case
when X is perfectly normal, and Y is the set of closed subsets has been studied
under the name continuous perfect normality ([15], [8]).

The third author would like to acknowledge the support of a National University of Ireland
Travelling Studentship.
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In [4] the authors investigate spaces that have universals parametrised by com-
pact or Lindelöf spaces. In this paper we tackle a number of other questions
regarding the parametrisation of continuous function universals and zero set uni-
versals.

First of all we investigate the case whereX has a zero set universal parametrised
by a metrisable space of minimal weight . Parametrisation by metrisable spaces is
trivial as we can take a sufficiently large set with the discrete topology. We show
that we can parametrise a zero set universal for a space X by a metrisable space
Y where w(Y ) = w(X) when the σ-Z-weight of X equals the weight of X . The
σ-Z-weight is defined to be the minimal size of a collection B of open subsets of
X such that every cozero subset is the countable union of elements from B.

Examining how the hereditary properties of the parametrising space Y bound
the hereditary properties of X leads us to the inequality hL(Xn) ≤ hd(Y ) for all
n ∈ ω. This is more than we get when Y parametrises an open universal for X
(see [7]). We construct a number of examples including a hereditarily separable,
hereditarily Lindelöf space X with nw(X) = ℵ1 such that X has a continuous
function universal parametrised by a space Y with hL(Y ω) = hd(Y ω) = ω. This
has applications to admissible topologies.

In the final section we look at when the parametrising space is separable, ccc or
has calibre ω1. First we describe how to construct a continuous function universal
for a space X when X has a K-coarser topology (a coarser topology τ such that
each point of X has a neighbourhood base consisting of τ -compact sets). This
general construction will allow us to construct continuous function universals with
‘nice’ properties once we know that the space in question has aK-coarser topology
with the appropriate properties. As an example we show that the Sorgenfrey line
has a continuous function universal parametrised by a separable space.

We will use the following theorem frequently. For a proof see [4].

Theorem 1. Let X be Tychonoff. If Y parametrises a zero set universal for X
then some subspace of Y ω parametrises a continuous function universal for X .

2. Parametrisation by metrisable spaces of minimal weight

In this section we examine the situation where a spaceX has a zero set universal
or continuous function universal parametrised by a metrisable space of minimal
weight. The weight of the parametrising space is an upper bound for the weight
of the space X so the minimal weight of the parametrising space is the weight
of X . The key notion is that of the σ-weight of X : the minimal size of a base
for X such that every open set in X is the countable union of elements from the
base.

We begin by dealing with the case when X is perfectly normal. We use D(κ)
to denote the discrete space of size κ.
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Theorem 2. Let X be a perfectly normal space with w(X) = κ. Then the
following are equivalent:

(i) X has a zero set universal parametrised by D(κ)ω ,
(ii) X has a zero set universal parametrised by a first countable space of

weight κ,
(iii) X has σ-weight κ,
(iv) X has a continuous function universal parametrised by a metrisable space

of weight κ.

Proof: Let X be a perfectly normal space with w(X) = κ. Clearly (i) implies
(ii) and (iv) implies (ii).

(ii) implies (iii): Let X have a zero set universal parametrised by Y and let
F : X × Y → R be the relevant parametrising function. Let U = F−1(R \ 0).
Assume that Y is first countable and that {Cα : α ∈ κ} is a basis for Y . For each
α ∈ κ we define Bα =

⋃
{U : U is open, U ×Cα ⊂ U}. Let B = {Bα : α ∈ κ}. We

show that B is a σ-basis. Fix U ⊂ X such that U is open. Since X is perfectly
normal then U is in fact a cozero set, so there is some y ∈ Y such that U = Uy.
Let {Cαn : n ∈ ω} be a countable basis at y. Then U =

⋃
{Bαn : n ∈ ω}.

(iii) implies (i): Let B = {Bλ : λ ∈ κ} be a σ-base for X . As X is perfectly
normal we can assume that eachBλ ∈ B is a cozero set as witnessed by fλ : X → I.
For all α ∈ D(κ)ω let αn denote the n’th element of the sequence α. We define
F : X × D(κ)ω → R by

F (x, α) =

∞∑

n=0

fαn(x)

2n+1

for all α ∈ D(κ)ω and x ∈ X . We must show that (a) F is continuous and (b)
that for all U open in X there is some α ∈ D(κ)ω such that (Fα)−1(R\{0}) = U .

To show (b) we fix U open inX . Now since B is a σ-base we can find α ∈ D(κ)ω

such that
⋃
{Bαn : n ∈ ω} = U . Then for all x ∈ X we know that F (x, α) = 0 if

and only if x /∈
⋃
{Bαn : n ∈ ω} = U .

To show (a) we fix x ∈ X , α ∈ D(κ)ω and U open such that F (x, α) ∈ U . Find

N ∈ ω such that (F (x, α) − 2−N , F (x, α) + 2−N ) ⊂ U . For each j ∈ ω such that

j ≤ N define Uj = f−1
αj
(fαj (x)−2

−N−1, fαj (x)+2
−N−1). Let V =

⋂N
j=0Uj and

W =
∏N

j=0{αj} ×
∏∞

j=N+1D(κ). If (x′, β) ∈ V × W then

|F (x, α)− F (x′, β)| ≤
∞∑

j=0

|fαj (x)− fβj
(x)|

2j+1

=

N∑

j=0

|fαj (x)− fβj
(x)|

2j+1
+

∞∑

j=N+1

|fαj (x)− fβj
(x)|

2j+1
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≤
N∑

j=0

2−N−12−j−1 +
∞∑

j=N+1

2−j−1 ≤
1

2N
.

This shows that F (x′, β) ∈ U and so we are done.
(i) implies (iv): We know that if a space Y parametrises a zero set universal for

X then by Theorem 1 some subspace of Y ω parametrises a continuous function
universal for X . Since metrisability and weight are countably productive and
hereditary we are done. �

In the class of Tychonoff spaces the crucial property is σ-Z-weight: the minimal
size of a collection B of open subsets of X such that every cozero subset is the
countable union of elements from B. The following version of Theorem 2 can be
proved in much the same way.

Theorem 3. Let X be Tychonoff with w(X) = κ. The following are equivalent:

(i) X has a continuous function universal parametrised by a metrisable space
of weight κ,

(ii) X has a zero set universal parametrised by a first countable space of

weight κ,
(iii) X has σ-Z-weight κ.

Corollary 4. Every Lindelöf T3 space has a continuous function universal para-
metrised by a metrisable space of minimal possible weight.

In [5] it is shown that if X is a T3 Lindelöf space containing an uncountable
discrete space then no metrisable space of minimal weight parametrises an open
universal for X . So we get the following.

Corollary 5. There exists a Tychonoff space for which σ-Z-weight is strictly less
than σ-weight.

We now examine the special case where the space in question is the discrete
space of size κ. It is clear from Theorem 2 that D(κ) has a continuous function
universal parametrised by a metrisable space of weight κ if and only if there is
a subcollection C of P(κ) of size κ such that every subset of κ is the union of
countably many elements of C. We will call such a cardinal a σ-cardinal .
We know the following about σ-cardinals (see [5]).

Theorem 6. Let κ be a cardinal.

(i) If κ is a σ-cardinal then κ has countable cofinality.
(ii) If κ is a strong limit and cf(κ) = ω then κ is a σ-cardinal.
(iii) If (GCH) holds and κ is a σ-cardinal then κ is a strong limit.

(iv) It is consistent that ℵω is a σ-cardinal and that 2ℵ0 = ℵω+1.

Also connected with the question of parametrisation of D(κ) is the notion of
supermetrisability: a space X of weight κ is said to be supermetrisable if and
only there is a finer metrisable topology on X of weight ≤ κ.
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Theorem 7. The following are equivalent:

(i) κ is a σ-cardinal,
(ii) all spaces of weight ≤ κ have σ-weight ≤ κ,
(iii) all Tychonoff spaces of weight ≤ κ have a continuous function universal

parametrised by a metrisable space of weight ≤ κ,
(iv) Rκ is supermetrisable,

(v) all Tychonoff spaces of weight κ are supermetrisable,
(vi) D(κ) has a zero set universal and a continuous function universal para-

metrised by a metrisable space of weight κ.

Proof: (i) implies (ii): Let κ be a σ-cardinal and let C ⊂ P(κ) be such that
every subset of κ is a countable union of elements from C. Let B = {Bα : α ∈ κ}
be a basis for a space X . Then B′ = {

⋃
{Bα : α ∈ C} : C ∈ C} is a σ-basis for X .

(ii) implies (iii): This is shown in Theorem 3.
(iii) implies (iv): Note that the set of continuous functions on the discrete space

of size κ is simply Rκ. Now there is some metrisable space Y of weight κ that
parametrises a continuous function universal for D(κ) (via the function F ). For
each function f ∈ Rκ choose yf ∈ Y such that F (x, yf ) = f(x) for all x ∈ κ. The
space {yf : f ∈ Rκ} witnesses that Rκ is supermetrisable.
(iv) implies (v): This follows from the fact that every Tychonoff space of weight

≤ κ embeds in Rκ.
(v) implies (vi): Let τ be a finer metric topology on Rκ of weight κ. Then

(Rκ, τ) parametrises a continuous function universal for D(κ) via the evaluation
map.
(vi) implies (i): This follows from Theorem 2. �

3. Hereditary properties

Assume that Y parametrises a zero set universal for X . We examine how
cardinal invariants of Y bound cardinal invariants of X . In particular we are
interested in hereditary properties such as the hereditary density. The case is very
much the same as for open universals studied in [7]. However in the case where
Y is hereditarily separable we will show that in fact Xn is hereditarily Lindelöf
for all n ∈ ω. When dealing with open universal we only get hL(X) ≤ hd(Y ).

Theorem 8. Let X be Tychonoff and assume that X has a zero set universal
parametrised by Y . Then the following are true:

w(X) ≤ nw(Y ), hd(X) ≤ hL(Y ),

hc(X) ≤ hc(Y ), hL(Xn) ≤ hd(Y ) for all n ∈ N.

Proof: The first three statements can be proved by minor modifications of the
proofs in [7]. We will prove that hL(Xn) ≤ hd(Y ). We first prove the following. If
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X is Tychonoff and has zero set universal parametrised by Y such that d(Y ) ≤ κ,
then ∃Z ⊆ Rκ and a 1–1 continuous surjection G : X → Z.

Proof of claim: We must show that if D is a dense subset of Y such that
|D| = κ, then {F d : d ∈ D} separates points in X . From this, we can define

G : X → RD by G(x)(d) = F (x, d), then take Z = ran(G).
Let x1 and x2 be two distinct points in X . Therefore there is y ∈ Y such that

F (x1, y) = 0 and F (x2, y) 6= 0, and hence disjoint open sets U1 and U2 such that
F (x1, y) ∈ U1 and F (x2, y) ∈ U2. By continuity of F , there are open sets V1 and
V2 in Y , both containing y such that {xi} × Vi ⊆ F−1(Ui) for i = 1, 2. Hence for
y′ ∈ V1 ∩ V2, we see that F (x1, y

′) 6= F (x2, y
′); also, since V1 ∩ V2 is open in Y ,

it must meet every dense set, so there is such a y′ within any dense set.

Proof of main result: Let κ = hd(Y ). Then from the above condition, we
know firstly that hL(X) ≤ κ. Now, for a contradiction, we suppose that, for
some n ∈ N (we pick the least such), {xα : α < κ+} is a right-separated subset
of Xn, witnessed by the basic open sets {

∏n
i=1 V i

α : α < κ}. By Proposition 21
of [7], this can be done in a more symmetric way, so that for α, β < κ+, whenever
xβ ∈ σ

∏n
i=1 V i

α for some σ ∈ Sn (where the group action permutes co-ordinates),
then β ≤ α. Also, we can assume that all points are off the diagonal, since
hL(X) ≤ κ (and the diagonal is homeomorphic to X). In fact, we can use this
last fact to guarantee that each point xα has no two co-ordinates equal.
Now the diagonal of X , denoted ∆X , is precisely the set {(x, y) ∈ X × X :

G(x) = G(y)}, where G is as defined previously. Having defined S = {(i, j) :
1 ≤ i < j ≤ n}, the subset corresponding to the diagonal in Xi × Xj is⋂

α<κ

⋂
m<ω{(y, z) ∈ Xi × Xj : |G(y)α − G(z)α| < 1/m}. Hence, defining

W(α.ω+m) = {(y, z) ∈ X × X : |G(y)α − G(z)α| < 1/m}, we see that

{x ∈ Xn : ∀(i, j) ∈ S,x(i) = x(j)} =
⋂

(i,j)∈S

{x ∈ Xn : (x(i),x(j)) ∈ ∆X}

=
⋂

(i,j)∈S

⋂

α<κ

{x ∈ Xn : (x(i),x(j)) ∈ Wα}

=
⋂

α<κ

⋂

(i,j)∈S

{x ∈ Xn : (x(i),x(j)) ∈ Wα}

=
⋂

α<κ

W ′
α

where W ′
α is the basic open set {x ∈ Xn : ∀(i, j) ∈ S (x(i),x(j)) ∈ Wα}. By the

pigeon-hole principle, there must be one such W ′
α which contains the diagonal,

but which misses every xβ (taking a sub-family of xαs if necessary).

Also, we can refine each of the open sets V i
α so that xα ∈

∏n
i=1 V i

α still, but

now, (V i
α)

n ⊆ W ′
α. Since X is Tychonoff, we can even make {V i

α : 1 ≤ i ≤ n}
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pairwise disjoint cozero sets. Therefore, for all α < κ+, there is some yα in Y
such that

⋃n
i=1 V i

α = {x ∈ X : F (x, yα) 6= 0}. Hence, there are open subsets
of Y , {Uα : α < κ+}, so that, for each α < κ+, yα ∈ Uα and {xα(i) : 1 ≤ i ≤
n} × Uα ⊆ F−1(R \ {0}). As a result, whenever yβ ∈ Uα, then for i = 1, . . . , n,

xα(i) ∈
⋃n

i=1 V i
α. In other words, there is some σ ∈ Sn such that xα ∈ σ

∏n
i=1 V i

β .

But this means that α ≤ β, so {yα : α < κ+} is left-separated, hence hd(Y ) ≥ κ+

which contradicts our original hypothesis. �

4. S spaces and L spaces

In this section we construct three related examples of ‘bad’ spaces with contin-
uous function universals parametrised by a ‘good’ space. For instance, there is a
non metrisable space with a continuous function universal parametrised by a space
whose countable power is both hereditarily Lindelöf and hereditarily separable.
The spaces are constructed from the interaction of the Baire metric topology

on a fixed subset, A, of ωω with various orders on A. More particularly, given
a partial order � on A, then (as in Todorčević [14]) we define the intersection
topology A[�] from a countable local base at each a ∈ A made up of the sets
B�(n, a) for n < ω where B�(n, a) = {b ∈ A : (b � a) ∧ (a↾n = b↾n)}. The two
orders that we consider here are: ≤ which is defined component-wise (i.e. a ≤ b
precisely if, for all n, an ≤ bn), and the lexicographic order ≤L (where a ≤L b
precisely if, at the smallest n such that an 6= bn, then an < bn).
Assuming that b = ω1, we can find a subset A of ωω with order type ω1 under

≤∗ (where 〈an〉n<ω ≤∗ 〈bn〉n<ω precisely if there is some N < ω such that, for all
n ≥ N , an ≤ bn). Todorčević has shown that, in this case, various intersection
topologies on A behave as follows:

• ([14, Theorem 0.6]) A[≤] is a strong S space (i.e. the countable power of A[≤]
is hereditarily separable, but A[≤] itself fails to be Lindelöf).

• ([14, Theorem 0.6]) A[≥] is a strong L space (i.e. its countable power is here-
ditarily Lindelöf, but is itself non-separable).

• ([14, Theorem 3.0]) A[≤L] and A[≥L] are each homeomorphic to a subspace
of the Sorgenfrey line such that the countable power of each is hereditarily
separable and hereditarily Lindelöf. Neither space, however, is metrisable as
each fails to have a countable base.

Once we know these basic properties, we can use them, along with the definition
of the local base at a point to produce the following three examples:

Example 9 (b = ℵ1). There is an L space with a zero set universal parametrised
by a strong S space.
Hence there is a non-hereditarily separable space with a continuous function

universal parametrised by a space whose countable power is hereditarily separable.

Proof: The ‘hence’ part follows from the first assertion and Theorem 1.
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Let X = A[≥] and Y = (A[≤] × ω)ω . We shall show that X has a zero
set universal parametrised by Y . Since X is an L space and hence hereditarily
Lindelöf and regular, then it must indeed be perfectly normal. Therefore, every
open set is a cozero set, and from a cover by basic open sets we can find a countable
sub-cover. In other words, the cozero sets in X are precisely those of the form⋃
{B≥(mn, an) : n < ω} where each mn < ω and an ∈ A.
Thus, we have a way of coding up the zero sets of X by points in Y , which we

use to define a function F : X × Y → 2ω by F (x, 〈an, mn〉n<ω) = 〈bn〉n<ω where
bn = 1 if x ∈ B≥(mn, an) and bn = 0 otherwise. Now, F (x, 〈an, mn〉n<ω) = 〈0〉
precisely if, for each n, x /∈ B≥(mn, an), i.e. x /∈

⋃
{B≥(mn, an) : n < ω}.

Since, with the canonical embedding of the Cantor set within [0, 1] (where

〈bn〉n<ω maps to Σn<ω2 · bn/3(n+1)), only 〈0〉 maps to 0, it will suffice to show
that this function F is continuous. This simplifies to checking continuity with
respect to each of the two types of sub-basic open sets in 2ω:

• For U(m, 0) = {〈bn〉n<ω : bm = 0}, we let (x, 〈an, mn〉n<ω) ∈ F−1(U(m, 0)).
Hence, equivalently, x /∈ B≥(mm, am) = {b ∈ A : b ≥ am ∧ am↾mm

= b↾mm
}.

Therefore, one of two cases will apply. Firstly, if x↾mm
6= am↾mm

, we let n =
mm. Otherwise, x↾mm

= am↾mm
and x 6≥ am, so there is some n > mm such

that x(n − 1) < am(n − 1), in which case x↾n 6= am↾n. Thus, if y ∈ B≥(n, x)
and 〈ci, ri〉i<ω is such that cm ∈ B≤(n, am) and rm = mm, then y↾n = x↾n 6=
am↾n = cm↾n. In the second case, it must also be the case that y(n) < cm(n)
and y↾mm

= cm↾mm
, so in both cases, (y, 〈ci, ri〉i<ω) ∈ F−1(U(m, 0)) which is

therefore open.

• For U(m, 1) = {〈bn〉n<ω : bm = 1}, we let (x, 〈an, mn〉n<ω) ∈ F−1(U(m, 1)).
Hence, equivalently, x ∈ B≥(mm, am) = {b ∈ A : b ≥ am ∧ am↾mm

= b↾mm
},

so, in other words, x ≥ am and x↾mm
= am↾mm

. Now, if y ∈ B≥(mm, x) and
cm ∈ B≤(mm, am), then y ≥ x ≥ am ≥ cm and y↾mm

= x↾mm
= am↾mm

=

cm↾mm
, so y ∈ B≥(mm, cm) which is enough to guarantee that F−1(U(m, 1))

is open too.

Since, to prove continuity of a function, it suffices to show that the inverse image
of each open set in a sub-basis is open, we have established that F is a continuous
function, so Y parametrises a zero set universal for X , as required. �

Example 10 (b = ℵ1). There is an S space with a zero set universal parametrised
by a strong L space.
Hence there is a non-hereditarily Lindelöf space with continuous function uni-

versal parametrised by a space with hereditarily Lindelöf power.

Proof: The ‘hence’ part follows from the first assertion and Theorem 1.
Let X = A[≤] and Y = 2ω × (A[≥] × ω)ω . We shall show that X has a zero

set universal parametrised by Y . First, we show that X is perfectly normal, by
proving that any open subset is a cozero set. Using that information, we create a
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closed-set universal, as in Gartside and Lo [7], and prove that it is, in fact, also a
zero set universal.

Let (Z, τ) be such that Z ⊆ R and τ is finer than the Euclidean topology on
Z. We say that (Z, τ) is a “Kunen line”-type space if, for every subset S of X ,

|S
d
\S

τ
| ≤ ℵ0, where d represents the Euclidean metric topology. Todorčević [14,

Chapter 2] constructs a topology A[H ] on A of “Kunen line”-type which is a
locally compact strong S space. This topology is based on, and has finer topology
than, A[<∗], but he observes (on page 24 of [14]): “Note that . . . we could have
added the condition a ≤ b in this definition of H instead of a <∗ b. But since
we don’t have a use for this, we keep the definition as it is.” If the definition for
A[H ] is changed in this way, then the topology of A[≤] is sandwiched between
those of A[H ] and the Euclidean topology on A (considered as a subspace of the
irrationals), which shows that A[≤] is a “Kunen line”-type space. Hence, every
open subset of X is the union of a Euclidean-type open set with a countable union
of A[≤]-type basic open sets. Now, Euclidean-type open sets are cozero sets, as
the topology is finer than the Euclidean topology, and basic open sets are clopen
sets, so countable unions of basic open sets are cozero sets also, so therefore any
open set in A[≤] is a cozero set.

As shown in [4], there is a zero set universal for the Euclidean zero sets,
given via the non-negative continuous function F1 : X × 2ω → R. We use the
same method as in Example 9 to produce a zero set universal for the count-
able unions of basic open sets. We define a function F2 : X × (A[≥] × ω)ω

by F2(x, 〈an, mn〉n<ω) =
∑

n<ω 2 · bn/3n+1 where bn = 1 if x ∈ B≤(mn, an)
and bn = 0 otherwise. Now, F2(x, 〈an, mn〉n<ω) = 0 precisely if, for each n,
x /∈ B≤(mn, an), i.e. x /∈

⋃
{B≤(mn, an) : n < ω}, so that each zero set which is

the complement of a countable union of basic open sets is parametrised by this
function. The proof that this function F2 is continuous follows the same pattern
as the proof that the function F in Example 9 is continuous:

• For U(m, 0) = {〈bn〉n<ω : bm = 0}, we let (x, 〈an, mn〉n<ω) ∈ F−1
2 (U(m, 0)).

Hence, equivalently, x /∈ B≤(mm, am) = {b ∈ A : b ≤ am ∧ am↾mm
= b↾mm

}.
Therefore, one of two cases will apply. Firstly, if x↾mm

6= am↾mm
, we let n =

mm. Otherwise, x↾mm
= am↾mm

and x 6≤ am, so there is some n > mm such
that x(n − 1) > am(n − 1), in which case x↾n 6= am↾n. Thus, if y ∈ B≤(n, x)
and 〈ci, ri〉i<ω is such that cm ∈ B≥(n, am) and rm = mm, then y↾n = x↾n 6=
am↾n = cm↾n. In the second case, it must also be the case that y(n) > cm(n)
and y↾mm

= cm↾mm
, so in both cases, (y, 〈ci, ri〉i<ω) ∈ F−1(U(m, 0)) which is

seen to be an open set.

• For U(m, 1) = {〈bn〉n<ω : bm = 1}, we let (x, 〈an, mn〉n<ω) ∈ F−1(U(m, 1)).
Hence, equivalently, x ∈ B≤(mm, am) = {b ∈ A : b ≤ am ∧ am↾mm

= b↾mm
},

so, in other words, x ≤ am and x↾mm
= am↾mm

. Now, if y ∈ B≤(mm, x) and
cm ∈ B≥(mm, am), then y ≤ x ≤ am ≤ cm and y↾mm

= x↾mm
= am↾mm

=
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cm↾mm
, so y ∈ B≤(mm, cm) which is enough to guarantee that F−1(U(m, 1))

is open too.

Thus, both F1 and F2 are continuous functions, so defining F : X × Y → R

by F (x, (〈in〉n<ω, 〈an, mn〉n<ω)) = F1(x, 〈in〉n<ω)+F2(x, 〈an, mn〉n<ω) will also
give a continuous function. As defined, F (x, (〈in〉n<ω, 〈an, mn〉n<ω)) = 0 pre-
cisely when F1(x, 〈in〉n<ω) = 0 and F2(x, 〈an, mn〉n<ω) = 0, so every open set is
the cozero set corresponding to Fy for some y ∈ Y , as the union of a Euclidean
cozero set with a countable union of basic open sets. �

Example 11 (b = ℵ1). There is a hereditarily separable, hereditarily Lindelöf
non-metrisable space X with nw(X) = ℵ1, which has a zero set universal para-
metrised by a space which is both hereditarily separable and hereditarily Lindelöf.

Hence there is a space with uncountable netweight despite having a continuous

function universal parametrised by a space whose countable power is hereditarily

separable and hereditarily Lindelöf.

Proof: The ‘hence’ part follows from the first assertion and Theorem 1.
Let X = A[≥L] and Y = (A[≤L] × ω)ω. We shall show that X has a zero

set universal parametrised by Y . Now, since X is hereditarily Lindelöf, we know,
again, that the cozero sets in X are precisely the open sets, and that, moreover,
each of these sets is a countable union of basic open sets. Hence, we can define F
in a similar fashion to our previous example, by F (x, 〈an, mn〉n<ω) = 〈bn〉n<ω,
where bn = 1 if x ∈ B≥L

(mn, an) and bn = 0 otherwise. With this definition, it is
clear that F has all properties (save continuity) that are needed. It just remains
to check continuity. This simplifies to checking continuity with respect to each of
the two types of sub-basic open sets in 2ω:

• For U(m, 0) = {〈bn〉n<ω : bm = 0}, we let (x, 〈an, mn〉n<ω) ∈ F−1(U(m, 0)).
Hence, equivalently, x /∈ B≥L

(mm, am) = {b ∈ A : b ≥L am∧am↾mm
= b↾mm

}.
Therefore, one of two cases will apply. Firstly, if x↾mm

6= am↾mm
, we let

n = mm. Otherwise, x↾mm
= am↾mm

and x 6≥L am, so x <L am, in which
case, pick the least n > mm for which x↾n 6= am↾n. Thus, if y ∈ B≥L

(n, x)
and 〈ci, ri〉i<ω is such that cm ∈ B≤L

(n, am) and rm = mm, then y↾n = x↾n 6=
am↾n = cm↾n. In the second case, it must also be the case that y <L cm and
y↾mm

= cm↾mm
, so in both cases, (y, 〈ci, ri〉i<ω) ∈ F−1(U(m, 0)) which is seen

to be an open set.
• For U(m, 1) = {〈bn〉n<ω : bm = 1}, we let (x, 〈an, mn〉n<ω) ∈ F−1(U(m, 1)).
Hence, equivalently, x ∈ B≥L

(mm, am) = {b ∈ A : b ≥L am∧am↾mm
= b↾mm

},
so, in other words, x ≥L am and x↾mm

= am↾mm
. Now, if y ∈ B≥L

(mm, x)
and cm ∈ B≥L

(mm, am), then y ≥L x ≥L am ≥L cm and y↾mm
= x↾mm

=
am↾mm

= cm↾mm
, so y ∈ B≥L

(mm, cm) which is enough to guarantee that

F−1(U(m, 1)) is open too.

Hence, by the standard argument from a sub-basis of the range space, F is con-
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tinuous, so shows that Y parametrises a zero set universal for X as required. �

Observe that this last example is an uncountable subspace of the Sorgenfrey
line. Also note that these examples also give rise to S and L admissible topologies.

5. Separability and chain conditions

5.1 Sufficient conditions. We will find some sufficient conditions for a space
to have a continuous function universal parametrised by a separable space, a ccc
space or a space with calibre ω1. These rely on the idea of a K-coarser topology
on a space.

Definition 12. Let τ, σ be two topologies on a setX with τ ⊂ σ. We say that τ is
a K-coarser topology if (X, σ) has a neighbourhood basis consisting of τ -compact
neighbourhoods.

The existence of a K-coarser topology τ on a space (X, σ) will allow us to
construct a continuous function universal for (X, σ) by refining the topology on
Ck(X) without adding “too many” open sets.
Fix a space (X, σ). Let U = {(r, q) : r, q ∈ Q, r < q} and UQ = U ∪ {{q} :

q ∈ Q}. Fix C = 〈C0, . . . , Cn〉 where each Ci ⊂ X and U = 〈U0, . . . , Un〉
where each Ui ⊂ R. Define W ′(C,U) = {f ∈ RX : ∀i ≤ n(f [Ci] ⊂ Ui)} and
W (C,U) = {f ∈ C(X) : ∀i ≤ n(f [Ci] ⊂ Ui)}.
If B ⊂ P(R) and τ, σ are topologies on X we define the space Ckτ

((X, σ), B)
to have as its underlying set C(X, σ) and a basis

S = {W (C,U) : C ∈ P(X)<ω,U ∈ B
<ω, |C| = |U|, ∀C ∈ C(C is τ–compact)}.

For any set A the set A<ω is the collection of all finite partial functions from ω into
X whose domain consists of some initial segment of ω. Note that Ckσ

((X, σ), U)
is simply the space Ck(X, σ).
Let τ be a K-coarser topology on (X, σ). The space Ckτ

((X, σ), UQ) para-
metrises a continuous function universal for (X, σ) via the evaluation map. In
addition this space is T2 and 0-dimensional, and so the space is Tychonoff. Al-
though it may be easier to work with the space Ckτ

((X, σ), U) it is difficult to
see how one would show that this space is Tychonoff. We summarise with the
following theorem.

Theorem 13. Let τ be a K-coarser topology on (X, σ).

(i) The space Ckτ
((X, σ), UQ) parametrises a continuous function universal

for (X, σ) via the evaluation map.
(ii) Ckτ

((X, σ), UQ) is T2 and 0-dimensional, and hence is Tychonoff.

We will now show that Ckτ
((X, τ), UQ) is a dense subspace of Ckσ

((X, σ), UQ).
Towards this end we have the following theorem.
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Theorem 14. Let X be a Tychonoff space. Let C = 〈C0, . . . , Cn〉 consist of
subsets of X and let U = 〈U0, . . . , Un〉 where each Ui ∈ U. Assume D =
〈D0, . . . , Dm〉 consists of subsets of X and that V = 〈{q0}, . . . , {qm}〉 where
each qj ∈ Q.

If either (i) each Ci and Di is compact or (ii) each Ci and Di is a zero set and

if there exists f ∈ W ′(C,U)∩W ′(D,V) then there exists g ∈ W (C,U)∩W (D,V).

The following lemma will simplify this proof.

Lemma 15. Let C = 〈Ci : i ≤ n〉 consist of subsets of X . Define EA =⋂
j∈A Cj \

⋃
j /∈A Cj and for each A ⊂ n + 1 define o(A) = |(n + 1) \ A|. Let

I ⊂ P(n + 1) satisfy: there exists k ≤ n such that o(A) ≤ k + 1 for all A ∈ I
and if o(A) ≤ k then A ∈ I (we say that such an I is downward closed). Then⋃
{EA : A ∈ I} =

⋃
{
⋂

j∈A Cj : A ∈ I}.

Now we are ready to prove Theorem 14.

Proof: We only give the proof for case (i) as case (ii) can be proved with minor
modifications of the same argument. Let C,U ,D and V be as in the statement of
the lemma, case (i).
Assume that there exists some f ∈ W ′(C,U) ∩ W ′(D,V). We divide our proof

into two parts. First we show that (a) there exists h ∈ W (C,U) and then we show
that (b) there exists g ∈ W (C,U) ∩ W (D,V).

Part (a): For each i ≤ n we will recursively define a continuous function hi

satisfying: for all A ⊂ n + 1 such that o(A) ≤ i and for all x ∈ EA we have
hi(x) ∈

⋂
{Uj : j ∈ A}. This will suffice as defining h = hn we must have that

h ∈ W (C,U).
To construct h0: there is only one A ⊂ n + 1 such that o(A) = 0, that is

A = n+ 1. If EA 6= ∅ then we can choose r0 ∈
⋂
U . We define a function h0 by

setting for each x ∈ X that h0(x) = r0. If EA = ∅ then any choice of h0 will do.
Assume that for some k < n and for all i ≤ k we have the required function hi.

To construct hk+1: Let 〈A0, . . . , Al〉 be an ordering of the set {A : o(a) = |k+1|}.
We claim that for each s ≤ l we can recursively define a continuous function hs

k+1
satisfying: (1) for all A ⊂ n + 1 such that o(A) ≤ k and for all x ∈ EA we have
hs

k+1(x) ∈
⋂
{Uj : j ∈ A} and (2) for all i ≤ s and for all x ∈ EAi

we have

hs
k+1(x) ∈

⋂
{Uj : j ∈ Ai}. Then defining hk+1 = hl

k+1 we will have constructed
the required hk+1.

All that remains to be shown is that the claim is true. Let h−1k+1 = hk. Assume

that for some s < l and all i ≤ s we have defined the required hi
k+1. Let

Zs+1
k+1 = {x : ∃j ≤ n(x ∈ Cj ∧ hs

k+1(x) /∈ Uj)} and note that Zs+1
k+1 is a compact

set. To see this we can rewrite Zs+1
k+1 as

Zs+1
k+1 =

⋃

j≤n

(Cj ∩ (f
s
k+1)

−1(R \ Uj)).
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To define hs+1
k+1: if EAs+1

∩ Zs+1
k+1 = ∅ then let hs+1

k+1 = hs
k+1 and note that this

function satisfies (1) and (2) as described in the previous paragraph. If not then

find rs+1
k+1 ∈

⋂
{Uj : j ∈ As+1}. By Lemma 15 the set

⋃
{EA : o(A) ≤ k}∪

⋃
{EAi

:

i ≤ s} is compact and from the definitions is disjoint from Zs+1
k+1.

We can now find a continuous function ps+1
k+1 such that ps+1

k+1 ↾ Zs+1
k+1 = 1 and

ps+1
k+1 ↾ (

⋃
{EA : o(A) ≤ k} ∪

⋃
{EAi

: i ≤ s}) = 0 and ps+1
k+1[X ] ⊂ [0, 1].

We define the function hs+1
k+1 by setting for each x ∈ X that hs+1

k+1(x) =

hs
k+1(x) − hs

k+1(x)p
s+1
k+1(x) + rs+1

k+1p
s+1
k+1(x). This function is continuous and it

satisfies (1) and (2) as described earlier.

Part (b): We will now recursively define for each k ≤ m a continuous function
gk such that gk ∈ W (C,U) ∩ W (〈D0, . . . , Dk〉, 〈{q0}, . . . , {qk}〉). Let g−1 = h.
Assume that there is k < m such that for each i ≤ k we have defined the re-
quired gi. Find a continuous function pk+1 that satisfies: for all x ∈ Dk+1
we have pk+1(x) = 1, for all i ≤ k and x ∈ Di we have pk+1(x) = 0 and
for all j ≤ n such that Dk+1 ∩ Cj = ∅ and x ∈ Cj we have pk+1(x) = 0.
Now we define the function gk+1 by setting for each x ∈ X that gk+1(x) =
gk(x) − pk+1(x)gk(x) + pk+1(x)qk+1. It is easily verified that gk+1 ∈ W (C,U) ∩
W (〈D0, . . . , Dk+1〉, 〈{q0}, . . . , {qk+1}〉). Now defining g = gm we have con-
structed the required function. �

The next result follows almost immediately from Theorem 14.

Corollary 16. Fix a Tychonoff space (X, σ) and let τ be a K-coarser topology.
Then Ckτ

((X, τ), UQ) is a dense subspace of Ckτ
((X, σ), UQ).

Now we have reduced the problem of showing that Ckτ
((X, σ), UQ) is separable,

ccc or has calibre ω1 to that of demonstrating that Ckτ
((X, τ), UQ) has these

properties. From now on we will write Ck(X, UQ) and Ck(X) as there will be
only one topology considered on X .
Fix an arbitrary space X . We will investigate when Ck(X, UQ) is ccc, separable

or has calibre ω1.

Lemma 17. Fix a Tychonoff space X . Then

(i) Ck(X, UQ) is separable if and only if Ck(X) is separable,
(ii) Ck(X, UQ) is ccc if and only if Ck(X) is ccc,
(iii) Ck(X, UQ) has calibre ω1 if and only if Ck(X) has calibre ω1.

Proof: The identity map is a continuous function from Ck(X, UQ) onto Ck(X)
and so one implication is immediate in (i), (ii) and (iii).
Part (i): Assume that Ck(X) is separable and so X has a coarser separable

metric topology τ . Let A = {An : n ∈ ω} be a basis for τ . Assume that A is
closed under finite unions. For each n, m ∈ ω let fn,m : X → R be a τ -continuous

function satisfying fn,m(x) = 1 when x ∈ Am and fn,m(x) = 0 when x ∈ X \An.
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Of course this is only well-defined when Am ⊂ An and if this does not hold then
we let fn,m(x) = 0 for all x ∈ X . The linear span of {fn,m : n, m ∈ ω} over Q is
a countable set that is dense in Ck(X, UQ).
Part (iii): Assume that Ck(X) has calibre ω1. Fix an uncountable collection

W = {Wα : α ∈ ω1} of basic open non-empty subsets of Ck(X, UQ). So we can
assume that each Wα is of the form W (Cα,Uα)∩W (Dα,Vα) where for all α ∈ ω1:
Cα = {Cα

i : i ≤ nα} consists of zero sets of X , Uα = {Uα
i : i ≤ nα} where each

Ui ∈ U, Dα = {Dα
j : j ≤ mα} consists of pairwise disjoint zero subsets of X and

Vα = {{qα
j } : j ≤ mα} where each qα

j ∈ Q.

By passing to an uncountable subcollection we can assume that for all α, β ∈ ω1
we have Uα = Uβ and Vα = Vβ . We will drop the subscripts and use U and V
to denote these sets. Assume that |U| = n and |V| = m. We can write V as
{{qj} : j ≤ m} where each qj ∈ Q. Choose δ > 0 such that 4δ < min{|qi − qj | :
i, j ≤ m}. We define a new collection V ′ by defining for each j ≤ m the set
V ′

j = (qj − δ, qj + δ) and letting V ′ = {V ′
j : j ≤ m}. Note that for each α ∈ ω1

we know that W (Cα,Uα)∩W (Dα,V ′
α) is a non-empty subset of Ck(X). So there

is some f ∈ C(X) and A ⊂ ω1 such that |A| = ω1 and f ∈
⋂
{W (Cα,Uα) ∩

W (Dα,V ′
α) : α ∈ A}.

We define two collections of zero sets C and D by defining for each i ≤ n,

Ci = f−1(Ui) and for each j ≤ m we define Dj = f−1(V ′
i ). Note that if j, j

′ ≤ m

then Dj ∩ Dj′ = ∅ when j 6= j′. We can define a new function f ′ by setting

f ′(x) = f(x) when x /∈
⋃
D and f ′(x) = qj when x ∈ Dj . Now we have that

f ′ ∈ W ′(C,U) ∩ W ′(D,V) and so applying Lemma 14 we know that there exists
g ∈ W (C,U) ∩ W (D,V). But

W (C,U) ∩ W (D,V) ⊂
⋂

α∈A

Wα

and so we are done.
Part (ii) can be proved in much the same way as part (iii). �

Corollary 18. Let (X, σ) be a Tychonoff space and let τ be aK-coarser topology.

(i) If (X, τ) is second countable then (X, σ) has a continuous function uni-
versal parametrised by a separable space.

(ii) If Ck(X, τ) is ccc then (X, σ) has a continuous function universal para-
metrised by a ccc space.

(iii) If Ck(X, τ) has calibre ω1 then (X, σ) has a continuous function universal
parametrised by a space with calibre ω1.

We can also derive sufficient conditions in the ccc or calibre ω1 cases that
do not depend on the properties of an external object (such as Ck(X, τ)). In
[13] necessary and sufficient conditions on X for Ck(X) to have calibre ω1 are
described and in [12] the same is done for the ccc case. We can summarise these
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results in the following lemma. Note that C is an n-chain of sets if C is an ordered
collection of n+ 1 many sets 〈C0, . . . , Cn〉 and Ci ∩ Cj = ∅ if |i − j| > 1.

Lemma 19. Let X be a Tychonoff space. Ck(X) is ccc if and only for all n > 1
and for every collection of n-chains of compact sets {〈F 0α, . . . , Fn

α 〉 : α ∈ ω1}
there are α1, α2 ∈ ω1 and an n-chain of zero sets {Ci : i ≤ n} satisfying: (a) for
j = 1, 2 and i ≤ n we have F i

αj
⊂ Ci and (b) for j = 1, 2 and i < n we have

Ci ∩ Ci+1 = ∅ if and only if F i
αj

∩ F i+1
αj
= ∅.

Ck(X) has calibre ω1 if and only if for all n > 1 and every collection of n-chains
of compact sets {〈F 0α, . . . , Fn

α 〉 : α ∈ ω1} there is some A ⊂ ω1 with |A| = ω1
and an n-chain of zero sets {Ci : i ≤ n} satisfying: (a) for α ∈ A and i ≤ n we
have F i

α ⊂ Ci and (b) for α ∈ A and i < n we have Ci ∩ Ci+1 = ∅ if and only if
F i

α ∩ F i+1
α = ∅.

These results are useful when dealing with spaces that are not locally compact,
as in the locally compact case Ck(X) itself will parametrise a continuous function
universal for X . For example we can now construct a separable space Y that
parametrises a continuous function universal for the Sorgenfrey line. If we let X
be the disjoint sum of c+ many copies of the Sorgenfrey line then we know that X
has no continuous function universal parametrised by a separable space as Cp(X)
is not even separable. But since X will have a K-coarser metric topology we can
construct a continuous function universal parametrised by a ccc space.

5.2 Necessary conditions. We will deal first with the case where a space X
has a continuous function universal parametrised by a separable space. We say
a space (X, σ) is co-SM if and only if there is a separable metric topology τ ⊂ σ
such that (X, σ) has a neighbourhood basis of τ -closed sets.

Lemma 20. Let X be a Tychonoff space. If X has a continuous function uni-
versal parametrised by a separable space then X is co-SM.

Proof: Let Y be a separable metric space that parametrises a continuous func-
tion universal for X via the function F : X×Y → R. Let D be a countable dense
subset of Y . Each d ∈ D represents the continuous function F d. Let τ be the
coarsest topology that makes each F d continuous and note that τ is separable
metric.

Fix x in open U . Pick y ∈ Y so that F (x, y) = 1 and F [(X \ U)× {y}] = {0}.
By continuity of F at (x, y) there are open V and W with x ∈ V , y ∈ W and

F [V × W ] ⊆ (23 ,
4
3 ).

Claim: If x′ /∈ U then there is a τ -open T containing x′ disjoint from V .

From the claim it follows that V
τ
⊆ U , and by regularity of X , the τ -closed

neighbourhoods of x form a local base — as required for co-SM.
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If we assume that x′ /∈ U then we must have that F (x′, y) = 0. So by continuity
of F at (x′, y) there are open V ′ and W ′ with x′ ∈ V ′ and y ∈ W ′ so that

F [V ′ × W ′] ⊆ (−13 , 13 ).

Pick d ∈ D ∩ (W ∩ W ′). Then d ∈ W ′ so F (x′, d) ∈ (−13 , 13 ). Hence by τ -

continuity of F d at x′, there is a τ -open T ∋ x′ such that F [T × {d}] ⊆ (−13 , 13 ).

Since d ∈ W , F [V × {d}] ⊆ (23 ,
4
3 ). Hence V and T are disjoint — as required.

�

Note that this falls short of the sufficient condition given previously leading to
the following question.

Problem 21. Is there a Tychonoff space X such that X is co-SM but X can
have no continuous function universal parametrised by a separable space?

Turning our attention to parametrising spaces which are ccc we introduce the
following two properties.

Definition 22. A space X has the property P1 if and only if for every pair of
disjoint compact subsets (K, L) there exists a pair of open sets U(K, L), V (K, L)

with K ⊂ U(K, L), L ⊂ V (K, L) and U(K, L) ∩ V (K, L) = ∅ satisfying the
following:

for any collection {(Kα, Lα) : α ∈ ω1} of pairs of disjoint compact sets there
exists α1, α1 such that

⋃

i=1,2

U(Kαi , Lαi) ∩
⋃

i=1,2

V (Kαi , Lαi) = ∅.

Definition 23. A space X has the property P2 if and only if for every pair of
disjoint compact subsets (K, L) there exists a pair of open sets U(K, L), V (K, L)

with K ⊂ U(K, L), L ⊂ V (K, L) and U(K, L) ∩ V (K, L) = ∅ satisfying the
following:

for any collection {(Kα, Lα) : α ∈ ω1} of pairs of disjoint compact sets there
exists α1, α1 such that

⋃

i=1,2

Kαi ⊂
⋂

i=1,2

U(Kαi , Lαi)

and ⋃

i=1,2

Lαi ⊂
⋂

i=1,2

V (Kαi , Lαi).
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Lemma 24. Let X be a Tychonoff space. If X has a zero set universal para-
metrised by a ccc space then X has property P1 and every compact subspace has
property P2.

Proof: Let Y be ccc and assume that Y parametrises a zero set universal for
X via the continuous function F : X × Y → R. Let Z be the disjoint sum of ω
many copies of Y and let Yn denote the nth copy of Y that is a subspace of Z.
Define a function F ′ : X × Z → R by letting F ′(x, z) = nF (x, z) when z ∈ Yn.
Finally let G = |F ′|. Note that Z parametrises a zero set universal for X via G,
that Z is ccc and that for any pair of disjoint compact sets K, L ⊂ X there exists
z ∈ Z such that Gz [K] = 0 and Gz [L] ⊂ [1,∞). We say that such a z separates
K and L.

We will first show that X has property P2 on its compact subspaces. Fix a
compact subspace C. Let K, L be disjoint compact subsets of C. We show how
to construct the required U(K, L) and V (K, L). Since K and L are compact
we can find z(K, L) ∈ Z that separates K and L. Let U(K, L) = {x ∈ C :

G(x, z(K, L)) < 1
4} and V (K, L) = {x ∈ C : G(x, z(K, L)) > 3

4}. Find open
W (K, L) such that z(K, L) ∈ W (K, L) and for all (x, z1), (x, z2) ∈ C × W (K, L)

we have |G(x, z1)− G(x, z2)| < 1
8 .

Now take a collection {(Kα, Lα) : α ∈ ω1} of pairs of disjoint compact subsets
of C. Look at the corresponding collection {W (Kα, Lα) : α ∈ ω1}. Since Z is ccc
there must be z ∈ Z and α1, α2 ∈ ω1 such that z ∈ W (Kα1 , Lα1)∩W (Kα2 , Lα2).
We claim that

⋃

i=1,2

Kαi ⊂
⋂

i=1,2

U(Kαi , Lαi)

and
⋃

i=1,2

Lαi ⊂
⋂

i=1,2

V (Kαi , Lαi)

as required. We will only show that Kα1 ⊂ U(Kα2 , Lα2) as the other cases can be

dealt with similarly. Fix x ∈ Kα1 . Note that G(x, z) < 1
8 since G(x, z(Kα1 , Lα1))

= 0 and z ∈ W (Kα1 , Lα1). But then G(x, z(Kα2 , Lα2)) < 1
8 +

1
8 =

1
4 and so

x ∈ U(Kα2 , Lα2).

Now we will show that X has property P1. The proof is similar to the P1 case
and so we will only show how to construct U(K, L) and V (K, L). Let K, L be dis-
joint compact subsets of X . Find z ∈ Z that separates K and L. Using the com-
pactness ofK and L and the continuity ofG find open U(K, L), V (K, L), W (K, L)
such that K ⊂ U(K, L), L ⊂ V (K, L) and z ∈ W (K, L) satisfying: for all

(x, z′) ∈ U(K, L)×W (K, L), G(x, z′) < 1
4 and for all (x, z′) ∈ V (K, L)×W (K, L),

G(x, z′) > 3
4 . �
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Lemma 25. Let X be a compact Hausdorff space. If X has property P2 then
X is metrisable.

Proof: It suffices to find a countable T1-separating collection of open subsets of
X (see for example [9]). Let C = {(Kα, Lα) : α ∈ I} be a collection of disjoint
pairs of compact subsets of X that satisfies (∗): for all α1, α2 ∈ I either

⋃

i=1,2

Kαi 6⊂
⋂

i=1,2

U(Kαi , Lαi)

or ⋃

i=1,2

Lαi 6⊂
⋂

i=1,2

V (Kαi , Lαi).

Assume that S = {U(Kα, Lα) : α ∈ I} ∪ {V (Kα, Lα) : α ∈ I} is not a T1-
separating collection. We will show that we can find (K, L) such that C∪{(K, L)}
satisfies the same property (∗) as C. Since S is not a T1-separating collection there
exist x1, x2 ∈ X such that for all C ∈ S we have x1 ∈ C implies x2 ∈ C. Let
K = {x1} and let L = {x2}. Fix α ∈ I. If x1 ∈ U(Kα, Lα) and x2 ∈ V (Kα, Lα)
then x2 /∈ U(Kα, Lα), contradicting the choice of x1, x2. So condition (∗) holds
for C ∪ {(K, L)}.
Now let C be a collection of disjoint pairs of compact subsets of X that is

maximal with respect to (∗) (i.e. C satisfies (∗), but for any collection D, if C ( D
then D does not have property (∗)). Since X has P2 we must have that C is
countable. But S as described above must be a T1-separating collection, and so
we are done. �

Problem 26. Does the property P1 imply the property P2? If not is the property
P1 equivalent to metrisability in compact spaces?
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